1
|
Martínez RAS, Pinky PD, Harlan BA, Brewer GJ. GTP energy dependence of endocytosis and autophagy in the aging brain and Alzheimer's disease. GeroScience 2023; 45:757-780. [PMID: 36622562 PMCID: PMC9886713 DOI: 10.1007/s11357-022-00717-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Increased interest in the aging and Alzheimer's disease (AD)-related impairments in autophagy in the brain raise important questions about regulation and treatment. Since many steps in endocytosis and autophagy depend on GTPases, new measures of cellular GTP levels are needed to evaluate energy regulation in aging and AD. The recent development of ratiometric GTP sensors (GEVALS) and findings that GTP levels are not homogenous inside cells raise new issues of regulation of GTPases by the local availability of GTP. In this review, we highlight the metabolism of GTP in relation to the Rab GTPases involved in formation of early endosomes, late endosomes, and lysosomal transport to execute the autophagic degradation of damaged cargo. Specific GTPases control macroautophagy (mitophagy), microautophagy, and chaperone-mediated autophagy (CMA). By inference, local GTP levels would control autophagy, if not in excess. Additional levels of control are imposed by the redox state of the cell, including thioredoxin involvement. Throughout this review, we emphasize the age-related changes that could contribute to deficits in GTP and AD. We conclude with prospects for boosting GTP levels and reversing age-related oxidative redox shift to restore autophagy. Therefore, GTP levels could regulate the numerous GTPases involved in endocytosis, autophagy, and vesicular trafficking. In aging, metabolic adaptation to a sedentary lifestyle could impair mitochondrial function generating less GTP and redox energy for healthy management of amyloid and tau proteostasis, synaptic function, and inflammation.
Collapse
Affiliation(s)
| | - Priyanka D. Pinky
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Benjamin A. Harlan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697 USA
- Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA 92697 USA
- MIND Institute, University of California Irvine, Irvine, CA 92697 USA
| |
Collapse
|
2
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
3
|
Reciprocal Regulation of Shh Trafficking and H2O2 Levels via a Noncanonical BOC-Rac1 Pathway. Antioxidants (Basel) 2022; 11:antiox11040718. [PMID: 35453403 PMCID: PMC9025708 DOI: 10.3390/antiox11040718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Among molecules that bridge environment, cell metabolism, and cell signaling, hydrogen peroxide (H2O2) recently appeared as an emerging but central player. Its level depends on cell metabolism and environment and was recently shown to play key roles during embryogenesis, contrasting with its long-established role in disease progression. We decided to explore whether the secreted morphogen Sonic hedgehog (Shh), known to be essential in a variety of biological processes ranging from embryonic development to adult tissue homeostasis and cancers, was part of these interactions. Here, we report that H2O2 levels control key steps of Shh delivery in cell culture: increased levels reduce primary secretion, stimulate endocytosis and accelerate delivery to recipient cells; in addition, physiological in vivo modulation of H2O2 levels changes Shh distribution and tissue patterning. Moreover, a feedback loop exists in which Shh trafficking controls H2O2 synthesis via a non-canonical BOC-Rac1 pathway, leading to cytoneme growth. Our findings reveal that Shh directly impacts its own distribution, thus providing a molecular explanation for the robustness of morphogenesis to both environmental insults and individual variability.
Collapse
|
4
|
Kudruk S, Pottanam Chali S, Linard Matos AL, Bourque C, Dunker C, Gatsogiannis C, Ravoo BJ, Gerke V. Biodegradable and Dual-Responsive Polypeptide-Shelled Cyclodextrin-Containers for Intracellular Delivery of Membrane-Impermeable Cargo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100694. [PMID: 34278745 PMCID: PMC8456233 DOI: 10.1002/advs.202100694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/01/2021] [Indexed: 06/08/2023]
Abstract
The transport of membrane impermeable compounds into cells is a prerequisite for the efficient cellular delivery of hydrophilic and amphiphilic compounds and drugs. Transport into the cell's cytosolic compartment should ideally be controllable and it should involve biologically compatible and degradable vehicles. Addressing these challenges, nanocontainers based on cyclodextrin amphiphiles that are stabilized by a biodegradable peptide shell are developed and their potential to deliver fluorescently labeled cargo into human cells is analyzed. Host-guest mediated self-assembly of a thiol-containing short peptide or a cystamine-cross-linked polypeptide shell on cyclodextrin vesicles produce short peptide-shelled (SPSVss ) or polypeptide-shelled vesicles (PPSVss ), respectively, with redox-responsive and biodegradable features. Whereas SPSVss are permeable and less stable, PPSVss effectively encapsulate cargo and show a strictly regulated release of membrane impermeable cargo triggered by either reducing conditions or peptidase treatment. Live cell experiments reveal that the novel PPSVSS are readily internalized by primary human endothelial cells (human umbilical vein endothelial cells) and cervical cancer cells and that the reductive microenvironment of the cells' endosomes trigger release of the hydrophilic cargo into the cytosol. Thus, PPSVSS represent a highly efficient, biodegradable, and tunable system for overcoming the plasma membrane as a natural barrier for membrane-impermeable cargo.
