1
|
Gyllensten U, Bosdotter Enroth S, Stålberg K, Sundfeldt K, Enroth S. Preoperative Fasting and General Anaesthesia Alter the Plasma Proteome. Cancers (Basel) 2020; 12:cancers12092439. [PMID: 32867270 PMCID: PMC7564209 DOI: 10.3390/cancers12092439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023] Open
Abstract
Background: Blood plasma collected at time of surgery is an excellent source of patient material for investigations into disease aetiology and for the discovery of novel biomarkers. Previous studies on limited sets of proteins and patients have indicated that pre-operative fasting and anaesthesia can affect protein levels, but this has not been investigated on a larger scale. These effects could produce erroneous results in case-control studies if samples are not carefully matched. Methods: The proximity extension assay (PEA) was used to characterize 983 unique proteins in a total of 327 patients diagnosed with ovarian cancer and 50 age-matched healthy women. The samples were collected either at time of initial diagnosis or before surgery under general anaesthesia. Results: 421 of the investigated proteins (42.8%) showed statistically significant differences in plasma abundance levels comparing samples collected at time of diagnosis or just before surgery under anaesthesia. Conclusions: The abundance levels of the plasma proteome in samples collected before incision, i.e., after short-time fasting and under general anaesthesia differs greatly from levels in samples from awake patients. This emphasizes the need for careful matching of the pre-analytical conditions of samples collected from controls to cases at time of surgery in the discovery as well as clinical use of protein biomarkers.
Collapse
Affiliation(s)
- Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Box 815, Uppsala University, SE-751 08 Uppsala, Sweden;
| | | | - Karin Stålberg
- Department of Women’s and Children’s Health, Uppsala University, SE-751 85 Uppsala, Sweden;
| | - Karin Sundfeldt
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, SE-416 85 Gothenburg, Sweden;
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Box 815, Uppsala University, SE-751 08 Uppsala, Sweden;
- Correspondence: ; Tel.: +46-18-4714913
| |
Collapse
|
2
|
Yorganci A, Kadioğlu N, Gümgümcü H, Özyer Ş, Engin-Ustun Y. Serum prolactin and CA 125 levels in uterine adenomyosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2020. [DOI: 10.1177/2284026520946207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: It is suggested that prolactin has a role in the pathogenesis of uterine adenomyosis. Besides, it is also reported that elevated cancer antigen 125 levels are related with this benign disorder. The aim of the study was to investigate serum prolactin and cancer antigen 125 levels in patients with adenomyosis. Methods: In this retrospective chart review study, data of patients with clinically diagnosed and histopathologically proven adenomyosis in hysterectomy specimens were analyzed. Patients were divided into two groups according to the ultrasonographically calculated preoperative uterine volume: Group 1 (n = 62): uterine volume ⩽240 cm3 (⩽12 gestational weeks) and Group 2 (n = 42): uterine volume >240 cm3 (>12 gestational weeks). Age, obstetric history, body mass index, preoperative hemoglobin, thyroid stimulating hormone, prolactin and cancer antigen 125 levels, and ultrasonographic findings were recorded. Preoperative prolactin and cancer antigen 125 values were compared between the two groups. Results: A total of 104 patients were included in the study. No differences in the baseline characteristics were observed between the groups, except the number of pregnancies and miscarriages. Furthermore, no significant differences were observed in terms of serum prolactin and cancer antigen 125 levels between the groups. Conclusion: Serum prolactin and cancer antigen 125 levels were not associated with uterine volume in patients with uterine adenomyosis.
Collapse
Affiliation(s)
- Ayçağ Yorganci
- Department of Ob&Gyn, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | | | - Harika Gümgümcü
- Department of Ob&Gyn, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Şebnem Özyer
- Department of Ob&Gyn, Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Yaprak Engin-Ustun
- Etlik Zübeyde Hanım Women’s Health Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Compton CC, Robb JA, Anderson MW, Berry AB, Birdsong GG, Bloom KJ, Branton PA, Crothers JW, Cushman-Vokoun AM, Hicks DG, Khoury JD, Laser J, Marshall CB, Misialek MJ, Natale KE, Nowak JA, Olson D, Pfeifer JD, Schade A, Vance GH, Walk EE, Yohe SL. Preanalytics and Precision Pathology: Pathology Practices to Ensure Molecular Integrity of Cancer Patient Biospecimens for Precision Medicine. Arch Pathol Lab Med 2019; 143:1346-1363. [PMID: 31329478 DOI: 10.5858/arpa.2019-0009-sa] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biospecimens acquired during routine medical practice are the primary sources of molecular information about patients and their diseases that underlies precision medicine and translational research. In cancer care, molecular analysis of biospecimens is especially common because it often determines treatment choices and may be used to monitor therapy in real time. However, patient specimens are collected, handled, and processed according to routine clinical procedures during which they are subjected to factors that may alter their molecular quality and composition. Such artefactual alteration may skew data from molecular analyses, render analysis data uninterpretable, or even preclude analysis altogether if the integrity of a specimen is severely compromised. As a result, patient care and safety may be affected, and medical research dependent on patient samples may be compromised. Despite these issues, there is currently no requirement to control or record preanalytical variables in clinical practice with the single exception of breast cancer tissue handled according to the guideline jointly developed by the American Society of Clinical Oncology and College of American Pathologists (CAP) and enforced through the CAP Laboratory Accreditation Program. Recognizing the importance of molecular data derived from patient specimens, the CAP Personalized Healthcare Committee established the Preanalytics for Precision Medicine Project Team to develop a basic set of evidence-based recommendations for key preanalytics for tissue and blood specimens. If used for biospecimens from patients, these preanalytical recommendations would ensure the fitness of those specimens for molecular analysis and help to assure the quality and reliability of the analysis data.
Collapse
Affiliation(s)
- Carolyn C Compton
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - James A Robb
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Matthew W Anderson
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Anna B Berry
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - George G Birdsong
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Kenneth J Bloom
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Philip A Branton
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jessica W Crothers
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Allison M Cushman-Vokoun
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - David G Hicks
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Joseph D Khoury
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jordan Laser
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Carrie B Marshall
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Michael J Misialek
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Kristen E Natale
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Jan Anthony Nowak
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Damon Olson
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - John D Pfeifer
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Andrew Schade
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Gail H Vance
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Eric E Walk
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| | - Sophia Louise Yohe
- From School of Life Sciences, Arizona State University and Mayo Clinic School of Medicine, Scottsdale (Dr Compton); Consulting Pathologist, Boca Raton, Florida (Dr Robb); Versiti Diagnostic Laboratories, Milwaukee, Wisconsin (Dr Anderson); Molecular Pathology and Genomics, Swedish Cancer Institute, Seattle, Washington (Dr Berry); Anatomic Pathology, Grady Health System, Atlanta, Georgia (Dr Birdsong); Advanced Genomic Services, Ambry Genetics, Aliso Viejo, California (Dr Bloom); Gynecologic & Breast Pathology, Joint Pathology Center, Silver Spring, Maryland (Dr Branton); the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dr Crothers); the Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha (Dr Cushman-Vokoun); IHC-ISH Laboratory and Breast Subspecialty Service, University of Rochester Medical Center, Rochester, New York (Dr Hicks); the Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Khoury); the Department of Pathology and Laboratory Medicine, Northwell Health, New Hyde Park, New York (Dr Laser); the Department of Pathology, University of Colorado, Aurora (Dr Marshall); the Department of Pathology, Newton-Wellesley Hospital, Newton, Massachusetts (Dr Misialek); the Department of Pathology, Walter Reed National Military Medical Center, Bethesda, Maryland (Dr Natale); the Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York (Dr Nowak); he Department of Pathology, Children's Hospitals and Clinics, Minneapolis, Minnesota (Dr Olson); the Department of Pathology, Washington University School of Medicine, St. Louis, Missouri (Dr Pfeifer); Lilly Research Labs, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Dr Schade); he Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (Dr Vance); Medical & Scientific Affairs, Roche Tissue Diagnostics, Tucson, Arizona (Dr Walk); and Special Hematology MMC, University of Minnesota Medical Center, Minneapolis (Dr Yohe)
| |
Collapse
|
4
|
Neumeister VM, Juhl H. Tumor Pre-Analytics in Molecular Pathology: Impact on Protein Expression and Analysis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:265-274. [PMID: 30595971 PMCID: PMC6290693 DOI: 10.1007/s40139-018-0179-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose of Review Precision medicine promises patient tailored, individualized diagnosis and treatment of diseases and relies on clinical specimen integrity and accuracy of companion diagnostic testing. Therefore, pre-analytics, which are defined as the collection, processing, and storage of clinical specimens, are critically important to enable optimal diagnostics, molecular profiling, and clinical decision-making around harvested specimens. This review article discusses the impact of tumor pre-analytics on molecular pathology focusing on biospecimen protein expression and analysis. Recent Findings Due to busy clinical schedules and workflows that have been established for many years and to lack of standardization and limited assessment tools to quantify variability in pre-analytical processing, the effects of pre-analytics on biospecimen integrity are often overlooked. Several studies have recently emphasized an emerging crisis in science and reproducibility of results. Summary Biomarker instability due to pre-analytical variables affects comprehensive analysis and molecular phenotyping of patients’ tissue. This problematic emphasizes the critical need for standardized protocols and technologies to be applied in the clinical and research setting.
