1
|
Johnson CJ, Zhang Z, Zhang H, Shang R, Piekarz KM, Bi P, Stolfi A. A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates. Development 2024; 151:dev202968. [PMID: 39114943 PMCID: PMC11441980 DOI: 10.1242/dev.202968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.
Collapse
Affiliation(s)
| | - Zheng Zhang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Renjie Shang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna M. Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Pengpeng Bi
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Johnson CJ, Zhang Z, Zhang H, Shang R, Piekarz KM, Bi P, Stolfi A. A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583753. [PMID: 38559144 PMCID: PMC10979880 DOI: 10.1101/2024.03.06.583753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is only expressed in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. While in vertebrates Myogenic Regulatory Factors (MRFs) like MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF/MyoD and Early B-Cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.
Collapse
Affiliation(s)
| | - Zheng Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Renjie Shang
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Katarzyna M Piekarz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pengpeng Bi
- Department of Genetics, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Simsek MF, Özbudak EM. A design logic for sequential segmentation across organisms. FEBS J 2023; 290:5086-5093. [PMID: 37422856 PMCID: PMC10774455 DOI: 10.1111/febs.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Multitudes of organisms display metameric compartmentalization of their body plan. Segmentation of these compartments happens sequentially in diverse phyla. In several sequentially segmenting species, periodically active molecular clocks and signaling gradients have been found. The clocks are proposed to control the timing of segmentation, while the gradients are proposed to instruct the positions of segment boundaries. However, the identity of the clock and gradient molecules differs across species. Furthermore, sequential segmentation of a basal chordate, Amphioxus, continues at late stages when the small tail bud cell population cannot establish long-range signaling gradients. Thus, it remains to be explained how a conserved morphological trait (i.e., sequential segmentation) is achieved by using different molecules or molecules with different spatial profiles. Here, we first focus on sequential segmentation of somites in vertebrate embryos and then draw parallels with other species. Thereafter, we propose a candidate design principle that has the potential to answer this puzzling question.
Collapse
Affiliation(s)
- M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
4
|
Long J, Mariossi A, Cao C, Mo Z, Thompson JW, Levine MS, Lemaire LA. Cereblon influences the timing of muscle differentiation in Ciona tadpoles. Proc Natl Acad Sci U S A 2023; 120:e2309989120. [PMID: 37856545 PMCID: PMC10614628 DOI: 10.1073/pnas.2309989120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Abstract
Thalidomide has a dark history as a teratogen, but in recent years, its derivates have been shown to function as potent chemotherapeutic agents. These drugs bind cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, and modify its degradation targets. Despite these insights, remarkably little is known about the normal function of cereblon in development. Here, we employ Ciona, a simple invertebrate chordate, to identify endogenous Crbn targets. In Ciona, Crbn is specifically expressed in developing muscles during tail elongation before they acquire contractile activity. Crbn expression is activated by Mrf, the ortholog of MYOD1, a transcription factor important for muscle differentiation. CRISPR/Cas9-mediated mutations of Crbn lead to precocious onset of muscle contractions. By contrast, overexpression of Crbn delays contractions and is associated with decreased expression of contractile protein genes such as troponin. This reduction is possibly due to reduced Mrf protein levels without altering Mrf mRNA levels. Our findings suggest that Mrf and Crbn form a negative feedback loop to control the precision of muscle differentiation during tail elongation.
Collapse
Affiliation(s)
- Juanjuan Long
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Chen Cao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | | | | | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Laurence A. Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Biology, Saint Louis University, St. Louis, MO63103
| |
Collapse
|
5
|
Hara T, Hasegawa S, Iwatani Y, Nishino AS. The trunk-tail junctional region in Ciona larvae autonomously expresses tail-beating bursts at ∼20 second intervals. J Exp Biol 2022; 225:275646. [PMID: 35678124 DOI: 10.1242/jeb.243828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Swimming locomotion in aquatic vertebrates, such as fish and tadpoles, is expressed through neuron networks in the spinal cord. These networks are arranged in parallel, ubiquitously distributed and mutually coupled along the spinal cord to express undulation patterns accommodated to various inputs into the networks. While these systems have been widely studied in vertebrate swimmers, their evolutionary origin along the chordate phylogeny remains unclear. Ascidians, representing a sister group of vertebrates, give rise to tadpole larvae that swim freely in seawater. In the present study, we examined the locomotor ability of the anterior and posterior body fragments of larvae of the ascidian Ciona that had been cut at an arbitrary position. Examination of more than 200 fragments revealed a necessary and sufficient body region that spanned only ∼10% of the body length and included the trunk-tail junction. 'Mid-piece' body fragments, which included the trunk-tail junctional region, but excluded most of the anterior trunk and posterior tail, autonomously expressed periodic tail-beating bursts at ∼20 s intervals. We compared the durations and intervals of tail-beating bursts expressed by mid-piece fragments, and also by whole larvae under different sensory conditions. The results suggest that body parts outside the mid-piece effect shortening of swimming intervals, particularly in the dark, and vary the burst duration. We propose that Ciona larvae express swimming behaviors by modifying autonomous and periodic locomotor drives that operate locally in the trunk-tail junctional region.