Collapse
Affiliation(s)
- Sergej Kudruk
- Institute of Medical BiochemistryCenter for Molecular Biology of InflammationUniversity of MuensterVon‐Esmarch‐Str. 56Münster48149Germany
| | - Sharafudheen Pottanam Chali
- Center for Soft Nanoscience and Organic Chemistry InstituteUniversity of MuensterBusso Peus Straße 10Münster48149Germany
| | - Anna Livia Linard Matos
- Institute of Medical BiochemistryCenter for Molecular Biology of InflammationUniversity of MuensterVon‐Esmarch‐Str. 56Münster48149Germany
| | - Cole Bourque
- Center for Soft Nanoscience and Institute of Medical Physics and BiophysicsUniversity of MuensterBusso Peus Straße 10Münster48149Germany
- Max Planck Institute of Molecular PhysiologyOtto‐Hahn‐Straße 11Dortmund44227Germany
| | - Clara Dunker
- Institute of Medical BiochemistryCenter for Molecular Biology of InflammationUniversity of MuensterVon‐Esmarch‐Str. 56Münster48149Germany
| | - Christos Gatsogiannis
- Center for Soft Nanoscience and Institute of Medical Physics and BiophysicsUniversity of MuensterBusso Peus Straße 10Münster48149Germany
- Max Planck Institute of Molecular PhysiologyOtto‐Hahn‐Straße 11Dortmund44227Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry InstituteUniversity of MuensterBusso Peus Straße 10Münster48149Germany
| | - Volker Gerke
- Institute of Medical BiochemistryCenter for Molecular Biology of InflammationUniversity of MuensterVon‐Esmarch‐Str. 56Münster48149Germany
| |
Collapse
|
5
|
Zhao JM, Qi TG. The role of TXNL1 in disease: treatment strategies for cancer and diseases with oxidative stress. Mol Biol Rep 2021; 48:2929-2934. [PMID: 33660093 DOI: 10.1007/s11033-021-06241-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Thioredoxin-like protein-1 (TXNL1; also known as thioredoxin-related 32 kDa protein, TRP32) is a thioredoxin involved in the regulation of oxidative stress, which protects cells from damage through redox balance. Studies have shown that TXNL1 has a variety of functions, including cell signal transduction, cell cycle regulation, protein synthesis, modification and degradation, vesicle transport, transcriptional regulation, cell apoptosis, virus replication and oxidative stress regulation, etc., and plays an important role in the occurrence and development of human diseases. Therefore, TXNL1 has a strong correlation with the treatment of cancer and oxidative stress diseases. In this paper, the basic structure, function and potential application value of TXNL1 in diseases are reviewed, so as to open up new targets for the treatment of cancer and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jin-Ming Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Tong-Gang Qi
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
6
|
Germann UA, Alam JJ. P38α MAPK Signaling-A Robust Therapeutic Target for Rab5-Mediated Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5485. [PMID: 32751991 PMCID: PMC7432772 DOI: 10.3390/ijms21155485] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Multifactorial pathologies, involving one or more aggregated protein(s) and neuroinflammation are common in major neurodegenerative diseases, such as Alzheimer's disease and dementia with Lewy bodies. This complexity of multiple pathogenic drivers is one potential explanation for the lack of success or, at best, the partial therapeutic effects, respectively, with approaches that have targeted one specific driver, e.g., amyloid-beta, in Alzheimer's disease. Since the endosome-associated protein Rab5 appears to be a convergence point for many, if not all the most prominent pathogenic drivers, it has emerged as a major therapeutic target for neurodegenerative disease. Further, since the alpha isoform of p38 mitogen-activated protein kinase (p38α) is a major regulator of Rab5 activity and its effectors, a biology that is distinct from the classical nuclear targets of p38 signaling, brain-penetrant selective p38α kinase inhibitors provide the opportunity for significant therapeutic advances in neurogenerative disease through normalizing dysregulated Rab5 activity. In this review, we provide a brief summary of the role of Rab5 in the cell and its association with neurodegenerative disease pathogenesis. We then discuss the connection between Rab5 and p38α and summarize the evidence that through modulating Rab5 activity there are therapeutic opportunities in neurodegenerative diseases for p38α kinase inhibitors.