Collapse
Affiliation(s)
| | - Hartmut Juhl
- Indivumed, GmbH, Falkenried 88, D-20251 Hamburg, Germany
| |
Collapse
|
5
|
Cohen JD, Javed AA, Thoburn C, Wong F, Tie J, Gibbs P, Schmidt CM, Yip-Schneider MT, Allen PJ, Schattner M, Brand RE, Singhi AD, Petersen GM, Hong SM, Kim SC, Falconi M, Doglioni C, Weiss MJ, Ahuja N, He J, Makary MA, Maitra A, Hanash SM, Dal Molin M, Wang Y, Li L, Ptak J, Dobbyn L, Schaefer J, Silliman N, Popoli M, Goggins MG, Hruban RH, Wolfgang CL, Klein AP, Tomasetti C, Papadopoulos N, Kinzler KW, Vogelstein B, Lennon AM. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A 2017; 114:10202-10207. [PMID: 28874546 PMCID: PMC5617273 DOI: 10.1073/pnas.1704961114] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The earlier diagnosis of cancer is one of the keys to reducing cancer deaths in the future. Here we describe our efforts to develop a noninvasive blood test for the detection of pancreatic ductal adenocarcinoma. We combined blood tests for KRAS gene mutations with carefully thresholded protein biomarkers to determine whether the combination of these markers was superior to any single marker. The cohort tested included 221 patients with resectable pancreatic ductal adenocarcinomas and 182 control patients without known cancer. KRAS mutations were detected in the plasma of 66 patients (30%), and every mutation found in the plasma was identical to that subsequently found in the patient's primary tumor (100% concordance). The use of KRAS in conjunction with four thresholded protein biomarkers increased the sensitivity to 64%. Only one of the 182 plasma samples from the control cohort was positive for any of the DNA or protein biomarkers (99.5% specificity). This combinatorial approach may prove useful for the earlier detection of many cancer types.
Collapse
Affiliation(s)
- Joshua D Cohen
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ammar A Javed
- Department of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Christopher Thoburn
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Fay Wong
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Jeanne Tie
- Division of Systems Biology and Personalized Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3021, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Medical Oncology, Western Health, Melbourne, VIC 3021, Australia
| | - Peter Gibbs
- Division of Systems Biology and Personalized Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3021, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Medical Oncology, Western Health, Melbourne, VIC 3021, Australia
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Peter J Allen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Mark Schattner
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Song Cheol Kim
- Department of Hepatobiliary and Pancreas Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Massimo Falconi
- Division of Pancreatic Surgery, Department of Surgery, San Raffaele Scientific Institute Research Hospital, 20132 Milan, Italy
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute Research Hospital, 20132 Milan, Italy
| | - Matthew J Weiss
- Department of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Nita Ahuja
- Department of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Jin He
- Department of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Martin A Makary
- Department of Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Anirban Maitra
- The Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Samir M Hanash
- The Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Marco Dal Molin
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Yuxuan Wang
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Lu Li
- Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Janine Ptak
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Lisa Dobbyn
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Joy Schaefer
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Natalie Silliman
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Maria Popoli
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Michael G Goggins
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Ralph H Hruban
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | | | - Alison P Klein
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Cristian Tomasetti
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- Division of Biostatistics and Bioinformatics, Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Nickolas Papadopoulos
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Kenneth W Kinzler
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Bert Vogelstein
- The Ludwig Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287;
- Howard Hughes Medical Institute, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- Sidney Kimmel Cancer Center at Johns Hopkins, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| | - Anne Marie Lennon
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21287;
- Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD 21287
| |
Collapse
|
6
|
Gaugg MT, Engler A, Nussbaumer-Ochsner Y, Bregy L, Stöberl AS, Gaisl T, Bruderer T, Zenobi R, Kohler M, Martinez-Lozano Sinues P. Metabolic effects of inhaled salbutamol determined by exhaled breath analysis. J Breath Res 2017; 11:046004. [DOI: 10.1088/1752-7163/aa7caa] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Heiss JA, Brenner H. Epigenome-wide discovery and evaluation of leukocyte DNA methylation markers for the detection of colorectal cancer in a screening setting. Clin Epigenetics 2017; 9:24. [PMID: 28270869 PMCID: PMC5335821 DOI: 10.1186/s13148-017-0322-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/06/2017] [Indexed: 01/27/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer worldwide. If detected at an early stage, prognosis is good. Despite increasing evidence for the benefits of implemented screening programs, such as screening colonoscopy, compliance is rather low. Hence there is demand for non-invasive tests for the early detection of CRC with high acceptance in population-wide screening. The objective of this study was to identify and evaluate leukocyte DNA methylation patterns as a potential biomarker for early detection of CRC. Methods Blood samples of patients scheduled for a screening colonoscopy were collected before the procedure. Additionally, blood samples from CRC cases recruited in a clinical setting were collected. DNA was extracted from leukocytes, and DNA methylation was measured with the Infinium 450K BeadChip. In total, 46 CRC cases and 140 controls from the screening setting and 93 CRC cases from the clinical setting were measured. Results An epigenome-wide discovery revealed two CpG sites in the promoter region of KIAA1549L that were significantly differentially methylated between cases and controls. A third marker in the body region of BCL2 was discovered in a candidate approach testing biomarkers reported in the literature. Logistic regression models built on these three markers yielded an optimism-corrected c-statistic of 0.69 in the screening setting and 0.73 in the clinical setting. Conclusions Although diagnostic performance of the DNA methylation signature identified in this first epigenome-wide association study of leukocyte DNA methylation with CRC in a screening setting is not competitive with established screening tests, the identified markers may contribute to multimarker panels for early detection of CRC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0322-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Alexander Heiss
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120 Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120 Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Abstract
The human plasma proteome represents an important secreted sub-proteome. Proteomic analysis of blood plasma with mass spectrometry is a challenging task. The high complexity and wide dynamic range of proteins as well as the presence of several proteins at very high concentrations complicate the profiling of the human plasma proteome. The peptidome (or low-molecular-weight fraction, LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based markers of disease. Peptides are generated by active synthesis and proteolytic processing, often yielding proteolytic fragments that mediate a variety of physiological and pathological functions. As such, degradomic studies, investigating cleavage products via peptidomics and top-down proteomics in particular, have warranted significant research interest. However, due to their molecular weight, abundance, and solubility, issues with identifying specific cleavage sites and coverage of peptide fragments remain challenging. Peptidomics is currently focused toward comprehensively studying peptides cleaved from precursor proteins by endogenous proteases. This protocol outlines a standardized rapid and reproducible procedure for peptidomic profiling of human plasma using centrifugal ultrafiltration and mass spectrometry. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration (cellulose triacetate membrane) for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration, and temperature to facilitate recovery >95% and enrichment of the human plasma peptidome. This method serves as a comprehensive and facile process to enrich and identify a key, underrepresented sub-proteome of human blood plasma.
Collapse
|
9
|
Atwater T, Cook CM, Massion PP. The Pursuit of Noninvasive Diagnosis of Lung Cancer. Semin Respir Crit Care Med 2016; 37:670-680. [PMID: 27732989 DOI: 10.1055/s-0036-1592314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The noninvasive diagnosis of lung cancer remains a formidable challenge. Although tissue diagnosis will remain the gold standard for the foreseeable future, questions pertaining to the risks and costs associated with invasive diagnostic procedures are of prime relevance. This review addresses new modalities for improving the noninvasive evaluation of suspicious lung nodules. Ultimately, the goal is to translate early diagnosis into early treatment. We discuss how biomarkers could assist in distinguishing benign from malignant nodules and aggressive from indolent tumors. The field of biomarkers is rapidly expanding and progressing, and efforts are well underway to apply molecular diagnostics to address the shortcomings of current lung cancer diagnostic tools.
