1
|
Farookhi H, Xia X. Differential Selection for Translation Efficiency Shapes Translation Machineries in Bacterial Species. Microorganisms 2024; 12:768. [PMID: 38674712 PMCID: PMC11052298 DOI: 10.3390/microorganisms12040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Different bacterial species have dramatically different generation times, from 20-30 min in Escherichia coli to about two weeks in Mycobacterium leprae. The translation machinery in a cell needs to synthesize all proteins for a new cell in each generation. The three subprocesses of translation, i.e., initiation, elongation, and termination, are expected to be under stronger selection pressure to optimize in short-generation bacteria (SGB) such as Vibrio natriegens than in the long-generation Mycobacterium leprae. The initiation efficiency depends on the start codon decoded by the initiation tRNA, the optimal Shine-Dalgarno (SD) decoded by the anti-SD (aSD) sequence on small subunit rRNA, and the secondary structure that may embed the initiation signals and prevent them from being decoded. The elongation efficiency depends on the tRNA pool and codon usage. The termination efficiency in bacteria depends mainly on the nature of the stop codon and the nucleotide immediately downstream of the stop codon. By contrasting SGB with long-generation bacteria (LGB), we predict (1) SGB to have more ribosome RNA operons to produce ribosomes, and more tRNA genes for carrying amino acids to ribosomes, (2) SGB to have a higher percentage of genes using AUG as the start codon and UAA as the stop codon than LGB, (3) SGB to exhibit better codon and anticodon adaptation than LGB, and (4) SGB to have a weaker secondary structure near the translation initiation signals than LGB. These differences between SGB and LGB should be more pronounced in highly expressed genes than the rest of the genes. We present empirical evidence in support of these predictions.
Collapse
Affiliation(s)
- Heba Farookhi
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Deyhimfar R, Izady M, Shoghi M, Kazazi MH, Ghazvini ZF, Nazari H, Fekrirad Z, Arefian E. The clinical impact of mRNA therapeutics in the treatment of cancers, infections, genetic disorders, and autoimmune diseases. Heliyon 2024; 10:e26971. [PMID: 38486748 PMCID: PMC10937594 DOI: 10.1016/j.heliyon.2024.e26971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
mRNA-based therapeutics have revolutionized medicine and the pharmaceutical industry. The recent progress in the optimization and formulation of mRNAs has led to the development of a new therapeutic platform with a broad range of applications. With a growing body of evidence supporting the use of mRNA-based drugs for precision medicine and personalized treatments, including cancer immunotherapy, genetic disorders, and autoimmune diseases, this emerging technology offers a rapidly expanding category of therapeutic options. Furthermore, the development and deployment of mRNA vaccines have facilitated a prompt and flexible response to medical emergencies, exemplified by the COVID-19 outbreak. The establishment of stable and safe mRNA molecules carried by efficient delivery systems is now available through recent advances in molecular biology and nanotechnology. This review aims to elucidate the advancements in the clinical applications of mRNAs for addressing significant health-related challenges such as cancer, autoimmune diseases, genetic disorders, and infections and provide insights into the efficacy and safety of mRNA therapeutics in recent clinical trials.