Collapse
|
7
|
Abstract
The mammalian thioredoxin system is driven by NADPH through the activities of isoforms of the selenoprotein thioredoxin reductase (TXNRD, TrxR), which in turn help to keep thioredoxins (TXN, Trx) and further downstream targets reduced. Due to a wide range of functions in antioxidant defense, cell proliferation, and redox signaling, strong cellular aberrations are seen upon the targeting of TrxR enzymes by inhibitors. However, such inhibition can nonetheless have rather unexpected consequences. Accumulating data suggest that inhibition of TrxR in normal cells typically yields a paradoxical effect of increased antioxidant defense, with metabolic pathway reprogramming, increased cellular proliferation, and altered cellular differentiation patterns. Conversely, inhibition of TrxR in cancer cells can yield excessive levels of reactive oxygen species (ROS) resulting in cell death and thus anticancer efficacy. The observed increases in antioxidant capacity upon inhibition of TrxR in normal cells are in part dependent upon activation of the Nrf2 transcription factor, while exaggerated ROS levels in cancer cells can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically. Importantly, however, a thorough knowledge of the molecular mechanisms underlying effects triggered by TrxR inhibition is crucial for the understanding of therapy outcomes after use of such inhibitors. The mammalian thioredoxin system is driven by thioredoxin reductases (TXNRD, TrxR), which keeps thioredoxins (TXN, Trx) and further downstream targets reduced. In normal cells, inhibition of TrxR yields a paradoxical effect of increased antioxidant defense upon activation of the Nrf2 transcription factor. In cancer cells, however, inhibition of TrxR yields excessive reactive oxygen species (ROS) levels resulting in cell death and thus anticancer efficacy, which can be explained by a non-oncogene addiction of cancer cells to TrxR1 due to their increased endogenous production of ROS. These separate consequences of TrxR inhibition can be utilized therapeutically.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. .,Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
8
|
Du X, Zhang R, Ye S, Liu F, Jiang P, Yu X, Xu J, Ma L, Cao H, Shen Y, Lin F, Wang Z, Li C. Alterations of Human Plasma Proteome Profile on Adaptation to High-Altitude Hypobaric Hypoxia. J Proteome Res 2019; 18:2021-2031. [PMID: 30908922 DOI: 10.1021/acs.jproteome.8b00911] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For individuals migrating to or residing permanently in high-altitude regions, environmental hypobaric hypoxia is a primary challenge that induces several physiological or pathological responses. It is well documented that human beings adapt to hypobaric hypoxia via some protective mechanisms, such as erythropoiesis and overproduction of hemoglobin; however, little is known on the alterations of plasma proteome profiles in accommodation to high-altitude hypobaric hypoxia. In the present study, we investigated differential plasma proteomes of high altitude natives and lowland normal controls by a TMT-based proteomic approach. A total of 818 proteins were identified, of which 137 were differentially altered. Bioinformatics (including GO, KEGG, protein-protein interactions, etc.) analysis showed that the differentially altered proteins were basically involved in complement and coagulation cascades, antioxidative stress, and glycolysis. Validation results demonstrated that CCL18, C9, PF4, MPO, and S100A9 were notably up-regulated, and HRG and F11 were down-regulated in high altitude natives, which were consistent with TMT-based proteomic results. Our findings highlight the contributions of complement and coagulation cascades, antioxidative stress, and glycolysis in acclimatization to hypobaric hypoxia and provide a foundation for developing potential diagnostic or/and therapeutic biomarkers for high altitude hypobaric hypoxia-induced diseases.