Collapse
Affiliation(s)
- Takashi Hara
- Department of Biology, Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Shuya Hasegawa
- Department of Biology, Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Yasushi Iwatani
- Department of Science and Technology, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Atsuo S Nishino
- Department of Biology, Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan.,Department of Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Hirosaki 036-8561, Japan
| |
Collapse
|
6
|
Fiúza UM, Lemaire P. Methods for the Study of Apical Constriction During Ascidian Gastrulation. Methods Mol Biol 2022; 2438:377-413. [PMID: 35147954 DOI: 10.1007/978-1-0716-2035-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gastrulation is the first major morphogenetic event during ascidian embryogenesis. Ascidian gastrulation begins with the invagination of the endodermal progenitors, a two-step process driven by individual cell shape changes of endoderm cells. During the first step, endoderm cells constrict apically, thereby flattening the vegetal side of the embryo. During the second step, endoderm cells shorten along their apicobasal axis and tissue invagination ensues. Individual cell shape changes are mediated by localized actomyosin contractile activity. Here, we describe methods used during ascidian endoderm apical constriction to study myosin activity and cellular morphodynamics with confocal and light sheet microscopy and followed by quantitative image analysis.
Collapse
Affiliation(s)
- Ulla-Maj Fiúza
- Systems Bioengineering, DCEXS Universidad Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
7
|
Matsuo K, Tamura R, Hotta K, Okada M, Takeuchi A, Wu Y, Hashimoto K, Takano H, Momose A, Nishino A. Bilaterally Asymmetric Helical Myofibrils in Ascidian Tadpole Larvae. Front Cell Dev Biol 2021; 9:800455. [PMID: 34950666 PMCID: PMC8688927 DOI: 10.3389/fcell.2021.800455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The locomotor system is highly bilateral at the macroscopic level. Homochirality of biological molecules is fully compatible with the bilateral body. However, whether and how single-handed cells contribute to the bilateral locomotor system is obscure. Here, exploiting the small number of cells in the swimming tadpole larva of the ascidian Ciona, we analyzed morphology of the tail at cellular and subcellular scales. Quantitative phase-contrast X-ray tomographic microscopy revealed a high-density midline structure ventral to the notochord in the tail. Muscle cell nuclei on each side of the notochord were roughly bilaterally aligned. However, fluorescence microscopy detected left-right asymmetry of myofibril inclination relative to the longitudinal axis of the tail. Zernike phase-contrast X-ray tomographic microscopy revealed the presence of left-handed helices of myofibrils in muscle cells on both sides. Therefore, the locomotor system of ascidian larvae harbors symmetry-breaking left-handed helical cells, while maintaining bilaterally symmetrical cell alignment. These results suggest that bilateral animals can override cellular homochirality to generate the bilateral locomotor systems at the supracellular scale.
Collapse
Affiliation(s)
- Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Mayu Okada
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Japan
| | - Yanlin Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Koh Hashimoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hidekazu Takano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Atsushi Momose
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
8
|
Nakamoto A, Kumano G. Dynein-Mediated Regional Cell Division Reorientation Shapes a Tailbud Embryo. iScience 2020; 23:100964. [PMID: 32199290 PMCID: PMC7082557 DOI: 10.1016/j.isci.2020.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Regulation of cell division orientation controls the spatial distribution of cells during development and is essential for one-directional tissue transformation, such as elongation. However, little is known about whether it plays a role in other types of tissue morphogenesis. Using an ascidian Halocynthia roretzi, we found that differently oriented cell divisions in the epidermis of the future trunk (anterior) and tail (posterior) regions create an hourglass-like epithelial bending between the two regions to shape the tailbud embryo. Our results show that posterior epidermal cells are polarized with dynein protein anteriorly localized, undergo dynein-dependent spindle rotation, and divide along the anteroposterior axis. This cell division facilitates constriction around the embryo's circumference only in the posterior region and epithelial bending formation. Our findings, therefore, provide an important insight into the role of oriented cell division in tissue morphogenesis.