Collapse
Affiliation(s)
- Roham Deyhimfar
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Urology Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izady
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad Hossein Kazazi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, ON, Canada
| | - Zahra Fakhraei Ghazvini
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jungfleisch J, Böttcher R, Talló-Parra M, Pérez-Vilaró G, Merits A, Novoa EM, Díez J. CHIKV infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome. Nat Commun 2022; 13:4725. [PMID: 35953468 PMCID: PMC9366759 DOI: 10.1038/s41467-022-31835-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Ample evidence indicates that codon usage bias regulates gene expression. How viruses, such as the emerging mosquito-borne Chikungunya virus (CHIKV), express their genomes at high levels despite an enrichment in rare codons remains a puzzling question. Using ribosome footprinting, we analyze translational changes that occur upon CHIKV infection. We show that CHIKV infection induces codon-specific reprogramming of the host translation machinery to favor the translation of viral RNA genomes over host mRNAs with an otherwise optimal codon usage. This reprogramming was mostly apparent at the endoplasmic reticulum, where CHIKV RNAs show high ribosome occupancy. Mechanistically, it involves CHIKV-induced overexpression of KIAA1456, an enzyme that modifies the wobble U34 position in the anticodon of tRNAs, which is required for proper decoding of codons that are highly enriched in CHIKV RNAs. Our findings demonstrate an unprecedented interplay of viruses with the host tRNA epitranscriptome to adapt the host translation machinery to viral production. Viruses completely depend on the host translational machinery, but their genomes are often enriched in rare codons and therefore should be translated with poor efficiency. Here, Jungfleisch et al. apply Ribo-Seq and RNASeq to provide a global view on the translational changes occurring during Chikungunya virus (CHIKV) infection. CHIKV infection induces a codon-specific reprogramming of the host translation machinery to favor the translation of viral RNA genomes over host mRNAs via tRNA modification.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - René Böttcher
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Marc Talló-Parra
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Gemma Pérez-Vilaró
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Juana Díez
- Molecular Virology group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
4
|
Yang L, Tang L, Zhang M, Liu C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front Immunol 2022; 13:896958. [PMID: 35928814 PMCID: PMC9345514 DOI: 10.3389/fimmu.2022.896958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccines can prevent many millions of illnesses against infectious diseases and save numerous lives every year. However, traditional vaccines such as inactivated viral and live attenuated vaccines cannot adapt to emerging pandemics due to their time-consuming development. With the global outbreak of the COVID-19 epidemic, the virus continues to evolve and mutate, producing mutants with enhanced transmissibility and virulence; the rapid development of vaccines against such emerging global pandemics becomes more and more critical. In recent years, mRNA vaccines have been of significant interest in combating emerging infectious diseases due to their rapid development and large-scale production advantages. However, their development still suffers from many hurdles such as their safety, cellular delivery, uptake, and response to their manufacturing, logistics, and storage. More efforts are still required to optimize the molecular designs of mRNA molecules with increased protein expression and enhanced structural stability. In addition, a variety of delivery systems are also needed to achieve effective delivery of vaccines. In this review, we highlight the advances in mRNA vaccines against various infectious diseases and discuss the molecular design principles and delivery systems of associated mRNA vaccines. The current state of the clinical application of mRNA vaccine pipelines against various infectious diseases and the challenge, safety, and protective effect of associated vaccines are also discussed.
Collapse
Affiliation(s)
- Lu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| |
Collapse
|
5
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
6
|
Hare J, Fiore-Gartland A, McGowan E, Hunter E, Gilmour J, Nielsen M. Selective HLA restriction enables the evaluation and interpretation of immunogenic breadth at comparable levels to that observed with broader HLA distribution. Proteomics 2021; 21:e2100121. [PMID: 34275199 DOI: 10.1002/pmic.202100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022]
Abstract
Existing approaches to identifying predictive T-cell epitopes have traditionally utilized either 2-digit HLA super-families or more commonly utilizing autologous HLA alleles to facilitate the predictions. However, the use of these criteria may not consider the HLA representation within any target population. Here we propose a modification to concept of utilizing autologous HLA whereby subsets of individuals are selected for their specific HLA allele profiles and the representation they provide within a given population. Using this selective approach to HLA selection and the linkages to specific individuals may enable the design of more targeted experimentalstrategies.
Collapse
Affiliation(s)
- Jonathan Hare
- International AIDS Vaccine Initiative, New York, New York, USA.,IAVI Human Immunology Laboratory, Imperial College, London, UK
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Edward McGowan
- IAVI Human Immunology Laboratory, Imperial College, London, UK
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Jill Gilmour
- Department of Infectious Disease, Imperial College, London, UK
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Hussain S, Rasool ST, Pottathil S. The Evolution of Severe Acute Respiratory Syndrome Coronavirus-2 during Pandemic and Adaptation to the Host. J Mol Evol 2021; 89:341-356. [PMID: 33993372 PMCID: PMC8123100 DOI: 10.1007/s00239-021-10008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/25/2021] [Indexed: 12/02/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 is a zoonotic virus with a possible origin in bats and potential transmission to humans through an intermediate host. When zoonotic viruses jump to a new host, they undergo both mutational and natural selective pressures that result in non-synonymous and synonymous adaptive changes, necessary for efficient replication and rapid spread of diseases in new host species. The nucleotide composition and codon usage pattern of SARS-CoV-2 indicate the presence of a highly conserved, gene-specific codon usage bias. The codon usage pattern of SARS-CoV-2 is mostly antagonistic to human and bat codon usage. SARS-CoV-2 codon usage bias is mainly shaped by the natural selection, while mutational pressure plays a minor role. The time-series analysis of SARS-CoV-2 genome indicates that the virus is slowly evolving. Virus isolates from later stages of the outbreak have more biased codon usage and nucleotide composition than virus isolates from early stages of the outbreak.