Collapse
Affiliation(s)
- Xi Du
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Rong Zhang
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Shengliang Ye
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Fengjuan Liu
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Peng Jiang
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Xiaochuan Yu
- Department of Transfusion , Aba Prefecture People's Hospital , Ngawa Tibetan and Qiang Autonomous Prefecture 510530 , China
| | - Jin Xu
- Department of Chemistry , University of Massachusetts , Lowell , Massachusetts 01854 , United States
| | - Li Ma
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Haijun Cao
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Yuanzhen Shen
- Department of Transfusion , Aba Prefecture People's Hospital , Ngawa Tibetan and Qiang Autonomous Prefecture 510530 , China
| | - Fangzhao Lin
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Zongkui Wang
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base , Chengdu 610052 , China
| | - Changqing Li
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base , Chengdu 610052 , China
| |
Collapse
|
9
|
Fujisawa A, Tamura T, Yasueda Y, Kuwata K, Hamachi I. Chemical Profiling of the Endoplasmic Reticulum Proteome Using Designer Labeling Reagents. J Am Chem Soc 2018; 140:17060-17070. [DOI: 10.1021/jacs.8b08606] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alma Fujisawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Yasueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency,
Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
10
|
Haruyama T, Uchihashi T, Yamada Y, Kodera N, Ando T, Konno H. Negatively Charged Lipids Are Essential for Functional and Structural Switch of Human 2-Cys Peroxiredoxin II. J Mol Biol 2018; 430:602-610. [PMID: 29309753 DOI: 10.1016/j.jmb.2017.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
Abstract
The function of ubiquitous 2-Cys peroxiredoxins (Prxs) can be converted alternatively from peroxidases to molecular chaperones. This conversion has been reported to occur by the formation of high-molecular-weight (HMW) complexes upon overoxidation of or ATP/ADP binding to 2-Cys Prxs, but its mechanism is not well understood. Here, we show that upon binding to phosphatidylserine or phosphatidylglycerol dimeric human 2-Cys PrxII (hPrxII) is assembled to trefoil-shaped small oligomers (possibly hexamers) with full chaperone and null peroxidase activities. Spherical HMW complexes are formed, only when phosphatidylserine or phosphatidylglycerol is bound to overoxidized or ATP/ADP-bound hPrxII. The spherical HMW complexes are lipid vesicles covered with trefoil-shaped oligomers arranged in a hexagonal lattice pattern. Thus, these lipids with a net negative charge, which can be supplied by increased membrane trafficking under oxidative stress, are essential for the structural and functional switch of hPrxII and possibly most 2-Cys Prxs.
Collapse
Affiliation(s)
- Takamitsu Haruyama
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takayuki Uchihashi
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan; Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yutaro Yamada
- Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Hiroki Konno
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
11
|
Moretti AIS, Pavanelli JC, Nolasco P, Leisegang MS, Tanaka LY, Fernandes CG, Wosniak J, Kajihara D, Dias MH, Fernandes DC, Jo H, Tran NV, Ebersberger I, Brandes RP, Bonatto D, Laurindo FRM. Conserved Gene Microsynteny Unveils Functional Interaction Between Protein Disulfide Isomerase and Rho Guanine-Dissociation Inhibitor Families. Sci Rep 2017; 7:17262. [PMID: 29222525 PMCID: PMC5722932 DOI: 10.1038/s41598-017-16947-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
Protein disulfide isomerases (PDIs) support endoplasmic reticulum redox protein folding and cell-surface thiol-redox control of thrombosis and vascular remodeling. The family prototype PDIA1 regulates NADPH oxidase signaling and cytoskeleton organization, however the related underlying mechanisms are unclear. Here we show that genes encoding human PDIA1 and its two paralogs PDIA8 and PDIA2 are each flanked by genes encoding Rho guanine-dissociation inhibitors (GDI), known regulators of RhoGTPases/cytoskeleton. Evolutionary histories of these three microsyntenic regions reveal their emergence by two successive duplication events of a primordial gene pair in the last common vertebrate ancestor. The arrangement, however, is substantially older, detectable in echinoderms, nematodes, and cnidarians. Thus, PDI/RhoGDI pairing in the same transcription orientation emerged early in animal evolution and has been largely maintained. PDI/RhoGDI pairs are embedded into conserved genomic regions displaying common cis-regulatory elements. Analysis of gene expression datasets supports evidence for PDI/RhoGDI coexpression in developmental/inflammatory contexts. PDIA1/RhoGDIα were co-induced in endothelial cells upon CRISP-R-promoted transcription activation of each pair component, and also in mouse arterial intima during flow-induced remodeling. We provide evidence for physical interaction between both proteins. These data support strong functional links between PDI and RhoGDI families, which likely maintained PDI/RhoGDI microsynteny along > 800-million years of evolution.