Collapse
Affiliation(s)
- Thomas Atwater
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christine M Cook
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pierre P Massion
- Cornelius Vanderbilt Endowed Chair in Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
10
|
Tamir A, Gangadharan A, Balwani S, Tanaka T, Patel U, Hassan A, Benke S, Agas A, D'Agostino J, Shin D, Yoon S, Goy A, Pecora A, Suh KS. The serine protease prostasin (PRSS8) is a potential biomarker for early detection of ovarian cancer. J Ovarian Res 2016; 9:20. [PMID: 27036110 PMCID: PMC4815131 DOI: 10.1186/s13048-016-0228-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background Ovarian cancer (OVC) is the deadliest of all gynecologic cancers, primarily as a consequence of asymptomatic progression. The complex nature of OVC creates challenges for early detection, and there is a lack of specific and sensitive biomarkers suitable for screening and detecting early stage OVC. Methods Potential OVC biomarkers were identified by bioinformatic analysis. Candidates were further screened for differential expression in a library of OVC cell lines. OVC-specific overexpression of a candidate gene, PRSS8, which encodes prostasin, was confirmed against 18 major human cancer types from 390 cancer samples by qRT-PCR. PRSS8 expression profiles stratified by OVC tumor stage-, grade- and subtype were generated using cDNA samples from 159 OVC samples. Cell-specific expression and localization of prostasin was determined by immunohistological tissue array analysis of more than 500 normal, benign, and cancerous ovarian tissues. The presence of prostasin in normal, benign, and OVC serum samples was also determined. Results Gene expression analysis indicated that PRSS8 was expressed in OVC at levels more than 100 fold greater than found in normal or benign ovarian lesions. This overexpression signature was found in early stages of OVC and was maintained in higher stages and grades of OVC. The PRSS8 overexpression signature was specific for OVC and urinary bladder cancer among 18 human cancer types. The majority of ovarian cell lines overexpressed PRSS8. In situ hybridization and histopathology studies of OVC tissues indicated that overexpression of prostasin was largely localized to tumor epithelium and was absent in neighboring stroma. Significantly higher levels of prostasin were found in early stage OVC serum samples compared to benign ovarian and normal donor samples. Conclusions The abundant amounts of secreted prostasin found in sera of early stage OVC can potentially be used as a minimally invasive screening biomarker for early stage OVC. Overexpression of PRSS8 mRNA and high levels of prostasin in multiple subtypes of early stage ovarian tumors may provide clinical biomarkers for early detection of OVC, which can potentially be used with CA125 and HE4. Electronic supplementary material The online version of this article (doi:10.1186/s13048-016-0228-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayala Tamir
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Anju Gangadharan
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Sakshi Balwani
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Takemi Tanaka
- Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma city, OK, 73104, USA
| | - Ushma Patel
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Ahmed Hassan
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Stephanie Benke
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Agnieszka Agas
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Joseph D'Agostino
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Dayoung Shin
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Sunghoon Yoon
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA
| | - Andre Goy
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, 07601, USA
| | - Andrew Pecora
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, 07601, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, D. Jurist Research Building, 40 Prospect Avenue, Hackensack, NJ, 07601, USA.
| |
Collapse
|
11
|
Joob B, Wiwanitkit V. Serum Prolactin and CA-125 Levels in Peritoneal Endometriosis. Gynecol Obstet Invest 2015; 80:216. [PMID: 26338345 DOI: 10.1159/000438861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/20/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Beuy Joob
- Sanitation 1 Medical Academic Center, Bangkok, Thailand
| | | |
Collapse
|
12
|
Kahn N, Riedlinger J, Roeßler M, Rabe C, Lindner M, Koch I, Schott-Hildebrand S, Herth FJ, Schneider MA, Meister M, Muley TR. Blood-sampling collection prior to surgery may have a significant influence upon biomarker concentrations measured. Clin Proteomics 2015; 12:19. [PMID: 26236175 PMCID: PMC4521486 DOI: 10.1186/s12014-015-9093-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biomarkers can be subtle tools to aid the diagnosis, prognosis and monitoring of therapy and disease progression. The validation of biomarkers is a cumbersome process involving many steps. Serum samples from lung cancer patients were collected in the framework of a larger study for evaluation of biomarkers for early detection of lung cancer. The analysis of biomarker levels measured revealed a noticeable difference in certain biomarker values that exhibited a dependence of the time point and setting of the sampling. Biomarker concentrations differed significantly if taken before or after the induction of anesthesia and if sampled via venipuncture or arterial catheter. METHODS To investigate this observation, blood samples from 13 patients were drawn 1-2 days prior to surgery (T1), on the same day by venipuncture (T2) and after induction of anesthesia via arterial catheter (T3). The biomarkers Squamous Cell Carcinoma antigen (CanAG SCC EIA, Fujirebio Diagnostics, Malvern, USA), Carcinoembrionic Antigen (CEA), and CYFRA 21-1 (Roche Diagnostics GmbH, Mannheim, Germany) were analyzed. RESULTS SCC showed a very strong effect in relation to the sampling time and procedure. While the first two points in time (T1; T2) were highly comparable (median fold-change: 0.84; p = 0.7354; correlation ρ = 0.883), patients showed a significant increase (median fold-change: 4.96; p = 0.0017; correlation ρ = -0.036) in concentration when comparing T1 with the sample time subsequent to anesthesia induction (T3). A much weaker increase was found for CYFRA 21-1 at T3 (median fold-change: 1.40; p = 0.0479). The concentration of CEA showed a very small, but systematic decrease (median fold-change: 0.72; p = 0.0039). CONCLUSIONS In this study we show the unexpectedly marked influence of blood withdrawal timing (before vs. after anesthesia) and procedure (venous versus arterial vessel puncture) has on the concentration of the protein biomarker SCC and to a less extent upon CYFRA21-1. The potential causes for these effects remain to be elucidated in subsequent studies, however these findings highlight the importance of a standardized, controlled blood collection protocol for biomarker detection.
Collapse
Affiliation(s)
- Nicolas Kahn
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany ; Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany
| | | | | | | | - Michael Lindner
- Center of Thoracic Surgery, Asklepios Fachkliniken München-Gauting, Ludwig Maximilians University, 82131 Gauting, Germany ; Comprehensive Pneumology Centre Munich (CPC-M), German Centre for Lung Research (DZL), Munich, Germany
| | - Ina Koch
- Center of Thoracic Surgery, Asklepios Fachkliniken München-Gauting, Ludwig Maximilians University, 82131 Gauting, Germany ; Comprehensive Pneumology Centre Munich (CPC-M), German Centre for Lung Research (DZL), Munich, Germany
| | - Sabine Schott-Hildebrand
- Center of Thoracic Surgery, Asklepios Fachkliniken München-Gauting, Ludwig Maximilians University, 82131 Gauting, Germany ; Comprehensive Pneumology Centre Munich (CPC-M), German Centre for Lung Research (DZL), Munich, Germany
| | - Felix J Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany ; Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany
| | - Marc A Schneider
- Translational Research Unit (STF), Thoraxklinik, University of Heidelberg, Amalienstr. 5, 69126 Heidelberg, Germany ; Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit (STF), Thoraxklinik, University of Heidelberg, Amalienstr. 5, 69126 Heidelberg, Germany ; Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany
| | - Thomas R Muley
- Translational Research Unit (STF), Thoraxklinik, University of Heidelberg, Amalienstr. 5, 69126 Heidelberg, Germany ; Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
13
|
Wu J, Yin H, Zhu J, Buckanovich RJ, Thorpe JD, Dai J, Urban N, Lubman DM. Validation of LRG1 as a potential biomarker for detection of epithelial ovarian cancer by a blinded study. PLoS One 2015; 10:e0121112. [PMID: 25799488 PMCID: PMC4370724 DOI: 10.1371/journal.pone.0121112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/28/2015] [Indexed: 01/26/2023] Open
Abstract