Collapse
Affiliation(s)
- Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan.
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan
| |
Collapse
|
9
|
Hashimoto H, Munro E. Dynamic interplay of cell fate, polarity and force generation in ascidian embryos. Curr Opin Genet Dev 2018; 51:67-77. [PMID: 30007244 DOI: 10.1016/j.gde.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
A fundamental challenge in developmental biology is to understand how forces produced by individual cells are patterned in space and time and then integrated to produce stereotyped changes in tissue-level or embryo-level morphology. Ascidians offer a unique opportunity to address this challenge by studying how small groups of cells collectively execute complex, but highly stereotyped morphogenetic movements. Here we highlight recent progress and open questions in the study of ascidian morphogenesis, emphasizing the dynamic interplay of cell fate determination, cellular force generation and tissue-level mechanics.
Collapse
Affiliation(s)
- Hidehiko Hashimoto
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
10
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
11
|
Bertrand S, Aldea D, Oulion S, Subirana L, de Lera AR, Somorjai I, Escriva H. Evolution of the Role of RA and FGF Signals in the Control of Somitogenesis in Chordates. PLoS One 2015; 10:e0136587. [PMID: 26371756 PMCID: PMC4570818 DOI: 10.1371/journal.pone.0136587] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
During vertebrate development, the paraxial mesoderm becomes segmented, forming somites that will give rise to dermis, axial skeleton and skeletal muscles. Although recently challenged, the "clock and wavefront" model for somitogenesis explains how interactions between several cell-cell communication pathways, including the FGF, RA, Wnt and Notch signals, control the formation of these bilateral symmetric blocks. In the cephalochordate amphioxus, which belongs to the chordate phylum together with tunicates and vertebrates, the dorsal paraxial mesendoderm also periodically forms somites, although this process is asymmetric and extends along the whole body. It has been previously shown that the formation of the most anterior somites in amphioxus is dependent upon FGF signalling. However, the signals controlling somitogenesis during posterior elongation in amphioxus are still unknown. Here we show that, contrary to vertebrates, RA and FGF signals act independently during posterior elongation and that they are not mandatory for posterior somites to form. Moreover, we show that RA is not able to buffer the left/right asymmetry machinery that is controlled through the asymmetric expression of Nodal pathway actors. Our results give new insights into the evolution of the somitogenesis process in chordates. They suggest that RA and FGF pathways have acquired specific functions in the control of somitogenesis in vertebrates. We propose that the "clock and wavefront" system was selected specifically in vertebrates in parallel to the development of more complex somite-derived structures but that it was not required for somitogenesis in the ancestor of chordates.
Collapse
Affiliation(s)
- Stéphanie Bertrand
- UPMC Univ Paris 06, UMR 7232, BIOM, Observatoire Océanologique de Banyuls sur Mer, F-66650, Banyuls/Mer, France
- * E-mail: (SB); (HE)
| | - Daniel Aldea
- UPMC Univ Paris 06, UMR 7232, BIOM, Observatoire Océanologique de Banyuls sur Mer, F-66650, Banyuls/Mer, France
| | - Silvan Oulion
- UPMC Univ Paris 06, UMR 7232, BIOM, Observatoire Océanologique de Banyuls sur Mer, F-66650, Banyuls/Mer, France
| | - Lucie Subirana
- UPMC Univ Paris 06, UMR 7232, BIOM, Observatoire Océanologique de Banyuls sur Mer, F-66650, Banyuls/Mer, France
| | - Angel R. de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
| | - Ildiko Somorjai
- UPMC Univ Paris 06, UMR 7232, BIOM, Observatoire Océanologique de Banyuls sur Mer, F-66650, Banyuls/Mer, France
| | - Hector Escriva
- UPMC Univ Paris 06, UMR 7232, BIOM, Observatoire Océanologique de Banyuls sur Mer, F-66650, Banyuls/Mer, France
- * E-mail: (SB); (HE)
| |
Collapse
|
12
|
Veeman M, Reeves W. Quantitative and in toto imaging in ascidians: working toward an image-centric systems biology of chordate morphogenesis. Genesis 2015; 53:143-59. [PMID: 25262824 PMCID: PMC4378666 DOI: 10.1002/dvg.22828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Developmental biology relies heavily on microscopy to image the finely controlled cell behaviors that drive embryonic development. Most embryos are large enough that a field of view with the resolution and magnification needed to resolve single cells will not span more than a small region of the embryo. Ascidian embryos, however, are sufficiently small that they can be imaged in toto with fine subcellular detail using conventional microscopes and objectives. Unlike other model organisms with particularly small embryos, ascidians have a chordate embryonic body plan that includes a notochord, hollow dorsal neural tube, heart primordium and numerous other anatomical details conserved with the vertebrates. Here we compare the size and anatomy of ascidian embryos with those of more traditional model organisms, and relate these features to the capabilities of both conventional and exotic imaging methods. We review the emergence of Ciona and related ascidian species as model organisms for a new era of image-based developmental systems biology. We conclude by discussing some important challenges in ascidian imaging and image analysis that remain to be solved.