Collapse
Affiliation(s)
- Snawar Hussain
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia.
| | - Sahibzada Tasleem Rasool
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Shinu Pottathil
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, P.O Box. 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
McGowan E, Rosenthal R, Fiore-Gartland A, Macharia G, Balinda S, Kapaata A, Umviligihozo G, Muok E, Dalel J, Streatfield CL, Coutinho H, Dilernia D, Monaco DC, Morrison D, Yue L, Hunter E, Nielsen M, Gilmour J, Hare J. Utilizing Computational Machine Learning Tools to Understand Immunogenic Breadth in the Context of a CD8 T-Cell Mediated HIV Response. Front Immunol 2021; 12:609884. [PMID: 33679745 PMCID: PMC7930081 DOI: 10.3389/fimmu.2021.609884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Predictive models are becoming more and more commonplace as tools for candidate antigen discovery to meet the challenges of enabling epitope mapping of cohorts with diverse HLA properties. Here we build on the concept of using two key parameters, diversity metric of the HLA profile of individuals within a population and consideration of sequence diversity in the context of an individual's CD8 T-cell immune repertoire to assess the HIV proteome for defined regions of immunogenicity. Using this approach, analysis of HLA adaptation and functional immunogenicity data enabled the identification of regions within the proteome that offer significant conservation, HLA recognition within a population, low prevalence of HLA adaptation and demonstrated immunogenicity. We believe this unique and novel approach to vaccine design as a supplement to vitro functional assays, offers a bespoke pipeline for expedited and rational CD8 T-cell vaccine design for HIV and potentially other pathogens with the potential for both global and local coverage.
Collapse
Affiliation(s)
- Ed McGowan
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Gladys Macharia
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Sheila Balinda
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Health and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Anne Kapaata
- Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) and London School of Health and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Gisele Umviligihozo
- Project San Francisco (PSF) Center for Family Health Research (CFHR), Kigali, Rwanda
| | - Erick Muok
- Project San Francisco (PSF) Center for Family Health Research (CFHR), Kigali, Rwanda
| | - Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | | - Helen Coutinho
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Dario Dilernia
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | | | | | - Ling Yue
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | | |
Collapse
|
9
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
10
|
Hoang HD, Neault S, Pelin A, Alain T. Emerging translation strategies during virus-host interaction. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1619. [PMID: 32757266 PMCID: PMC7435527 DOI: 10.1002/wrna.1619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
Translation control is crucial during virus-host interaction. On one hand, viruses completely rely on the protein synthesis machinery of host cells to propagate and have evolved various mechanisms to redirect the host's ribosomes toward their viral mRNAs. On the other hand, the host rewires its translation program in an attempt to contain and suppress the virus early on during infection; the antiviral program includes specific control on protein synthesis to translate several antiviral mRNAs involved in quenching the infection. As the infection progresses, host translation is in turn inhibited in order to limit viral propagation. We have learnt of very diverse strategies that both parties utilize to gain or retain control over the protein synthesis machinery. Yet novel strategies continue to be discovered, attesting for the importance of mRNA translation in virus-host interaction. This review focuses on recently described translation strategies employed by both hosts and viruses. These discoveries provide additional pieces in the understanding of the complex virus-host translation landscape. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Centre, Ottawa, Ontario, K1H8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Serge Neault
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Apoptosis Research Centre, Ottawa, Ontario, K1H8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Hussain S, Shinu P, Islam MM, Chohan MS, Rasool ST. Analysis of Codon Usage and Nucleotide Bias in Middle East Respiratory Syndrome Coronavirus Genes. Evol Bioinform Online 2020; 16:1176934320918861. [PMID: 32425493 PMCID: PMC7218340 DOI: 10.1177/1176934320918861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