Background Leucine-rich alpha-2-glycoprotein (LRG1) was found to be differentially expressed in sera from patients with Epithelial Ovarian Cancer (EOC). The aim of this study is to investigate the performance of LRG1 for detection of EOC, including early stage EOC, and to evaluate if LRG1 can complement CA125 in order to improve EOC detection using two independent blinded sample sets. Methods and Results Serum LRG1 and CA125 were measured by immunoassays. All assays were performed blinded to clinical data. Using the two independent sample sets (156 participants for sample set 1, and 233 for sample set 2), LRG1 was differentially expressed in EOC cases as compared to healthy, surgical, and benign controls, and its performance was not affected by the conditions of blood collection. The areas under the ROC curve (AUC) for LRG1 in differentiating EOC cases from non-cases were 0.797 and 0.786 for sample set 1 and 2. For differentiating EOC cases from healthy controls, the AUC values for LRG1 were 0.792 and 0.794. At a fixed specificity of 95%, LRG1 detects 52%, and 53.5% of EOC cases from healthy controls for sample set 1 and 2. When combining LRG1 and CA125, the AUC value increased to 0.927, which was improved compared to CA125 (AUC=0.916) (p=0.008) alone in distinguishing EOC cases from non-cases. More importantly, LRG1 also showed potential performance in differentiating early stage EOC from non-cases with an AUC of 0.715 for sample set 1, and 0.690 for sample set 2. The combination of LRG1 and CA125 resulted in an AUC of 0.838, which outperforms CA125 (AUC=0.785) (p=0.018) in detecting early stage EOC cases from non-cases using the larger sample set. Conclusions LRG1 could be a useful biomarker alone or in combination with CA125 for the diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Jing Wu
- University of Michigan, Department of Surgery, Ann Arbor, MI, United States of America
| | - Haidi Yin
- University of Michigan, Department of Surgery, Ann Arbor, MI, United States of America
| | - Jianhui Zhu
- University of Michigan, Department of Surgery, Ann Arbor, MI, United States of America
| | - Ronald J. Buckanovich
- University of Michigan, Department of Internal Medicine, Ann Arbor, MI, United States of America
| | - Jason D. Thorpe
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jianliang Dai
- University of Texas MD Anderson Cancer Center, Biostatistics, Houston, TX, United States of America
| | - Nicole Urban
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - David M. Lubman
- University of Michigan, Department of Surgery, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
14
|
Matzke EAM, O'Donoghue S, Barnes RO, Daudt H, Cheah S, Suggitt A, Bartlett J, Damaraju S, Johnston R, Murphy L, Shepherd L, Mes-Masson AM, Schacter B, Watson PH. Certification for biobanks: the program developed by the Canadian Tumour Repository Network (CTRNet). Biopreserv Biobank 2015; 10:426-32. [PMID: 24845043 DOI: 10.1089/bio.2012.0026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two core aspects of the discipline of biobanking are biospecimen quality and good governance. Meeting the demands of both sample quality and governance can be challenging, especially in a resource limited environment. Frequently, differences between biobank processes reduce the ability for cooperative action and specimen sharing with researchers. In the Canadian context, we have made an attempt to identify these gaps and have provided a framework to support excellence, initially for tumor biobanks. The Canadian Tumour Repository Network (CTRNet) was established with funding from the Canadian Institute of Health Sciences (CIHR) Institute of Cancer Research (ICR) to foster translational research through improved access to high quality tumour biospecimens. Consistent with this mandate, CTRNet has focused on the establishment and deployment of common standards to harmonize biospecimen quality and approaches to governance. More recently, CTRNet has implemented a certification program to communicate these standards in conjunction with simultaneous exposure to education focusing on the rationale and foundations underlying these standards. The CTRNet certification program comprises registration and certification steps as two linked phases. In the registration phase, launched in November 2011, biobanks are registered into the system and individuals complete an introductory educational module. In the subsequent certification phase, the type of biobank is classified and assigned relevant educational modules and adoption of relevant standards of practice is confirmed through review of documentation including policies and protocols that address the CTRNet Required Operational Practices (ROPs). An important feature of the program is that it is intended for all types of tumor biobanks, so the scope and extent of assessment is scaled to the type of biobank. This program will provide an easily adoptable and flexible mechanism to communicate common standards through education and address both quality assurance and governance across the broad spectrum of biobanks.
Collapse
Affiliation(s)
- Elizabeth A M Matzke
- 1 University of British Columbia Office of Biobank Education and Research , Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kang HJ, Jeon SY, Park JS, Yun JY, Kil HN, Hong WK, Lee MH, Kim JW, Jeon JP, Han BG. Identification of clinical biomarkers for pre-analytical quality control of blood samples. Biopreserv Biobank 2014; 11:94-100. [PMID: 23634248 DOI: 10.1089/bio.2012.0051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pre-analytical conditions are key factors in maintaining the high quality of biospecimens. They are necessary for accurate reproducibility of experiments in the field of biomarker discovery as well as achieving optimal specificity of laboratory tests for clinical diagnosis. In research at the National Biobank of Korea, we evaluated the impact of pre-analytical conditions on the stability of biobanked blood samples by measuring biochemical analytes commonly used in clinical laboratory tests. METHODS We measured 10 routine laboratory analytes in serum and plasma samples from healthy donors (n = 50) with a chemistry autoanalyzer (Hitachi 7600-110). The analyte measurements were made at different time courses based on delay of blood fractionation, freezing delay of fractionated serum and plasma samples, and at different cycles (0, 1, 3, 6, 9) of freeze-thawing. Statistically significant changes from the reference sample mean were determined using the repeated-measures ANOVA and the significant change limit (SCL). RESULTS The serum levels of GGT and LDH were changed significantly depending on both the time interval between blood collection and fractionation and the time interval between fractionation and freezing of serum and plasma samples. The glucose level was most sensitive only to the elapsed time between blood collection and centrifugation for blood fractionation. Based on these findings, a simple formula (glucose decrease by 1.387 mg/dL per hour) was derived to estimate the length of time delay after blood collection. In addition, AST, BUN, GGT, and LDH showed sensitive responses to repeated freeze-thaw cycles of serum and plasma samples. CONCLUSION These results suggest that GGT and LDH measurements can be used as quality control markers for certain pre-analytical conditions (eg, delayed processing or repeated freeze-thawing) of blood samples which are either directly used in the laboratory tests or stored for future research in the biobank.
Collapse
|
16
|
Rahmioglu N, Fassbender A, Vitonis AF, Tworoger SS, Hummelshoj L, D'Hooghe TM, Adamson GD, Giudice LC, Becker CM, Zondervan KT, Missmer SA. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project: III. Fluid biospecimen collection, processing, and storage in endometriosis research. Fertil Steril 2014; 102:1233-43. [PMID: 25256929 PMCID: PMC4230639 DOI: 10.1016/j.fertnstert.2014.07.1208] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
Objective To harmonize standard operating procedures (SOPs) and standardize the recording of associated data for collection, processing, and storage of fluid biospecimens relevant to endometriosis. Design An international collaboration involving 34 clinical/academic centers and 3 industry collaborators from 16 countries on 5 continents. Setting In 2013, 2 workshops were conducted, followed by global consultation, bringing together 54 leaders in endometriosis research and sample processing worldwide. Patient(s) None. Intervention(s) Consensus SOPs were based on: [1] systematic comparison of SOPs from 18 global centers collecting fluid samples from women with and without endometriosis on a medium/large scale (publication on >100 cases), [2] literature evidence where available, or consultation with laboratory experts otherwise, and [3] several global consultation rounds. Main Outcome Measure(s) Standard recommended and minimum required SOPs for biofluid collection, processing, and storage in endometriosis research. Result(s) We developed recommended standard and minimum required SOPs for the collection, processing, and storage of plasma, serum, saliva, urine, endometrial/peritoneal fluid, and menstrual effluent, and a biospecimen data-collection form necessary for interpretation of sample-derived results. Conclusion(s) The Endometriosis Phenome and Biobanking Harmonisation Project SOPs allow endometriosis research centers to decrease variability in biofluid sample results, facilitating between-center comparisons and collaborations. The procedures are also relevant to research into other female conditions involving biofluid samples subject to cyclic reproductive influences. The consensus SOPs are based on the best available evidence; areas with limited evidence are identified as requiring further pilot studies. The SOPs will be reviewed based on investigator feedback, and through systematic tri-annual follow-up. Updated versions will be made available at: endometriosisfoundation.org/ephect.