Collapse
Affiliation(s)
- Ana I S Moretti
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Jessyca C Pavanelli
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Patrícia Nolasco
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Carolina G Fernandes
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - João Wosniak
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Daniela Kajihara
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Matheus H Dias
- Special Laboratory for Cell Cycle, Center of Toxins, Immune-Response and Cell Signaling - CeTICS-Cepid, Butantan Institute, São Paulo, Brazil
| | - Denise C Fernandes
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Hanjoong Jo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Ngoc-Vinh Tran
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Center (BiK-F), Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University, Frankfurt, Germany
| | - Diego Bonatto
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
12
|
Azarnia Tehran D, Pirazzini M, Leka O, Mattarei A, Lista F, Binz T, Rossetto O, Montecucco C. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12647] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Domenico Azarnia Tehran
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| | - Oneda Leka
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| | - Andrea Mattarei
- Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 35131 Padova Italy
| | - Florigio Lista
- Histology and Molecular Biology Section; Army Medical and Veterinary Research Center; Via Santo Stefano Rotondo 4 00184 Rome Italy
| | - Thomas Binz
- Medizinische Hochschule Hannover; Institut für Physiologische Chemie OE4310; 30625 Hannover Germany
| | - Ornella Rossetto
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
- National Research Institute of Neuroscience; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| |
Collapse
|
13
|
Zaina S, Gonçalves I, Carmona FJ, Gomez A, Heyn H, Mollet IG, Moran S, Varol N, Esteller M. DNA methylation dynamics in human carotid plaques after cerebrovascular events. Arterioscler Thromb Vasc Biol 2015; 35:1835-42. [PMID: 26088578 DOI: 10.1161/atvbaha.115.305630] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/06/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To understand whether cerebrovascular events, a major complication of atherosclerosis, are associated with any specific DNA methylation changes in the carotid plaque. APPROACH AND RESULTS We profiled the DNA methylomes of human symptomatic carotid plaques obtained from patients who had cerebrovascular events (n=19) and asymptomatic counterparts (n=19) with a high-density microarray (≈485 000 CpG sites, Illumina), and crossed DNA methylation data with RNAseq-based expression data from an independent symptomatic carotid plaque set (n=8). Few (30) CpGs showed a significant (P<0.05; absolute Delta-Beta, >0.20) differential methylation between the 2 groups. Within symptomatic carotid plaques, DNA methylation correlated significantly with postcerebrovascular event time (range, 3-45 days; r-value range, -0.926 to 0.857; P<0.05) for ≈45 000 CpGs, the vast majority of which became hypomethylated with increasing postcerebrovascular event time. Hypomethylation was not due to erasure of the gene-body and CG-poor region hypermethylation that accompany the progression of stable lesions, but rather targeted promoters and CpG islands. Noticeably, promoter hypomethylation and increased expression of genes involved in the inhibition of the inflammatory response, defense against oxidative stress, and active DNA demethylation were observed with increasing postcerebrovascular event time. Concomitantly, histological changes consistent with phagocyte-driven plaque healing were observed. CONCLUSIONS Weak changes in the DNA methylome distinguish symptomatic from asymptomatic plaques, but a widespread demethylation resulting in permissive transcriptional marks at atheroprotective gene promoters is established in plaques after a cerebrovascular event, thus mirroring previous observations that ruptured plaques tend to revert to a stable structure. The identified loci are candidate targets to accelerate the pace of carotid plaque stabilization.
Collapse
Affiliation(s)
- Silvio Zaina
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.).
| | - Isabel Gonçalves
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.)
| | - F Javier Carmona
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.)
| | - Antonio Gomez
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.)
| | - Holger Heyn
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.)
| | - Inês G Mollet
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.)
| | - Sebastian Moran
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.)
| | - Nuray Varol
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.)
| | - Manel Esteller
- From the Division of Health Sciences, Department of Medical Sciences, León Campus, University of Guanajuato, León, Gto., Mexico (S.Z.); Experimental Cardiovascular Research and Department of Cardiology, Clinical Sciences Malmö, Lund University, Sweden (I.G.); Department of Clinical Sciences, Lund University, Malmö, Sweden (I.G.M.); Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain (F.J.C., A.G., H.H., S.M., N.V., M.E., S.Z.); Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain (M.E.); and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain (M.E.).
| |
Collapse
|
14
|
Nakao LS, Everley RA, Marino SM, Lo SM, de Souza LE, Gygi SP, Gladyshev VN. Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins. J Biol Chem 2015; 290:5685-95. [PMID: 25561728 DOI: 10.1074/jbc.m114.597245] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes.
