1
|
Einwächter H, Heiseke A, Schlitzer A, Gasteiger G, Adler H, Voehringer D, Manz MG, Ruzsics Z, Dölken L, Koszinowski UH, Sparwasser T, Reindl W, Jordan S. The Innate Immune Response to Infection Induces Erythropoietin-Dependent Replenishment of the Dendritic Cell Compartment. Front Immunol 2020; 11:1627. [PMID: 32849551 PMCID: PMC7411349 DOI: 10.3389/fimmu.2020.01627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DC) play a key role in the adaptive immune response due to their ability to present antigens and stimulate naïve T cells. Many bacteria and viruses can efficiently target DC, resulting in impairment of their immunostimulatory function or elimination. Hence, the DC compartment requires replenishment following infection to ensure continued operational readiness of the adaptive immune system. Here, we investigated the molecular and cellular mechanisms of inflammation-induced DC generation. We found that infection with viral and bacterial pathogens as well as Toll-like receptor 9 (TLR9) ligation with CpG-oligodeoxynucleotide (CpG-ODN) expanded an erythropoietin (EPO)-dependent TER119+CD11a+ cell population in the spleen that had the capacity to differentiate into TER119+CD11chigh and TER119-CD11chigh cells both in vitro and in vivo. TER119+CD11chigh cells contributed to the conventional DC pool in the spleen and specifically increased in lymph nodes draining the site of local inflammation. Our results reveal a so far undescribed inflammatory EPO-dependent pathway of DC differentiation and establish a mechanistic link between innate immune recognition of potential immunosuppressive pathogens and the maintenance of the DC pool during and after infection.
Collapse
Affiliation(s)
- Henrik Einwächter
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Heiseke
- II. Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Georg Gasteiger
- Institute of Systems Immunology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Munich, Germany.,German Center of Lung Research (DZL), Giessen, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Nürnberg, Erlangen, Germany
| | - Markus G Manz
- Division of Hematology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Ulrich H Koszinowski
- Max von Pettenkofer-Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medicine Mainz, Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Wolfgang Reindl
- II. Medizinische Klinik, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Stefan Jordan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| |
Collapse
|
2
|
Günther T, Fröhlich J, Herrde C, Ohno S, Burkhardt L, Adler H, Grundhoff A. A comparative epigenome analysis of gammaherpesviruses suggests cis-acting sequence features as critical mediators of rapid polycomb recruitment. PLoS Pathog 2019; 15:e1007838. [PMID: 31671162 PMCID: PMC6932816 DOI: 10.1371/journal.ppat.1007838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/26/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022] Open
Abstract
Latent Kaposi sarcoma-associated herpesvirus (KSHV) genomes rapidly acquire distinct patterns of the activating histone modification H3K4-me3 as well as repressive H3K27-me3 marks, a modification linked to transcriptional silencing by polycomb repressive complexes (PRC). Interestingly, PRCs have recently been reported to restrict viral gene expression in a number of other viral systems, suggesting they may play a broader role in controlling viral chromatin. If so, it is an intriguing possibility that latency establishment may result from viral subversion of polycomb-mediated host responses to exogenous DNA. To investigate such scenarios we sought to establish whether rapid repression by PRC constitutes a general hallmark of herpesvirus latency. For this purpose, we performed a comparative epigenome analysis of KSHV and the related murine gammaherpesvirus 68 (MHV-68). We demonstrate that, while latently replicating MHV-68 genomes readily acquire distinct patterns of activation-associated histone modifications upon de novo infection, they fundamentally differ in their ability to efficiently attract H3K27-me3 marks. Statistical analyses of ChIP-seq data from in vitro infected cells as well as in vivo latency reservoirs furthermore suggest that, whereas KSHV rapidly attracts PRCs in a genome-wide manner, H3K27-me3 acquisition by MHV-68 genomes may require spreading from initial seed sites to which PRC are recruited as the result of an inefficient or stochastic recruitment, and that immune pressure may be needed to select for latency pools harboring PRC-silenced episomes in vivo. Using co-infection experiments and recombinant viruses, we also show that KSHV's ability to rapidly and efficiently acquire H3K27-me3 marks does not depend on the host cell environment or unique properties of the KSHV-encoded LANA protein, but rather requires specific cis-acting sequence features. We show that the non-canonical PRC1.1 component KDM2B, a factor which binds to unmethylated CpG motifs, is efficiently recruited to KSHV genomes, indicating that CpG island characteristics may constitute these features. In accord with the fact that, compared to MHV-68, KSHV genomes exhibit a fundamentally higher density of CpG motifs, we furthermore demonstrate efficient acquisition of H2AK119-ub by KSHV and H3K36-me2 by MHV-68 (but not vice versa), furthermore supporting the notion that KSHV genomes rapidly attract PRC1.1 complexes in a genome-wide fashion. Collectively, our results suggest that rapid PRC silencing is not a universal feature of viral latency, but that some viruses may rather have adopted distinct genomic features to specifically exploit default host pathways that repress epigenetically naive, CpG-rich DNA.