Collapse
Affiliation(s)
- Nilufer Rahmioglu
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Amelie Fassbender
- Organ Systems, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Obstetrics and Gynaecology, Leuven University Fertility Centre, University Hospital Leuven, Leuven, Belgium
| | - Allison F Vitonis
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Boston Center for Endometriosis, Boston Children's Hospital and Brigham & Women's Hospital, Boston, Massachusetts
| | - Shelley S Tworoger
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Lone Hummelshoj
- World Endometriosis Research Foundation (WERF), London, United Kingdom
| | - Thomas M D'Hooghe
- Organ Systems, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium; Department of Obstetrics and Gynaecology, Leuven University Fertility Centre, University Hospital Leuven, Leuven, Belgium
| | - G David Adamson
- World Endometriosis Research Foundation (WERF), London, United Kingdom; Palo Alto Medical Foundation Fertility Physicians of Northern California, Palo Alto, California
| | - Linda C Giudice
- World Endometriosis Research Foundation (WERF), London, United Kingdom; University of California San Francisco, San Francisco, California
| | - Christian M Becker
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, United Kingdom; Endometriosis CaRe Centre Oxford, University of Oxford, Oxford, United Kingdom
| | - Krina T Zondervan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, United Kingdom; Endometriosis CaRe Centre Oxford, University of Oxford, Oxford, United Kingdom.
| | - Stacey A Missmer
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Boston Center for Endometriosis, Boston Children's Hospital and Brigham & Women's Hospital, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
17
|
Bodzek P, Partyka R, Damasiewicz-Bodzek A. Antibodies against Hsp60 and Hsp65 in the sera of women with ovarian cancer. J Ovarian Res 2014; 7:30. [PMID: 24618330 PMCID: PMC3984705 DOI: 10.1186/1757-2215-7-30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/15/2014] [Indexed: 01/06/2023] Open
Abstract
Background The aim of this study was to evaluate the concentrations of IgG antibodies against Hsp60 and Hsp65 in sera of patients with ovarian cancer at various stages of clinical progress and for different histopathological types of disease. Methods Serum samples from 149 patients with ovarian carcinoma and 80 healthy women were investigated. The concentrations of anti-Hsp60 and anti-Hsp65 antibodies were determined using the enzyme-linked immunosorbent assay technique. Results The mean concentrations of anti-Hsp60 and anti-Hsp65 antibodies in the patients with ovarian cancer did not differ significantly from the mean levels in healthy women. Analysis in relation to the clinical progression stage showed that the concentrations of these antibodies were higher when the neoplastic process was less advanced and at early stages significantly higher than in control group. Mean concentrations of both antibodies were not significantly different in relation to the histological type of the ovarian cancer. The use of chemotherapy as a primary anticancer treatment did not cause a significant change in the concentration of anti-Hsp60 antibodies, but the mean level of anti-Hsp65 after this treatment was significantly higher than in control group. Conclusions The immunological response to Hsp60/65 is increased in early clinical stages of ovarian cancer and the level of anti-hsp60/65 antibodies may be then a helpful diagnostic marker. Even antibodies against highly homologous Hsps may be cross-reactive only partially and differ by some functional properties.
Collapse
Affiliation(s)
- Piotr Bodzek
- Department of Gynaecology, Obstetrics and Oncological Gynaecology, Medical University of Silesia, Batorego 15, 41-902 Bytom, Poland.
| | | | | |
Collapse
|
18
|
Fung KYC, Nice E, Priebe I, Belobrajdic D, Phatak A, Purins L, Tabor B, Pompeia C, Lockett T, Adams TE, Burgess A, Cosgrove L. Colorectal cancer biomarkers: To be or not to be? Cautionary tales from a road well travelled. World J Gastroenterol 2014; 20:888-898. [PMID: 24574763 PMCID: PMC3921542 DOI: 10.3748/wjg.v20.i4.888] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide and places a major economic burden on the global health care system. The time frame for development from premalignant to malignant disease typically spans 10-15 years, and this latent period provides an ideal opportunity for early detection and intervention to improve patient outcomes. Currently, early diagnosis of CRC is hampered by a lack of suitable non-invasive biomarkers that are clinically or economically acceptable for population-based screening. New blood-based protein biomarkers for early detection of CRC are therefore urgently required. The success of clinical biomarker discovery and validation studies is critically dependent on understanding and adjusting for potential experimental, analytical, and biological factors that can interfere with the robust interpretation of results. In this review we outline some important considerations for research groups undertaking biomarker research with exemplars from our studies. Implementation of experimental strategies to minimise the potential effects of these problems will facilitate the identification of panels of biomarkers with the sensitivity and specificity required for the development of successful tests for the early detection and surveillance of CRC.
Collapse
|
19
|
McShane LM, Cavenagh MM, Lively TG, Eberhard DA, Bigbee WL, Williams PM, Mesirov JP, Polley MYC, Kim KY, Tricoli JV, Taylor JMG, Shuman DJ, Simon RM, Doroshow JH, Conley BA. Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration. BMC Med 2013; 11:220. [PMID: 24228635 PMCID: PMC3852338 DOI: 10.1186/1741-7015-11-220] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022] Open
Abstract
High-throughput 'omics' technologies that generate molecular profiles for biospecimens have been extensively used in preclinical studies to reveal molecular subtypes and elucidate the biological mechanisms of disease, and in retrospective studies on clinical specimens to develop mathematical models to predict clinical endpoints. Nevertheless, the translation of these technologies into clinical tests that are useful for guiding management decisions for patients has been relatively slow. It can be difficult to determine when the body of evidence for an omics-based test is sufficiently comprehensive and reliable to support claims that it is ready for clinical use, or even that it is ready for definitive evaluation in a clinical trial in which it may be used to direct patient therapy. Reasons for this difficulty include the exploratory and retrospective nature of many of these studies, the complexity of these assays and their application to clinical specimens, and the many potential pitfalls inherent in the development of mathematical predictor models from the very high-dimensional data generated by these omics technologies. Here we present a checklist of criteria to consider when evaluating the body of evidence supporting the clinical use of a predictor to guide patient therapy. Included are issues pertaining to specimen and assay requirements, the soundness of the process for developing predictor models, expectations regarding clinical study design and conduct, and attention to regulatory, ethical, and legal issues. The proposed checklist should serve as a useful guide to investigators preparing proposals for studies involving the use of omics-based tests. The US National Cancer Institute plans to refer to these guidelines for review of proposals for studies involving omics tests, and it is hoped that other sponsors will adopt the checklist as well.
Collapse
Affiliation(s)
- Lisa M McShane
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 5W130, MSC 9735, 9609 Medical Center Drive, Bethesda, MD 20892-9735, USA
| | - Margaret M Cavenagh
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 4W432, MSC 9730, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| | - Tracy G Lively
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 4W420, MSC 9730, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| | - David A Eberhard
- Department of Pathology and Lineberger Comprehensive Cancer Center, Brinkhous-Bullitt Bldg., Campus Box 7525, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William L Bigbee
- Department of Pathology and University of Pittsburgh Cancer Institute, Hillman Cancer Center, UPCI Research Pavilion, Suite 2.32b, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - P Mickey Williams
- Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 320, Room 2, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Jill P Mesirov
- Computational Biology and Bioinformatics, Broad Institute of Massachusetts Institute of Technology and Harvard University, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Mei-Yin C Polley
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 5W638, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| | - Kelly Y Kim
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 4W430, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| | - James V Tricoli
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 3W526, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| | - Jeremy MG Taylor
- Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Deborah J Shuman
- Office of the Director, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 3A44, 31 Center Drive, Bethesda, MD 20892, USA
| | - Richard M Simon
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 5W110, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| | - James H Doroshow
- Office of the Director, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 3A44, 31 Center Drive, Bethesda, MD 20892, USA
| | - Barbara A Conley
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 4W426, 9609 Medical Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Zhu C, Pinsky P, Berg C. Improving Research on Biomarkers for Early Detection and Screening of Cancers. Cancer Biomark 2012. [DOI: 10.1201/b14318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Yip P, Chen TH, Seshaiah P, Stephen LL, Michael-Ballard KL, Mapes JP, Mansfield BC, Bertenshaw GP. Comprehensive serum profiling for the discovery of epithelial ovarian cancer biomarkers. PLoS One 2011; 6:e29533. [PMID: 22216306 PMCID: PMC3244467 DOI: 10.1371/journal.pone.0029533] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/30/2011] [Indexed: 12/28/2022] Open
Abstract
FDA-cleared ovarian cancer biomarkers are limited to CA-125 and HE4 for monitoring and recurrence and OVA1, a multivariate panel consisting of CA-125 and four additional biomarkers, for referring patients to a specialist. Due to relatively poor performance of these tests, more accurate and broadly applicable biomarkers are needed. We evaluated the dysregulation of 259 candidate cancer markers in serum samples from 499 patients. Sera were collected prospectively at 11 monitored sites under a single well-defined protocol. All stages of ovarian cancer and common benign gynecological conditions were represented. To ensure consistency and comparability of biomarker comparisons, all measurements were performed on a single platform, at a single site, using a panel of rigorously calibrated, qualified, high-throughput, multiplexed immunoassays and all analyses were conducted using the same software. Each marker was evaluated independently for its ability to differentiate ovarian cancer from benign conditions. A total of 175 markers were dysregulated in the cancer samples. HE4 (AUC = 0.933) and CA-125 (AUC = 0.907) were the most informative biomarkers, followed by IL-2 receptor α, α1-antitrypsin, C-reactive protein, YKL-40, cellular fibronectin, CA-72-4 and prostasin (AUC>0.800). To improve the discrimination between cancer and benign conditions, a simple multivariate combination of markers was explored using logistic regression. When combined into a single panel, the nine most informative individual biomarkers yielded an AUC value of 0.950, significantly higher than obtained when combining the markers in the OVA1 panel (AUC 0.912). Additionally, at a threshold sensitivity of 90%, the combination of the top 9 markers gave 88.9% specificity compared to 63.4% specificity for the OVA1 markers. Although a blinded validation study has not yet been performed, these results indicate that alternative biomarker combinations might lead to significant improvements in the detection of ovarian cancer.