The Middle East Respiratory Syndrome (MERS) is an emerging disease caused by a recently identified human coronavirus (CoV). Over 2494 laboratory-confirmed cases and 858 MERS-related deaths have been reported from 27 countries. MERS-CoV has been associated with a high case fatality rate, especially in patients with pre-existing conditions. Despite the fatal nature of MERS-CoV infection, a comprehensive study to explore its evolution and adaptation in different hosts is lacking. We performed codon usage analyses on 4751 MERS-CoV genes and determined underlying forces that affect the codon usage bias in the MERS-CoV genome. The current analyses revealed a low but highly conserved, gene-specific codon usage bias in the MERS-CoV genome. The codon usage bias is mainly shaped by natural selection, while mutational pressure emerged as a minor factor affecting codon usage in some genes. Other contributory factors included CpG dinucleotide bias, physical and chemical properties of encoded proteins and gene length. Results reported in this study provide considerable insights into the molecular evaluation of MERS-CoV and could serve as a theoretical basis for optimizing MERS-CoV gene expression to study the functional relevance of various MERS-CoV proteins. Alternatively, an attenuated vaccine strain containing hundreds of silent mutations could be engineered. Codon de-optimization will not affect the amino acid sequence or antigenicity of a vaccine strain, but the sheer number of mutations would make viral reversion to a virulent phenotype extremely unlikely.
Collapse
Affiliation(s)
- Snawar Hussain
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Mohammed Monirul Islam
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Muhammad Shahzad Chohan
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Sahibzada Tasleem Rasool
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2019; 76:301-328. [PMID: 30334070 PMCID: PMC6339677 DOI: 10.1007/s00018-018-2935-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
While active immunization elicits a lasting immune response by the body, passive immunotherapy transiently equips the body with exogenously generated immunological effectors in the form of either target-specific antibodies or lymphocytes functionalized with target-specific receptors. In either case, administration or expression of recombinant proteins plays a fundamental role. mRNA prepared by in vitro transcription (IVT) is increasingly appreciated as a drug substance for delivery of recombinant proteins. With its biological role as transient carrier of genetic information translated into protein in the cytoplasm, therapeutic application of mRNA combines several advantages. For example, compared to transfected DNA, mRNA harbors inherent safety features. It is not associated with the risk of inducing genomic changes and potential adverse effects are only temporary due to its transient nature. Compared to the administration of recombinant proteins produced in bioreactors, mRNA allows supplying proteins that are difficult to manufacture and offers extended pharmacokinetics for short-lived proteins. Based on great progress in understanding and manipulating mRNA properties, efficacy data in various models have now demonstrated that IVT mRNA constitutes a potent and flexible platform technology. Starting with an introduction into passive immunotherapy, this review summarizes the current status of IVT mRNA technology and its application to such immunological interventions.
Collapse
Affiliation(s)
- Thomas Schlake
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany.
| | - Andreas Thess
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Moritz Thran
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Ingo Jordan
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| |
Collapse
|
13
|
Hussain S, Rasool ST, Asif AH. A detailed analysis of synonymous codon usage in human bocavirus. Arch Virol 2018; 164:335-347. [PMID: 30327886 DOI: 10.1007/s00705-018-4063-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/16/2018] [Indexed: 01/16/2023]
Abstract
Human bocavirus (HBoV) is a recently discovered parvovirus associated with respiratory and gastroenteric infections in children. To date, four distinct subtypes have been identified worldwide. HBoV1 is the most frequently detected bocavirus in clinical samples derived from the respiratory tract. HBoV has a single-stranded DNA genome, which encodes two nonstructural proteins, NS1 and NP1, and two structural proteins, VP1 and VP2. Despite a large number of available HBoV sequences, the molecular evolution of this virus remains enigmatic. Here, we applied bioinformatic methods to measure the codon usage bias in 156 HBoV genomes and analyzed the factors responsible for preferential use of various synonymous codons. The effective number of codons (ENC) indicates a highly conserved, gene-specific codon usage bias in the HBoV genome. The structural genes exhibit a higher degree of codon usage bias than the non-structural genes. Natural selection emerged as dominant factor influencing the codon usage bias in the HBoV genome. Other factors that influence the codon usage include mutational pressure, gene length, protein properties, and the relative abundance of dinucleotides. The results presented in this study provide important insight into the molecular evolution of HBoV and may serve as a primer for HBoV gene expression studies and development of safe and effective vaccines to prevent infection.