Collapse
Affiliation(s)
- Michael Veeman
- Division of Biology, Kansas State University, Manhattan KS, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
13
|
Yamada A, Nishida H. Control of the number of cell division rounds in distinct tissues during ascidian embryogenesis. Dev Growth Differ 2014; 56:376-86. [DOI: 10.1111/dgd.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Atsuko Yamada
- Department of Biological Sciences; Graduate School of Science; Osaka University; Toyonaka Osaka Japan
- International College; Osaka University; Toyonaka Osaka Japan
| | - Hiroki Nishida
- Department of Biological Sciences; Graduate School of Science; Osaka University; Toyonaka Osaka Japan
| |
Collapse
|
14
|
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D. A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. MOLECULAR PLANT 2013; 6:1518-30. [PMID: 23434876 DOI: 10.1093/mp/sst040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and super-resolution fluorescence microscopy in living organisms. Here, we describe variants of the reversibly photoswitchable fluorescent proteins rsFastLime, bsDronpa, and Padron that have been codon-optimized for the use in transgenic Arabidopsis plants. The synthetic proteins, designated rsFastLIME-s, bsDRONPA-s, and PADRON C-s, showed photophysical properties and switching behavior comparable to those reported for the original proteins. By combining the 'positively switchable' PADRON C-s with the 'negatively switchable' rsFastLIME-s or bsDRONPA-s, two different fluorescent reporter proteins could be imaged at the same wavelength upon transient expression in Nicotiana benthamiana cells. Thus, co-localization analysis can be performed using only a single detection channel. Furthermore, the proteins were used to tag the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) in transgenic Arabidopsis plants. Because the new reversibly photoswitchable fluorescent proteins show an increase in signal strength during each photoactivation cycle, we were able to generate a large number of scans of the same region and reconstruct 3-D images of AtGRP7 expression in the root tip. Upon photoactivation of the AtGRP7:rsFastLIME-s fusion protein in a defined region of a transgenic Arabidopsis root, spreading of the fluorescence signal into adjacent regions was observed, indicating that movement from cell to cell can be monitored. Our results demonstrate that rsFastLIME-s, bsDRONPA-s, and PADRON C-s are versatile fluorescent markers in plants. Furthermore, the proteins also show strong fluorescence in mammalian cells including COS-7 and HeLa cells.
Collapse
Affiliation(s)
- Martina Lummer
- Molecular Cell Physiology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Three-dimensional anatomy of the Ciona intestinalis tailbud embryo at single-cell resolution. Dev Biol 2012; 372:274-84. [DOI: 10.1016/j.ydbio.2012.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/10/2012] [Accepted: 09/13/2012] [Indexed: 11/17/2022]
|
16
|
Nowotschin S, Hadjantonakis AK. Photomodulatable fluorescent proteins for imaging cell dynamics and cell fate. Organogenesis 2012; 5:217-26. [PMID: 20539741 DOI: 10.4161/org.5.4.10939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/09/2009] [Indexed: 12/25/2022] Open
Abstract
An organism arises from the coordinate generation of different cell types and the stereotypical organization of these cells into tissues and organs. Even so, the dynamic behaviors, as well as the ultimate fates, of cells driving the morphogenesis of an organism, or even an individual organ, remain largely unknown. Continued innovations in optical imaging modalities, along with the discovery and evolution of improved genetically-encoded fluorescent protein reporters in combination with model organism, stem cell and tissue engineering paradigms are providing the means to investigate these unresolved questions. The emergence of fluorescent proteins whose spectral properties can be photomodulated is one of the most significant new developments in the field of cell biology where they are primarily used for studying protein dynamics in cells. Likewise, the use of photomodulatable fluorescent proteins holds great promise for use in developmental biology. Photomodulatable fluorescent proteins also represent attractive and emergent tools for studying cell dynamics in complex populations by facilitating the labeling and tracking of individual or defined groups of cells. Here, we review the currently available photomodulatable fluorescent proteins and their application in model organisms. We also discuss prospects for their use in mice, and by extension in embryonic stem cell and tissue engineering paradigms.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program; Sloan-Kettering Institute; New York, NY USA
| | | |
Collapse
|
17
|
Pasini A, Manenti R, Rothbächer U, Lemaire P. Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis. PLoS One 2012; 7:e46193. [PMID: 23049976 PMCID: PMC3458022 DOI: 10.1371/journal.pone.0046193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.