Collapse
Affiliation(s)
- Ping Yip
- Correlogic Systems, Inc., Germantown, Maryland, United States of America
| | - Tzong-Hao Chen
- Correlogic Systems, Inc., Germantown, Maryland, United States of America
| | - Partha Seshaiah
- Correlogic Systems, Inc., Germantown, Maryland, United States of America
| | | | | | - James P. Mapes
- Rules-Based Medicine, Inc., Austin, Texas, United States of America
| | - Brian C. Mansfield
- Correlogic Systems, Inc., Germantown, Maryland, United States of America
| | - Greg P. Bertenshaw
- Correlogic Systems, Inc., Germantown, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wener MH. Multiplex, megaplex, index, and complex: the present and future of laboratory diagnostics in rheumatology. Arthritis Res Ther 2011; 13:134. [PMID: 22129036 PMCID: PMC3334626 DOI: 10.1186/ar3498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In a recent issue of Arthritis Research & Therapy, Chandra and colleagues described the use of multiple multiplex immunoassays and complex computer algorithms to investigate the possibility of improved laboratory diagnosis and novel classification of rheumatoid arthritis on the basis of biomarkers. Such complex predictive tools in rheumatology can be guided by the experience of multiplex testing in oncology, which has demonstrated the importance of uniform specimen handling and prospectively collected specimen repositories. Although there are high expectations for these complex approaches, they require careful evaluation.
Collapse
|
23
|
Moore HM, Kelly AB, Jewell SD, McShane LM, Clark DP, Greenspan R, Hayes DF, Hainaut P, Kim P, Mansfield E, Potapova O, Riegman P, Rubinstein Y, Seijo E, Somiari S, Watson P, Weier HU, Zhu C, Vaught J. Biospecimen reporting for improved study quality (BRISQ). J Proteome Res 2011; 10:3429-38. [PMID: 21574648 PMCID: PMC3169291 DOI: 10.1021/pr200021n] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues, it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality (BRISQ) recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The BRISQ guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected.
Collapse
Affiliation(s)
- Helen M Moore
- Office of Biorepositories and Biospecimen Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Zhu CS, Pinsky PF, Cramer DW, Ransohoff DF, Hartge P, Pfeiffer RM, Urban N, Mor G, Bast RC, Moore LE, Lokshin AE, McIntosh MW, Skates SJ, Vitonis A, Zhang Z, Ward DC, Symanowski JT, Lomakin A, Fung ET, Sluss PM, Scholler N, Lu KH, Marrangoni AM, Patriotis C, Srivastava S, Buys SS, Berg CD, PLCO Project Team. A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer. Cancer Prev Res (Phila) 2011; 4:375-83. [PMID: 21372037 PMCID: PMC3057372 DOI: 10.1158/1940-6207.capr-10-0193] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A panel of biomarkers may improve predictive performance over individual markers. Although many biomarker panels have been described for ovarian cancer, few studies used prediagnostic samples to assess the potential of the panels for early detection. We conducted a multisite systematic evaluation of biomarker panels using prediagnostic serum samples from the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) screening trial. Using a nested case-control design, levels of 28 biomarkers were measured laboratory-blinded in 118 serum samples obtained before cancer diagnosis and 951 serum samples from matched controls. Five predictive models, each containing 6 to 8 biomarkers, were evaluated according to a predetermined analysis plan. Three sequential analyses were conducted: blinded validation of previously established models (step 1); simultaneous split-sample discovery and validation of models (step 2); and exploratory discovery of new models (step 3). Sensitivity, specificity, sensitivity at 98% specificity, and AUC were computed for the models and CA125 alone among 67 cases diagnosed within one year of blood draw and 476 matched controls. In step 1, one model showed comparable performance to CA125, with sensitivity, specificity, and AUC at 69.2%, 96.6%, and 0.892, respectively. Remaining models had poorer performance than CA125 alone. In step 2, we observed a similar pattern. In step 3, a model derived from all 28 markers failed to show improvement over CA125. Thus, biomarker panels discovered in diagnostic samples may not validate in prediagnostic samples; utilizing prediagnostic samples for discovery may be helpful in developing validated early detection panels.
Collapse
Affiliation(s)
- Claire S Zhu
- Division of Cancer Prevention, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-7346, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Moore HM, Kelly A, Jewell SD, McShane LM, Clark DP, Greenspan R, Hainaut P, Hayes DF, Kim P, Mansfield E, Potapova O, Riegman P, Rubinstein Y, Seijo E, Somiari S, Watson P, Weier HU, Zhu C, Vaught J. Biospecimen Reporting for Improved Study Quality. Biopreserv Biobank 2011; 9:57-70. [PMID: 21826252 DOI: 10.1089/bio.2010.0036] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/11/2011] [Indexed: 01/07/2023] Open
Abstract
Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues, it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The Biospecimen Reporting for Improved Study Quality guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected.
Collapse
|
27
|
Greening DW, Simpson RJ. Low-molecular weight plasma proteome analysis using centrifugal ultrafiltration. Methods Mol Biol 2011; 728:109-124. [PMID: 21468943 DOI: 10.1007/978-1-61779-068-3_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The low-molecular weight fraction (LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based biomarkers of disease. This protocol outlines a standardized procedure for the rapid/reproducible LMF profiling of human plasma samples using centrifugal ultrafiltration fractionation, followed by 1D-SDS-PAGE separation and nano-LC-MS/MS. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration and temperature to facilitate >95% recovery, and enrichment of low-M (r) components from human plasma. Using this protocol, >260 unique peptides can be identified from a single plasma profiling experiment using 100 μL of plasma (Greening and Simpson, J Proteomics 73:637-648, 2010). The efficacy of this method is demonstrated by the identification, for the first time, of several plasma proteins (e.g., protein KIAA0649 (Q9Y4D3), rheumatoid factor D5, serine protease inhibitor A3, and transmembrane adapter protein PAG) previously not reported in extant high-confidence Human Proteome Organization Plasma Proteome Project datasets.
Collapse
Affiliation(s)
- David W Greening
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
| | | |
Collapse
|
28
|
Anderson GL. Ovarian Cancer Biomarker Screening: Still Too Early to Tell. WOMENS HEALTH 2010; 6:487-90. [DOI: 10.2217/whe.10.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Garnet L Anderson
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N. M3-A410, PO Box 19024, Seattle, WA 98109-1024, USA, Tel.: +1 206 667 2835, Fax: +1 206 667 4142,
| |
Collapse
|
29
|
Amon LM, Law W, Fitzgibbon MP, Gross JA, O'Briant K, Peterson A, Drescher C, Martin DB, McIntosh M. Integrative proteomic analysis of serum and peritoneal fluids helps identify proteins that are up-regulated in serum of women with ovarian cancer. PLoS One 2010; 5:e11137. [PMID: 20559444 PMCID: PMC2886122 DOI: 10.1371/journal.pone.0011137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/26/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We used intensive modern proteomics approaches to identify predictive proteins in ovary cancer. We identify up-regulated proteins in both serum and peritoneal fluid. To evaluate the overall performance of the approach we track the behavior of 20 validated markers across these experiments. METHODOLOGY Mass spectrometry based quantitative proteomics following extensive protein fractionation was used to compare serum of women with serous ovarian cancer to healthy women and women with benign ovarian tumors. Quantitation was achieved by isotopically labeling cysteine amino acids. Label-free mass spectrometry was used to compare peritoneal fluid taken from women with serous ovarian cancer and those with benign tumors. All data were integrated and annotated based on whether the proteins have been previously validated using antibody-based assays. FINDINGS We selected 54 quantified serum proteins and 358 peritoneal fluid proteins whose case-control differences exceeded a predefined threshold. Seventeen proteins were quantified in both materials and 14 are extracellular. Of 19 validated markers that were identified all were found in cancer peritoneal fluid and a subset of 7 were quantified in serum, with one of these proteins, IGFBP1, newly validated here. CONCLUSION Proteome profiling applied to symptomatic ovarian cancer cases identifies a large number of up-regulated serum proteins, many of which are or have been confirmed by immunoassays. The number of currently known validated markers is highest in peritoneal fluid, but they make up a higher percentage of the proteins observed in both serum and peritoneal fluid, suggesting that the 10 additional markers in this group may be high quality candidates.