Collapse
Affiliation(s)
- Lia S Nakao
- From the Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, the Universidade Federal do Paraná, Departamento de Patologia Básica, 81531-980, Curitiba, PR, Brazil, and
| | - Robert A Everley
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Stefano M Marino
- From the Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Sze M Lo
- the Universidade Federal do Paraná, Departamento de Patologia Básica, 81531-980, Curitiba, PR, Brazil, and
| | - Luiz E de Souza
- the Universidade Federal do Paraná, Departamento de Patologia Básica, 81531-980, Curitiba, PR, Brazil, and
| | - Steven P Gygi
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vadim N Gladyshev
- From the Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
15
|
|
16
|
Abstract
Antipsychotic drugs (APDs) can have a profound effect on the human body that extends well beyond our understanding of their neuropsychopharmacology. Some of these effects manifest themselves in peripheral blood lymphocytes, and in some cases, particularly in clozapine treatment, result in serious complications. To better understand the molecular biology of APD action in lymphocytes, we investigated the influence of chlorpromazine, haloperidol and clozapine in vitro, by microarray-based gene and microRNA (miRNA) expression analysis. JM-Jurkat T-lymphocytes were cultured in the presence of the APDs or vehicle alone over 2 wk to model the early effects of APDs on expression. Interestingly both haloperidol and clozapine appear to regulate the expression of a large number of genes. Functional analysis of APD-associated differential expression revealed changes in genes related to oxidative stress, metabolic disease and surprisingly also implicated pathways and biological processes associated with neurological disease consistent with current understanding of the activity of APDs. We also identified miRNA-mRNA interaction associated with metabolic pathways and cell death/survival, all which could have relevance to known side effects of APDs. These results indicate that APDs have a significant effect on expression in peripheral tissue that relate to both known mechanisms as well as poorly characterized side effects.
Collapse
|
17
|
TXNL1-XRCC1 pathway regulates cisplatin-induced cell death and contributes to resistance in human gastric cancer. Cell Death Dis 2014; 5:e1055. [PMID: 24525731 PMCID: PMC3944244 DOI: 10.1038/cddis.2014.27] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/29/2022]
Abstract
Cisplatin is a cytotoxic platinum compound that triggers DNA crosslinking induced cell death, and is one of the reference drugs used in the treatment of several types of human cancers including gastric cancer. However, intrinsic or acquired drug resistance to cisplatin is very common, and leading to treatment failure. We have recently shown that reduced expression of base excision repair protein XRCC1 (X-ray repair cross complementing group1) in gastric cancerous tissues correlates with a significant survival benefit from adjuvant first-line platinum-based chemotherapy. In this study, we demonstrated the role of XRCC1 in repair of cisplatin-induced DNA lesions and acquired cisplatin resistance in gastric cancer by using cisplatin-sensitive gastric cancer cell lines BGC823 and the cisplatin-resistant gastric cancer cell lines BGC823/cis-diamminedichloridoplatinum(II) (DDP). Our results indicated that the protein expression of XRCC1 was significantly increased in cisplatin-resistant cells and independently contributed to cisplatin resistance. Irinotecan, another chemotherapeutic agent to induce DNA damaging used to treat patients with advanced gastric cancer that progressed on cisplatin, was found to inhibit the expression of XRCC1 effectively, and leading to an increase in the sensitivity of resistant cells to cisplatin. Our proteomic studies further identified a cofactor of 26S proteasome, the thioredoxin-like protein 1 (TXNL1) that downregulated XRCC1 in BGC823/DDP cells via the ubiquitin-proteasome pathway. In conclusion, the TXNL1-XRCC1 is a novel regulatory pathway that has an independent role in cisplatin resistance, indicating a putative drug target for reversing cisplatin resistance in gastric cancer.
Collapse
|
18
|
Ishii T, Funato Y, Miki H. Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL). J Biol Chem 2013; 288:7263-70. [PMID: 23362275 PMCID: PMC3591634 DOI: 10.1074/jbc.m112.418004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/22/2013] [Indexed: 11/06/2022] Open
Abstract
PRL family constitutes a unique class of phosphatases associated with metastasis. The phosphatase activity of PRL has been reported to be important for promoting metastasis, and it is inactivated by reversible oxidation of its catalytic cysteine. Here, we show that TRP32 specifically reduces PRL. Reduction of oxidized PRL in cells is inhibited by 2,4-dinitro-1-chlorobenzene, an inhibitor of TRX reductase. In vitro assays for the reduction of PRL show that only TRP32 can potently reduce oxidized PRL, whereas other TRX-related proteins linked to TRX reductase show little or no reducing activity. Indeed, TRP32 knockdown significantly prolongs the H2O2-induced oxidation of PRL. Binding analyses reveal that the unique C-terminal domain of TRP32 is required and sufficient for its direct interaction with PRL. These results suggest that TRP32 maintains the reduced state of PRL and thus regulates the biological function of PRL.