Collapse
Affiliation(s)
- Snawar Hussain
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, P.O Box 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia.
| | - Sahibzada Tasleem Rasool
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, P.O Box 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Afzal Haq Asif
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, P.O Box 400, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Tian L, Shen X, Murphy RW, Shen Y. The adaptation of codon usage of +ssRNA viruses to their hosts. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:175-179. [PMID: 29864509 PMCID: PMC7106036 DOI: 10.1016/j.meegid.2018.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/16/2018] [Accepted: 05/31/2018] [Indexed: 02/05/2023]
Abstract
Viruses depend on their host's cellular structure to survive. Most of them do not have tRNAs, their translation relies on hosts' tRNA pools. Over the course of evolution, viruses needed to optimally exploit cellular processes of their host. Thus, codon usage of a virus should coevolve with its host to efficiently and rapidly replicate. Some viruses can invade a broad spectrum of hosts (BSTVs), while others can invade a narrow spectrum only (NSTVs). Consequently, we test the hypothesis that similarity of codon usage preference and the degree of matching between BSTVs and their hosts will be lower than that of NSTVs, which only need to coevolve with few hosts. We compare the patterns of codon usage in 255 virus genomes to test this hypothesis. Our results show that NSTVs have a higher degree of matching to their hosts' tRNA pools than BSTVs. Further, analysis of the effective number of codons (ENC) infers that codon usage bias of NSTVs is relatively stronger than that of BSTVs. Thus, codon usage of NSTVs tends to better match their host than that of BSTVs. This supports the hypothesis that viruses adapt to the expression system of their host(s).
Collapse
Affiliation(s)
- Lin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Shantou University Medical College, Shantou 515041, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Robert W Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto M5S 2C6, Canada
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Shantou University Medical College, Shantou 515041, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
15
|
Abstract
Codon usage depends on mutation bias, tRNA-mediated selection, and the need for high efficiency and accuracy in translation. One codon in a synonymous codon family is often strongly over-used, especially in highly expressed genes, which often leads to a high dN/dS ratio because dS is very small. Many different codon usage indices have been proposed to measure codon usage and codon adaptation. Sense codon could be misread by release factors and stop codons misread by tRNAs, which also contribute to codon usage in rare cases. This chapter outlines the conceptual framework on codon evolution, illustrates codon-specific and gene-specific codon usage indices, and presents their applications. A new index for codon adaptation that accounts for background mutation bias (Index of Translation Elongation) is presented and contrasted with codon adaptation index (CAI) which does not consider background mutation bias. They are used to re-analyze data from a recent paper claiming that translation elongation efficiency matters little in protein production. The reanalysis disproves the claim.
Collapse
|
16
|
Antzin-Anduetza I, Mahiet C, Granger LA, Odendall C, Swanson CM. Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral replication. Retrovirology 2017; 14:49. [PMID: 29121951 PMCID: PMC5679385 DOI: 10.1186/s12977-017-0374-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) structural protein Gag is necessary and sufficient to form viral particles. In addition to encoding the amino acid sequence for Gag, the underlying RNA sequence could encode cis-acting elements or nucleotide biases that are necessary for viral replication. Furthermore, RNA sequences that inhibit viral replication could be suppressed in gag. However, the functional relevance of RNA elements and nucleotide biases that promote or repress HIV-1 replication remain poorly understood. RESULTS To characterize if the RNA sequence in gag controls HIV-1 replication, the matrix (MA) region was codon modified, allowing the RNA sequence to be altered without affecting the protein sequence. Codon modification of nucleotides (nt) 22-261 or 22-378 in gag inhibited viral replication by decreasing genomic RNA (gRNA) abundance, gRNA stability, Gag expression, virion production and infectivity. Comparing the effect of these point mutations to deletions of the same region revealed that the mutations inhibited infectious virus production while the deletions did not. This demonstrated that codon modification introduced inhibitory sequences. There is a much lower than expected frequency of CpG dinucleotides in HIV-1 and codon modification introduced a substantial increase in CpG abundance. To determine if they are necessary for inhibition of HIV-1 replication, codons introducing CpG dinucleotides were mutated back to the wild type codon, which restored efficient Gag expression and infectious virion production. To determine if they are sufficient to inhibit viral replication, CpG dinucleotides were inserted into gag in the absence of other changes. The increased CpG dinucleotide content decreased HIV-1 infectivity and viral replication. CONCLUSIONS The HIV-1 RNA sequence contains low abundance of CpG dinucleotides. Increasing the abundance of CpG dinucleotides inhibits multiple steps of the viral life cycle, providing a functional explanation for why CpG dinucleotides are suppressed in HIV-1.