Collapse
Affiliation(s)
- Lynn M. Amon
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wendy Law
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Matthew P. Fitzgibbon
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jennifer A. Gross
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kathy O'Briant
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Amelia Peterson
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Charles Drescher
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daniel B. Martin
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Martin McIntosh
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Weber DG, Johnen G, Taeger D, Weber A, Gross IM, Pesch B, Kraus T, Brüning T, Gube M. Assessment of Confounding Factors Affecting the Tumor Markers SMRP, CA125, and CYFRA21-1 in Serum. Biomark Insights 2010; 5:1-8. [PMID: 20130785 PMCID: PMC2814766 DOI: 10.4137/bmi.s3927] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of this analysis was to evaluate if serum levels of potential tumor markers for the diagnosis of malignant mesothelioma and lung cancer are affected by confounding factors in a surveillance cohort of workers formerly exposed to asbestos. SMRP, CA125, and CYFRA21-1 concentrations were determined in about 1,700 serum samples from 627 workers formerly exposed to asbestos. The impact of factors that could modify the concentrations of the tumor markers was examined with linear mixed models. SMRP values increased with age 1.02-fold (95% CI 1.01–1.03) and serum creatinine concentration 1.32-fold (95% CI 1.20–1.45). Levels differed by study centers and were higher after 40 years of asbestos exposure. CA125 levels increased with longer storage of the samples. CYFRA21-1 values correlated with age 1.02-fold (95% CI 1.01–1.02), serum creatinine 1.21-fold (95% CI 1.14–1.30) and varied by study centers due to differences in sample handling. Tumor marker concentrations are influenced by subject-related factors, sample handling, and storage. These factors need to be taken into account in screening routine.
Collapse
Affiliation(s)
- Daniel Gilbert Weber
- BGFA-Research Institute of Occupational Medicine, German Social Accident Insurance, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Taylor DD, Atay S, Metzinger DS, Gercel-Taylor C. Characterization of humoral responses of ovarian cancer patients: antibody subclasses and antigenic components. Gynecol Oncol 2009; 116:213-21. [PMID: 19945743 DOI: 10.1016/j.ygyno.2009.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Current antigen-based diagnostic assays for ovarian cancers rely on intravasation of specific aberrantly expressed proteins and their achieving detectable steady-state concentrations, resulting in their inability to truly detect small early lesions. In contrast, tumor antigen immunorecognition is observed following initial transformation events. Our objective was to characterize humoral antitumor responses in terms of IgG subclasses generated and tumor antigens recognized. METHODS For patients with benign and malignant ovarian disease, tumor-reactive IgG subclasses were characterized by Western immunoblotting. Antigen recognition patterns were analyzed by 2-dimensional electrophoresis and proteins exhibiting shared or stage-specific recognition were defined by mass spectrometry (MS) sequencing. RESULTS Sera from ovarian cancer patients exhibited significantly greater immunoreactivities than either controls or women with benign disease. While late-stage patients recognized more proteins at greater intensity, stage-specific differential recognition patterns were observed in the IgG subclasses, with the greatest recognition appearing in IgG2 subclasses. Immunoreactivity in IgG2 and IgG3 from stage I and II patients appears to be most intense with nuclear antigens >40 kDa, while, in stage III patients, additional immunoreactivity was present in the <40 kDa components. Stage III patients also exhibited similar reaction with membrane antigens <40 kDa. Two-dimensional electrophoresis revealed 32 stage-linked antigenic differences with 11 in early-stage and 21 in late-stage ovarian cancer. CONCLUSIONS Owing to the timing and stability of humoral responses, quantitation of IgG subclasses recognizing specific tumor antigens provides superior biomarkers for early cancer identification and allows for differentiation of benign versus malignant ovarian masses and early- and late-stage cancers.
Collapse
MESH Headings
- Antibodies, Neoplasm/classification
- Antibodies, Neoplasm/immunology
- Antigens, Neoplasm/classification
- Antigens, Neoplasm/immunology
- Blotting, Western
- Carcinoma, Papillary/immunology
- Case-Control Studies
- Cystadenocarcinoma, Serous/immunology
- Electrophoresis, Gel, Two-Dimensional
- Epitopes
- Female
- Humans
- Immunity, Humoral
- Immunoglobulin G/classification
- Immunoglobulin G/immunology
- Middle Aged
- Neoplasm Staging
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Douglas D Taylor
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | |
Collapse
|
32
|
Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery. PLoS One 2009; 4:e7916. [PMID: 19936259 PMCID: PMC2775948 DOI: 10.1371/journal.pone.0007916] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/26/2009] [Indexed: 01/09/2023] Open
Abstract
Background The complexity of the human plasma proteome represents a substantial challenge for biomarker discovery. Proteomic analysis of genetically engineered mouse models of cancer and isolated cancer cells and cell lines provide alternative methods for identification of potential cancer markers that would be detectable in human blood using sensitive assays. The goal of this work is to evaluate the utility of an integrative strategy using these two approaches for biomarker discovery. Methodology/Principal Findings We investigated a strategy that combined quantitative plasma proteomics of an ovarian cancer mouse model with analysis of proteins secreted or shed by human ovarian cancer cells. Of 106 plasma proteins identified with increased levels in tumor bearing mice, 58 were also secreted or shed from ovarian cancer cells. The remainder consisted primarily of host-response proteins. Of 25 proteins identified in the study that were assayed, 8 mostly secreted proteins common to mouse plasma and human cancer cells were significantly upregulated in a set of plasmas from ovarian cancer patients. Five of the eight proteins were confirmed to be upregulated in a second independent set of ovarian cancer plasmas, including in early stage disease. Conclusions/Significance Integrated proteomic analysis of cancer mouse models and human cancer cell populations provides an effective approach to identify potential circulating protein biomarkers.
Collapse
|
33
|
Taylor DD, Gercel-Taylor C, Parker LP. Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer. Gynecol Oncol 2009; 115:112-120. [PMID: 19647308 PMCID: PMC2760307 DOI: 10.1016/j.ygyno.2009.06.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Most ovarian cancers are diagnosed at advanced stage (67%) and prospects for significant improvement in survival reside in early diagnosis. Our objective was to validate our array assay for the identification of ovarian cancer based on quantitation of tumor-reactive IgG. METHODS The diagnostic array utilizes specific exosome-derived antigens to detect reactive IgG in patients' sera. Specific protein targets were isolated by immunoaffinity from exosomes derived from ovarian tumor cell lines. Sera were obtained from age-matched female volunteers, women with benign ovarian disease and with ovarian cancer. Immunoreactivity was also compared between exosomal proteins and their recombinant counterparts. RESULTS Sera from ovarian cancer patients exhibited significantly greater immunoreactivities than either normal controls or women with benign disease (both considered negative to all antigens tested). Reactivities with nucleophosmin, cathepsin D, p53, and SSX common antigen for patients with all stages of ovarian cancer were significantly higher than for controls and women with benign ovarian disease. Reactivity with placental type alkaline phosphatase, TAG 72, survivin, NY-ESO-1, GRP78, and Muc16 (CA125) allowed the differentiation between Stage III/IV and early stage ovarian cancer. CONCLUSIONS The quantitation of circulating tumor-reactive IgG can be used to identify the presence of ovarian cancer. The analyses of IgG recognition of specific exosomal antigens allows for the differentiation of women with benign ovarian masses from ovarian cancer, as well as distinguishing early and late stage ovarian cancers. Thus, the quantitative assessment of IgG reactive with specific tumor-derived exosomal proteins can be used as diagnostic markers for ovarian cancer.