Collapse
Affiliation(s)
- Andrea Pasini
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR7288, CNRS/Université Aix-Marseille, Marseille, France.
| | | | | | | |
Collapse
|
18
|
Ah-Fong AM, Judelson HS. Vectors for fluorescent protein tagging in Phytophthora: tools for functional genomics and cell biology. Fungal Biol 2011; 115:882-90. [DOI: 10.1016/j.funbio.2011.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 02/06/2023]
|
19
|
Cooley J, Whitaker S, Sweeney S, Fraser S, Davidson B. Cytoskeletal polarity mediates localized induction of the heart progenitor lineage. Nat Cell Biol 2011; 13:952-7. [PMID: 21785423 PMCID: PMC3149722 DOI: 10.1038/ncb2291] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/06/2011] [Indexed: 12/17/2022]
Abstract
Cells must make appropriate fate decisions within a complex and dynamic environment. In vitro studies indicate that the cytoskeleton acts as an integrative platform for this environmental input. External signals regulate cytoskeletal dynamics and the cytoskeleton reciprocally modulates signal transduction. However, in vivo studies linking cytoskeleton/signalling interactions to embryonic cell fate specification remain limited. Here we show that the cytoskeleton modulates heart progenitor cell fate. Our studies focus on differential induction of heart fate in the basal chordate Ciona intestinalis. We have found that differential induction does not simply reflect differential exposure to the inductive signal. Instead, pre-cardiac cells employ polarized, invasive protrusions to localize their response to an ungraded signal. Through targeted manipulation of the cytoskeletal regulator CDC42, we are able to depolarize protrusive activity and generate uniform heart progenitor fate specification. Furthermore, we are able to restore differential induction by repolarizing protrusive activity. These findings illustrate how bi-directional interactions between intercellular signalling and the cytoskeleton can influence embryonic development. In particular, these studies highlight the potential for dynamic cytoskeletal changes to refine cell fate specification in response to crude signal gradients.
Collapse
Affiliation(s)
- James Cooley
- Department of Molecular and Cellular Biology, Molecular Cardiovascular Research Program, University of Arizona, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
20
|
Kugler JE, Gazdoiu S, Oda-Ishii I, Passamaneck YJ, Erives AJ, Di Gregorio A. Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis. J Cell Sci 2010; 123:2453-63. [PMID: 20592183 DOI: 10.1242/jcs.066910] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecular mechanisms by which the maternal information is decoded by cis-regulatory modules (CRMs) associated with muscle transcription factor and structural genes, and the ways by which a seamless transition from maternal to zygotic transcription is ensured, are still mostly unclear. By combining misexpression assays with CRM analyses, we have identified the mechanisms through which Ciona Macho1 (Ci-Macho1) initiates expression of Ci-Tbx6b and Ci-Tbx6c, and we have unveiled the cross-regulatory interactions between the latter transcription factors. Knowledge acquired from the analysis of the Ci-Tbx6b CRM facilitated both the identification of a related CRM in the Ci-Tbx6c locus and the characterization of two CRMs associated with the structural muscle gene fibrillar collagen 1 (CiFCol1). We use these representative examples to reconstruct how compact CRMs orchestrate the muscle developmental program from pre-localized ooplasmic determinants to differentiated larval muscle in ascidian embryos.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
21
|
Nowak SJ, Nahirney PC, Hadjantonakis AK, Baylies MK. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. J Cell Sci 2009; 122:3282-93. [PMID: 19706686 DOI: 10.1242/jcs.047597] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myoblast fusion is crucial for the formation, growth, maintenance and regeneration of healthy skeletal muscle. Unfortunately, the molecular machinery, cell behaviors, and membrane and cytoskeletal remodeling events that govern fusion and myofiber formation remain poorly understood. Using time-lapse imaging approaches on mouse C2C12 myoblasts, we identify discrete and specific molecular events at myoblast membranes during fusion and myotube formation. These events include rearrangement of cell shape from fibroblast to spindle-like morphologies, changes in lamellipodial and filopodial extensions during different periods of differentiation, and changes in membrane alignment and organization during fusion. We find that actin-cytoskeleton remodeling is crucial for these events: pharmacological inhibition of F-actin polymerization leads to decreased lamellipodial and filopodial extensions and to reduced myoblast fusion. Additionally, shRNA-mediated inhibition of Nap1, a member of the WAVE actin-remodeling complex, results in accumulations of F-actin structures at the plasma membrane that are concomitant with a decrease in myoblast fusion. Our data highlight distinct and essential roles for actin cytoskeleton remodeling during mammalian myoblast fusion, provide a platform for cellular and molecular dissection of the fusion process, and suggest a functional conservation of Nap1-regulated actin-cytoskeleton remodeling during myoblast fusion between mammals and Drosophila.