Collapse
Affiliation(s)
- Irati Antzin-Anduetza
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Mahiet
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Luke A Granger
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Charlotte Odendall
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, 3rd Floor Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
17
|
Vidyavijayan K, Hassan S, Precilla LK, Ashokkumar M, Chandrasekeran P, Swaminathan S, Hanna LE. Biased Nucleotide Composition and Differential Codon Usage Pattern in HIV-1 and HIV-2. AIDS Res Hum Retroviruses 2017; 33:298-307. [PMID: 27599904 DOI: 10.1089/aid.2015.0320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 and HIV-2 are closely related retroviruses with differences in pathogenicity and geographic distribution. HIV-2 infection is associated with slower disease progression and transmission, longer latency period, low or undetectable plasmatic viral loads, and reduced likelihood of progression to AIDS, compared to HIV-1. In this investigation, we analyzed HIV-2 genes and genomes and compared them with that of HIV-1 belonging to various subtypes. Comparative analysis of the effective number of codons (ENC) for each of the nine genes of the two viruses revealed that the tat gene of HIV-2 had a higher ENC value compared to HIV-1 tat, reflecting lower levels of expression of HIV-2 tat. Lower levels of tat protein particularly during the early stages of infection could result in a lower viral load, lower viral set point, and delayed progression of disease in HIV-2-infected individuals compared to HIV-1-infected subjects. Furthermore, the GC3 composition of the regulatory genes of HIV-2 was ≥50%, suggesting a firm effort by these viruses to adapt themselves to evolutionary survival. We hypothesize that differential codon usage could be one of the possible factors that could contribute to the diminished pathogenicity of HIV-2 in the host as compared to HIV-1.
Collapse
Affiliation(s)
- K.K. Vidyavijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Sameer Hassan
- Division of Biomedical Informatics, Department of Clinic Research, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Lucia K. Precilla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Manickam Ashokkumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | | | - Soumya Swaminathan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
18
|
Codon Optimization Leads to Functional Impairment of RD114-TR Envelope Glycoprotein. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:102-114. [PMID: 28344996 PMCID: PMC5363313 DOI: 10.1016/j.omtm.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 01/13/2023]
Abstract
Lentiviral vectors (LVs) are a highly valuable tool for gene transfer currently exploited in basic, applied, and clinical studies. Their optimization is therefore very important for the field of vectorology and gene therapy. A key molecule for LV function is the envelope because it guides cell entry. The most commonly used in transiently produced LVs is the vesicular stomatitis virus glycoprotein (VSV-G) envelope, whose continuous expression is, however, toxic for stable LV producer cells. In contrast, the feline endogenous retroviral RD114-TR envelope is suitable for stable LV manufacturing, being well tolerated by producer cells under constitutive expression. We have previously reported successful, transient and stable production of LVs pseudotyped with RD114-TR for good transduction of T lymphocytes and CD34+ cells. To further improve RD114-TR-pseudotyped LV cell entry by increasing envelope expression, we codon-optimized the RD114-TR open reading frame (ORF). Here we show that, despite the RD114-TRco precursor being produced at a higher level than the wild-type counterpart, it is unexpectedly not duly glycosylated, exported to the cytosol, and processed. Correct cleavage of the precursor in the functional surface and transmembrane subunits is prevented in vivo, and, consequently, the unprocessed precursor is incorporated into LVs, making them inactive.