Collapse
Affiliation(s)
- Douglas D Taylor
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Cicek Gercel-Taylor
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lynn P Parker
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
34
|
Ostroff R, Foreman T, Keeney TR, Stratford S, Walker JJ, Zichi D. The stability of the circulating human proteome to variations in sample collection and handling procedures measured with an aptamer-based proteomics array. J Proteomics 2009; 73:649-66. [PMID: 19755178 DOI: 10.1016/j.jprot.2009.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
Blood-based protein biomarkers hold great promise to advance medicine with applications that detect and diagnose diseases and aid in their treatment. We are developing such applications with our proteomics technology that combines high-content with low limits of detection. Biomarker discovery relies heavily on archived blood sample collections. Blood is dynamic and changes with different sampling procedures potentially confounding biomarker studies. In order to better understand the effects of sampling procedures on the circulating proteome, we studied three sample collection variables commonly encountered in archived sample sets. These variables included (1) three different sample tube types, PPT plasma, SST serum, and Red Top serum, (2) the time from venipuncture to centrifugation, and (3) the time from centrifugation to freezing. We profiled 498 proteins for each of 240 samples and compared the results by ANOVA. The results found no significant variation in the measurements for most proteins (approximately 99%) when the two sample processing times tested were 2h or less, regardless of sample tube type. Even at the longest timepoints, 20 h, approximately 82% of the proteins, on average for the three collection tube types, showed no significant change. These results are encouraging for proteomic biomarker discovery.
Collapse
Affiliation(s)
- Rachel Ostroff
- SomaLogic, 2945 Wilderness Place, Boulder, CO 80301, USA
| | | | | | | | | | | |
Collapse
|
35
|
Greening DW, Glenister KM, Sparrow RL, Simpson RJ. International blood collection and storage: clinical use of blood products. J Proteomics 2009; 73:386-95. [PMID: 19664733 DOI: 10.1016/j.jprot.2009.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/27/2022]
Abstract
Human blood transfusion is the process of transferring blood or blood-based products from an individual into the circulatory system of another. From the theory of circulation of blood to the early practice of blood transfusion, transfusion medicine has been an important concept for many centuries. The practicality of transfusion, however, only became a possibility during and shortly after the Second World War. Today, blood and its derivatives play a critical role in worldwide health care systems, with blood components having direct clinical indications. Over the past several years worldwide organizations including the World Health Organization (WHO) have made a number of substantial improvements to the regulation of the worlds blood supply. This continuous supply plays a critical role throughout health care systems worldwide, with procedures for blood collection, processing, and storage now complex, standardised processes. As the areas of clinical validation of different disease states from blood-derived sources (i.e., disease biomarkers) move towards validation stages, the importance of controlled- and standardised-protocols is imperative.
Collapse
Affiliation(s)
- David W Greening
- Joint Proteomics Laboratory, Ludwig Institute for Cancer Research & The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Sasaroli D, Coukos G, Scholler N. Beyond CA125: the coming of age of ovarian cancer biomarkers. Are we there yet? Biomark Med 2009; 3:275-288. [PMID: 19684876 PMCID: PMC2726755 DOI: 10.2217/bmm.09.21] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer (OC) is the fourth leading cause of cancer deaths among women in the United States, despite its relatively low incidence of 50 per 100,000. Even though advances in therapy have been made, the OC fatality-to-case ratio remains exceedingly high, due to the lack of accurate tools to diagnose early-stage disease when cure is still possible. The most studied marker for OC, CA125, is only expressed by 50-60% of patients with early stage disease. Large efforts have been deployed to identify novel serum markers, yet no single marker has emerged as a serious competitor for CA125. Various groups are investing in combination approaches to increase the diagnostic value of existing markers, but many markers may still lie in under-explored areas of ovarian cancer biology, such as tumor vasculature environment and post-translational modifications (glycomics).
Collapse
Affiliation(s)
- Dimitra Sasaroli
- University of Pennsylvania School of Medicine, 421 Curie Boulevard, BRBII/III, PA, USA
| | | | | |
Collapse
|
37
|
Richens JL, Urbanowicz RA, Lunt EAM, Metcalf R, Corne J, Fairclough L, O'Shea P. Systems biology coupled with label-free high-throughput detection as a novel approach for diagnosis of chronic obstructive pulmonary disease. Respir Res 2009; 10:29. [PMID: 19386108 PMCID: PMC2678087 DOI: 10.1186/1465-9921-10-29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/22/2009] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a treatable and preventable disease state, characterised by progressive airflow limitation that is not fully reversible. Although COPD is primarily a disease of the lungs there is now an appreciation that many of the manifestations of disease are outside the lung, leading to the notion that COPD is a systemic disease. Currently, diagnosis of COPD relies on largely descriptive measures to enable classification, such as symptoms and lung function. Here the limitations of existing diagnostic strategies of COPD are discussed and systems biology approaches to diagnosis that build upon current molecular knowledge of the disease are described. These approaches rely on new 'label-free' sensing technologies, such as high-throughput surface plasmon resonance (SPR), that we also describe.
Collapse
Affiliation(s)
- Joanna L Richens
- Cell Biophysics Group, School of Biology, The University of Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
McIntosh M, Anderson G, Drescher C, Hanash S, Urban N, Brown P, Gambhir SS, Coukos G, Laird PW, Nelson B, Palmer C. Ovarian cancer early detection claims are biased. Clin Cancer Res 2008; 14:7574; author reply 7577-9. [PMID: 18948385 DOI: 10.1158/1078-0432.ccr-08-0623] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Palmer C, Duan X, Hawley S, Scholler N, Thorpe JD, Sahota RA, Wong MQ, Wray A, Bergan LA, Drescher CW, McIntosh MW, Brown PO, Nelson BH, Urban N. Systematic evaluation of candidate blood markers for detecting ovarian cancer. PLoS One 2008; 3:e2633. [PMID: 18612378 PMCID: PMC2440813 DOI: 10.1371/journal.pone.0002633] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/04/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer is a significant cause of mortality both in the United States and worldwide, due largely to the high proportion of cases that present at a late stage, when survival is extremely poor. Early detection of epithelial ovarian cancer, and of the serous subtype in particular, is a promising strategy for saving lives. The low prevalence of ovarian cancer makes the development of an adequately sensitive and specific test based on blood markers very challenging. We evaluated the performance of a set of candidate blood markers and combinations of these markers in detecting serous ovarian cancer. METHODS AND FINDINGS We selected 14 candidate blood markers of serous ovarian cancer for which assays were available to measure their levels in serum or plasma, based on our analysis of global gene expression data and on literature searches. We evaluated the performance of these candidate markers individually and in combination by measuring them in overlapping sets of serum (or plasma) samples from women with clinically detectable ovarian cancer and women without ovarian cancer. Based on sensitivity at high specificity, we determined that 4 of the 14 candidate markers--MUC16, WFDC2, MSLN and MMP7--warrant further evaluation in precious serum specimens collected months to years prior to clinical diagnosis to assess their utility in early detection. We also reported differences in the performance of these candidate blood markers across histological types of epithelial ovarian cancer. CONCLUSIONS By systematically analyzing the performance of candidate blood markers of ovarian cancer in distinguishing women with clinically apparent ovarian cancer from women without ovarian cancer, we identified a set of serum markers with adequate performance to warrant testing for their ability to identify ovarian cancer months to years prior to clinical diagnosis. We argued for the importance of sensitivity at high specificity and of magnitude of difference in marker levels between cases and controls as performance metrics and demonstrated the importance of stratifying analyses by histological type of ovarian cancer. Also, we discussed the limitations of studies (like this one) that use samples obtained from symptomatic women to assess potential utility in detection of disease months to years prior to clinical detection.
Collapse
Affiliation(s)
- Chana Palmer
- Canary Foundation, Scientific Programs, San Jose, California, United States of America
| | - Xiaobo Duan
- British Columbia Cancer Agency, Trev & Joyce Deeley Research Center, Victoria, Canada
| | - Sarah Hawley
- Canary Foundation, Scientific Programs, San Jose, California, United States of America
| | - Nathalie Scholler
- Department of Gynecology and Obstetrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jason D. Thorpe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington, United States of America
| | - Rob A. Sahota
- British Columbia Cancer Agency, Trev & Joyce Deeley Research Center, Victoria, Canada
| | - May Q. Wong
- British Columbia Cancer Agency, Trev & Joyce Deeley Research Center, Victoria, Canada
| | - Andrew Wray
- British Columbia Cancer Agency, Trev & Joyce Deeley Research Center, Victoria, Canada
| | - Lindsay A. Bergan
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington, United States of America
| | - Charles W. Drescher
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington, United States of America
| | - Martin W. McIntosh
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Brad H. Nelson
- British Columbia Cancer Agency, Trev & Joyce Deeley Research Center, Victoria, Canada
| | - Nicole Urban
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|