Collapse
Affiliation(s)
- Thomas Günther
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jacqueline Fröhlich
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina Herrde
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Shinji Ohno
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Lia Burkhardt
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Munich, Germany
- German Center of Lung Research (DZL), Giessen, Germany
- * E-mail: (HA); (AG)
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail: (HA); (AG)
| |
Collapse
|
3
|
Stevens HC, Cham KSW, Hughes DJ, Sun R, Sample JT, Bubb VJ, Stewart JP, Quinn JP. CTCF and Sp1 interact with the Murine gammaherpesvirus 68 internal repeat elements. Virus Genes 2012; 45:265-73. [DOI: 10.1007/s11262-012-0769-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/29/2012] [Indexed: 01/08/2023]
|
4
|
Gammaherpesvirus 68 infection of endothelial cells requires both host autophagy genes and viral oncogenes for optimal survival and persistence. J Virol 2011; 85:6293-308. [PMID: 21490089 DOI: 10.1128/jvi.00001-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gammaherpesvirus-associated neoplasms include tumors of lymphocytes, epithelial cells, and endothelial cells (ECs). We previously showed that, unlike most cell types, ECs survive productive gammaherpesvirus 68 (γHV68) infection and achieve anchorage-independent growth, providing a cellular reservoir for viral persistence. Here, we demonstrated autophagy in infected ECs by analysis of LC3 localization and protein modification and that infected ECs progress through the autophagosome pathway by LC3 dual fluorescence and p62 analysis. We demonstrate that pharmacologic autophagy induction results in increased survival of infected ECs and, conversely, that autophagy inhibition results in death of infected EC survivors. Furthermore, we identified two viral oncogenes, v-cyclin and v-Bcl2, that are critical to EC survival and that modify EC proliferation and survival during infection-induced autophagy. We found that these viral oncogenes can also facilitate survival of substrate detachment in the absence of viral infection. Autophagy affords cells the opportunity to recover from stressful conditions, and consistent with this, the altered phenotype of surviving infected ECs was reversible. Finally, we demonstrated that knockdown of critical autophagy genes completely abrogated EC survival. This study reveals a viral mechanism which usurps the autophagic machinery to promote viral persistence within nonadherent ECs, with the potential for recovery of infected ECs at a distant site upon disruption of virus replication.