Collapse
Affiliation(s)
- Tasuku Ishii
- From the Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yosuke Funato
- From the Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- From the Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Toyofuku T, Nojima S, Ishikawa T, Takamatsu H, Tsujimura T, Uemura A, Matsuda J, Seki T, Kumanogoh A. Endosomal sorting by Semaphorin 4A in retinal pigment epithelium supports photoreceptor survival. Genes Dev 2012; 26:816-29. [PMID: 22465952 DOI: 10.1101/gad.184481.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Photoreceptor cell death is the hallmark of a group of human inherited retinal degeneration. Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Here, we show that Semaphorin 4A (Sema4A), a member of axonal guidance molecule semaphorin, plays a role in Rab11/FIP2-mediated endosomal sorting in retinal pigment epithelial cells to support photoreceptor function. In response to oxidative stress, Sema4A switches the endosomal sorting of the lysosomal precursor protein prosaposin from the lysosome to the exosomal release, which prevents light-induced photoreceptor apoptosis. In the absence of oxidative stress, Sema4A sorts retinoid-binding proteins with retinoids between the cell surface and endoplasmic reticulum, by which 11-cis-retinal, a chromophore for phototransduction, is regenerated and transported back to photoreceptors. Owing to defects in these processes, Sema4A-deficient mice exhibit marked photoreceptor degeneration. Our findings therefore indicate that Sema4A regulates two distinct endosomal-sorting pathways that are critical for photoreceptor survival and phototransduction during the transition between daylight and darkness.
Collapse
Affiliation(s)
- Toshihiko Toyofuku
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mishra M, Manavalan A, Sze SK, Heese K. Neuronal p60TRP expression modulates cardiac capacity. J Proteomics 2011; 75:1600-17. [PMID: 22172954 DOI: 10.1016/j.jprot.2011.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/20/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023]
Abstract
Heart failure, including myocardial infarction, is the leading cause for death and the incidence of cardiovascular diseases is predicted to continue to rise worldwide. In the present study we investigated the whole heart proteome profile of transgenic p60-Transcription Regulator Protein (p60TRP) mice to gain an insight into the molecular events caused by the long-term effect of neural p60TRP over-expression on cardiac proteome changes and its potential implication for cardiovascular functions. Using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach, we identified 1148 proteins, out of which 116 were found to be significantly altered in the heart of neural transgenic p60TRP mice. Based on the observed data, we conclude that in vivo neural over-expression of transgenic p60TRP with its neuroprotective therapeutic potential significantly affects cardiovascular capacities.
Collapse
Affiliation(s)
- Manisha Mishra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
21
|
Andersen KM, Jensen C, Kriegenburg F, Lauridsen AMB, Gordon C, Hartmann-Petersen R. Txl1 and Txc1 are co-factors of the 26S proteasome in fission yeast. Antioxid Redox Signal 2011; 14:1601-8. [PMID: 21091378 DOI: 10.1089/ars.2010.3329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 26S proteasome is a large proteolytic particle present in the cytosol and nucleus of eukaryotic cells. Most intracellular proteins, including those affected by oxidative damage, are degraded by the proteasome. The human thioredoxin, Txnl1, is known to associate with the 26S proteasome and thereby equips proteasomes with redox capabilities. Here, we characterize the fission yeast orthologue of Txnl1, called Txl1. Txl1 associates with the 26S proteasome via its C-terminal domain. This domain is also found in the uncharacterized protein, Txc1, which was also found to interact with 26S proteasomes. A txl1 null mutant, but not a txc1 null, displayed a synthetic growth defect with cut8, encoding a protein that tethers the proteasome to the nuclear membrane. Txc1 is present throughout the cytoplasm and nucleus, whereas Txl1 co-localizes with 26S proteasomes in both wild-type cells and in cut8 mutants, indicating that Txl1 is tightly associated with 26S proteasomes, while Txc1 might be only transiently bound to the complex. Finally, we show that Txl1 is an active thioredoxin. Accordingly, Txl1 was able to reduce and mediate the degradation of an oxidized model proteasome substrate in vitro. Thus, Txl1 and Txc1 are proteasome co-factors connected with oxidative stress.
Collapse
|
22
|
Farley EK, Gale E, Chambers D, Li M. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis. Neural Dev 2011; 6:17. [PMID: 21527010 PMCID: PMC3105949 DOI: 10.1186/1749-8104-6-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/28/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. RESULTS Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current) and less than 0.5% (current + DNA), respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. CONCLUSIONS These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.