Collapse
Affiliation(s)
- Scott J Nowak
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
22
|
Nowotschin S, Eakin GS, Hadjantonakis AK. Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis 2009; 47:330-6. [PMID: 19358158 PMCID: PMC2875877 DOI: 10.1002/dvg.20500] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To simultaneously follow multiple subcellular characteristics, for example, cell position and cell morphology, in living specimens requires multiple subcellular labels. Toward this goal, we generated dual-tagged mouse embryonic stem (ES) cells constitutively expressing differentially localized, spectrally distinct, genetically encoded fluorescent protein fusions. We have used human histone H2B fusions to fluorescent proteins to mark chromatin. This provides a descriptor of cell position, division, and death. An additional descriptor of cell morphology is achieved by combining this transgene with select lipid-modified fluorescent protein fusions that mark the plasma membrane. Using this strategy, wewere able to live image cellular dynamics in three dimensions over time both in cultured ES cells and in mouse embryos generated using dual-tagged ES cells. This study, therefore, presents the feasibility of applying multiple spectrally and subcellularly distinct fluorescent protein reporters for live imaging studies in ES cells and mouse embryos. Furthermore, the increasing availability of spectral variant fluorescent proteins along with the development of methods that permit improved spectral separation now facilitate multiplexing of fluorescent reporters to provide readouts of a variety of anatomical and physiological behaviors simultaneously in living specimens.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Guy S. Eakin
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | | |
Collapse
|
23
|
Auger H, Lamy C, Haeussler M, Khoueiry P, Lemaire P, Joly JS. Similar regulatory logic in Ciona intestinalis for two Wnt pathway modulators, ROR and SFRP-1/5. Dev Biol 2009; 329:364-73. [PMID: 19248777 DOI: 10.1016/j.ydbio.2009.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/22/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
Anteroposterior patterning of the ectoderm in the invertebrate chordate Ciona intestinalis first relies on key zygotic activators, such as FoxA, and later on the coordinated responses to inducing signals from the underlying mesendoderm. Here, we focus on a mechanism of coordination of these responses by looking at the cis-regulatory logics of Ci-Rora and Ci-Rorb, which are coding for putative non-canonical transmembrane Wnt receptors, and are present in tandem along the C. intestinalis chromosome 08q. We showed that during cleavage stages, both Ci-Rora and Ci-Rorb genes are initially expressed in all blastomeres of the anterior ectoderm (a-line), as sFRP1/5 (Lamy, C., Rothbächer, U., Caillol, D., Lemaire, P., 2006. Ci-FoxA-a is the earliest zygotic determinant of the ascidian anterior ectoderm and directly activates Ci-sFRP1/5. Development 133, 2835-2844.). We then carried out a functional analysis of cis-regulatory regions and showed that both genes have elements enriched in Ci-FoxA-a binding sites. We dissected one of these early enhancers, and showed that it is directly activated by Ci-FoxA-a, as one sFRP1/5 cis-regulatory element. We also showed that although FoxA binding sites are abundant in genomes, dense clusters of these sites are found upstream from very few genes, and have a high predictive value of a-line expression. These data indicate an important role for FoxA in anterior specification, via the transcriptional regulation of target genes belonging to various signalling pathways.
Collapse
Affiliation(s)
- Hélène Auger
- INRA "Morphogenèse du Système Nerveux des Chordés" Group, DEPSN, UPR2197, Institut Fessard, CNRS, 1 Avenue de la Terrasse, 91198 GIF SUR YVETTE, France
| | | | | | | | | | | |
Collapse
|