Collapse
|
5
|
A gammaherpesvirus ubiquitin-specific protease is involved in the establishment of murine gammaherpesvirus 68 infection. J Virol 2009; 83:10644-52. [PMID: 19706716 DOI: 10.1128/jvi.01017-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) contains a ubiquitin (Ub)-specific cysteine protease (USP) domain embedded within the large tegument protein ORF64, as do all other herpesviruses. The biological role of this protease is still unclear, but for the alphaherpesvirus Marek's disease virus, its USP is involved in T-cell lymphoma formation. We here study the role of the MHV-68 USP, encoded by ORF64. By constructing a mutant virus with a single cysteine-to-alanine replacement in the active site of ORF64, we demonstrate that the USP activity of ORF64 is abolished. The mutant virus replicates less efficiently in vitro, and plaque size is reduced compared to that of a revertant virus. Electron microscopy of infected cells did not reveal any obvious differences in virion morphogenesis or differences in egress for the mutant and revertant viruses. Intraperitoneal infection of C57/BL6 mice demonstrates that the mutant virus is generally cleared by day 7, indicating a role for the USP in the persistence of MHV-68 infection or efficient replication. However, the USP activity in MHV-68 is unlikely to be involved in the establishment of latency or reactivation, since we observed no significant difference in viral DNA genome copy number in the spleen or in the number of cells that reactivate MHV-68 from latency. Our results for MHV-68 ORF64 are consistent with an enzymatic function of the tegument protein that is beneficial to the virus during acute infection, particularly in vivo.
Collapse
|
6
|
Kocks JR, Adler H, Danzer H, Hoffmann K, Jonigk D, Lehmann U, Förster R. Chemokine receptor CCR7 contributes to a rapid and efficient clearance of lytic murine gamma-herpes virus 68 from the lung, whereas bronchus-associated lymphoid tissue harbors virus during latency. THE JOURNAL OF IMMUNOLOGY 2009; 182:6861-9. [PMID: 19454682 DOI: 10.4049/jimmunol.0801826] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Murine gamma-herpes virus 68 is a natural rodent pathogen closely related to the human gamma-herpes viruses Kaposi's sarcoma-associated herpes virus and EBV. By intranasally infecting wild-type and CCR7-deficient mice, we investigated whether CCR7 is necessary for viral clearance from the lung and the establishment of latency. We found during the lytic phase of infection that inflammation in lungs of CCR7(-/-) mice was more severe and viral load significantly higher compared with wild-type littermates. In addition, activation of T cells was delayed and clearance of the inflammation was retarded in mutant lungs, demonstrating that CCR7 is necessary for a rapid and efficient immune response. However, for the establishment of splenomegaly and latency, the presence of CCR7 was dispensable. Finally, by microdissecting BALT, we could demonstrate that these ectopic lymphoid structures are a place in the lung where virus resides during latency.
Collapse
Affiliation(s)
- Jessica R Kocks
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
The CD8 T-cell response against murine gammaherpesvirus 68 is directed toward a broad repertoire of epitopes from both early and late antigens. J Virol 2008; 82:12205-12. [PMID: 18922872 DOI: 10.1128/jvi.01463-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of mice with murine gammaherpesvirus 68 (MHV-68) robustly activates CD8 T cells, but only six class I major histocompatibility complex (MHC)-restricted epitopes have been described to date for the widely used H-2(b) haplotype mice. To explore the specificity and kinetics of the cytotoxic T-lymphocyte response in MHV-68-infected C57BL/6 mice, we screened for H-2K(b)- and H-2D(b)-restricted epitopes using a set of 384 candidate epitopes in an MHC tetramer-based approach and identified 19 new epitopes in 16 different open reading frames. Of the six known H-2K(b)- and H-2D(b)-restricted epitopes, we confirmed a response against three and did not detect CD8 T-cell-specific responses for the remaining three. The peak of the CD8 T-cell response to most peptides occurs between 6 and 10 days postinfection. The respective MHC tetramer-positive CD8 T cells display an activated/effector phenotype (CD62L(lo) and CD44(hi)) and produce gamma interferon upon peptide stimulation ex vivo. MHV-68 infection in vivo elicits a response to multiple viral epitopes, derived from both early and late viral antigens, illustrating a far broader T-cell repertoire and more-rapid activation than those previously recorded.
Collapse
|