Collapse
Affiliation(s)
- Emma K Farley
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Imperial College London, W12 0NN, UK
| | - Emily Gale
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Imperial College London, W12 0NN, UK
| | - David Chambers
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London, SE1 1UL, UK
| | - Meng Li
- MRC Clinical Sciences Centre, Hammersmith Hospital Campus, Imperial College London, W12 0NN, UK
| |
Collapse
|
23
|
Goroncy AK, Koshiba S, Tochio N, Tomizawa T, Inoue M, Tanaka A, Sugano S, Kigawa T, Yokoyama S. Solution structure of the C-terminal DUF1000 domain of the human thioredoxin-like 1 protein. Proteins 2010; 78:2176-80. [PMID: 20455272 DOI: 10.1002/prot.22719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander K Goroncy
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Andersen KM, Madsen L, Prag S, Johnsen AH, Semple CA, Hendil KB, Hartmann-Petersen R. Thioredoxin Txnl1/TRP32 is a redox-active cofactor of the 26 S proteasome. J Biol Chem 2009; 284:15246-54. [PMID: 19349277 PMCID: PMC2685705 DOI: 10.1074/jbc.m900016200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/30/2009] [Indexed: 01/18/2023] Open
Abstract
The 26 S proteasome is a large proteolytic machine, which degrades most intracellular proteins. We found that thioredoxin, Txnl1/TRP32, binds to Rpn11, a subunit of the regulatory complex of the human 26 S proteasome. Txnl1 is abundant, metabolically stable, and widely expressed and is present in the cytoplasm and nucleus. Txnl1 has thioredoxin activity with a redox potential of about -250 mV. Mutant Txnl1 with one active site cysteine replaced by serine formed disulfide bonds to eEF1A1, a substrate-recruiting factor of the 26 S proteasome. eEF1A1 is therefore a likely physiological substrate. In response to knockdown of Txnl1, ubiquitin-protein conjugates were moderately stabilized. Hence, Txnl1 is the first example of a direct connection between protein reduction and proteolysis, two major intracellular protein quality control mechanisms.
Collapse
Affiliation(s)
- Katrine M Andersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Arnér ESJ. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta Gen Subj 2009; 1790:495-526. [PMID: 19364476 DOI: 10.1016/j.bbagen.2009.01.014] [Citation(s) in RCA: 509] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/30/2009] [Indexed: 02/07/2023]
Abstract
Thioredoxin systems, involving redox active thioredoxins and thioredoxin reductases, sustain a number of important thioredoxin-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense and redox-regulated signaling cascades. Mammalian thioredoxin reductases are selenium-containing flavoprotein oxidoreductases, dependent upon a selenocysteine residue for reduction of the active site disulfide in thioredoxins. Their activity is required for normal thioredoxin function. The mammalian thioredoxin reductases also display surprisingly multifaceted properties and functions beyond thioredoxin reduction. Expressed from three separate genes (in human named TXNRD1, TXNRD2 and TXNRD3), the thioredoxin reductases can each reduce a number of different types of substrates in different cellular compartments. Their expression patterns involve intriguingly complex transcriptional mechanisms resulting in several splice variants, encoding a number of protein variants likely to have specialized functions in a cell- and tissue-type restricted manner. The thioredoxin reductases are also targeted by a number of drugs and compounds having an impact on cell function and promoting oxidative stress, some of which are used in treatment of rheumatoid arthritis, cancer or other diseases. However, potential specific or essential roles for different forms of human or mouse thioredoxin reductases in health or disease are still rather unclear, although it is known that at least the murine Txnrd1 and Txnrd2 genes are essential for normal development during embryogenesis. This review is a survey of current knowledge of mammalian thioredoxin reductase function and expression, with a focus on human and mouse and a discussion of the striking complexity of these proteins. Several yet open questions regarding their regulation and roles in different cells or tissues are emphasized. It is concluded that the intriguingly complex regulation and function of mammalian thioredoxin reductases within the cellular context and in intact mammals strongly suggests that their functions are highly fi ne-tuned with the many pathways involving thioredoxins and thioredoxin-related proteins. These selenoproteins furthermore propagate many functions beyond a reduction of thioredoxins. Aberrant regulation of thioredoxin reductases, or a particular dependence upon these enzymes in diseased cells, may underlie their presumed therapeutic importance as enzymatic targets using electrophilic drugs. These reductases are also likely to mediate several of the effects on health and disease that are linked to different levels of nutritional selenium intake. The thioredoxin reductases and their splice variants may be pivotal components of diverse cellular signaling pathways, having importance in several redox-related aspects of health and disease. Clearly, a detailed understanding of mammalian thioredoxin reductases is necessary for a full comprehension of the thioredoxin system and of selenium dependent processes in mammals.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|