Collapse
|
19
|
Wei Y, Wang J, Xia X. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species. Mol Biol Evol 2016; 33:2357-67. [PMID: 27297468 PMCID: PMC4989110 DOI: 10.1093/molbev/msw107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three stop codons in bacteria represent different translation termination signals, and their usage is expected to depend on their differences in translation termination efficiency, mutation bias, and relative abundance of release factors (RF1 decoding UAA and UAG, and RF2 decoding UAA and UGA). In 14 bacterial species (covering Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria and Spirochetes) with cellular RF1 and RF2 quantified, UAA is consistently over-represented in highly expressed genes (HEGs) relative to lowly expressed genes (LEGs), whereas UGA usage is the opposite even in species where RF2 is far more abundant than RF1. UGA usage relative to UAG increases significantly with PRF2 [=RF2/(RF1 + RF2)] as expected from adaptation between stop codons and their decoders. PRF2 is > 0.5 over a wide range of AT content (measured by PAT3 as the proportion of AT at third codon sites), but decreases rapidly toward zero at the high range of PAT3. This explains why bacterial lineages with high PAT3 often have UGA reassigned because of low RF2. There is no indication that UAG is a minor stop codon in bacteria as claimed in a recent publication. The claim is invalid because of the failure to apply the two key criteria in identifying a minor codon: (1) it is least preferred by HEGs (or most preferred by LEGs) and (2) it corresponds to the least abundant decoder. Our results suggest a more plausible explanation for why UAA usage increases, and UGA usage decreases, with PAT3, but UAG usage remains low over the entire PAT3 range.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Juan Wang
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON, Canada Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| |
Collapse
|
20
|
Villanueva E, Martí-Solano M, Fillat C. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness. Sci Rep 2016; 6:27546. [PMID: 27278133 PMCID: PMC4899721 DOI: 10.1038/srep27546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/20/2016] [Indexed: 11/09/2022] Open
Abstract
Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.
Collapse
Affiliation(s)
- Eneko Villanueva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Martí-Solano
- Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Pompeu Fabra University, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
21
|
Vogt C, Bohne J. The KSHV RNA regulator ORF57: target specificity and its role in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:173-85. [PMID: 26769399 DOI: 10.1002/wrna.1323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which enhances the expression of intron-less KSHV genes on multiple post-transcriptional levels mainly affecting RNA stability and export to the cytoplasm. Yet, it remains elusive how ORF57 recognizes viral RNAs and discriminates them from cellular messenger RNAs (mRNAs). Although one common binding motif on three separate KSHV RNAs has been described, most other lytic genes lack this sequence element. In this article we will review the sequence requirements for ORF57 to enhance RNA expression and discuss a model how ORF57 achieves specificity for viral RNAs. Finally, the role of ORF57 is integrated into the viral life cycle as a complex interplay with other viral and host factors and with implications for cellular gene expression.
Collapse
Affiliation(s)
- Carolin Vogt
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Institute for Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Loomis KH, Kirschman JL, Bhosle S, Bellamkonda RV, Santangelo PJ. Strategies for modulating innate immune activation and protein production of in vitro transcribed mRNAs. J Mater Chem B 2015; 4:1619-1632. [PMID: 32263015 DOI: 10.1039/c5tb01753j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic mRNA has recently shown great potential as a tool for genetic introduction of proteins. Its utility as a gene carrier has been demonstrated in several studies for both the introduction of therapeutic proteins and subunit vaccines. At one point, synthetic mRNA was believed to be too immunogenic and labile for pharmaceutical purposes. However, the development of several strategies have enabled mRNA technology to overcome these challenges, including incorporation of modified nucleotides, codon optimization of the coding region, incorporation of untranslated regions into the mRNA, and the use of delivery vehicles. While these approaches have been shown to enhance performance of some mRNA constructs, gene-to-gene variation and low efficiency of mRNA protein production are still significant hurdles. Further mechanistic understanding of how these strategies affect protein production and innate immune activation is needed for the widespread adoption for both therapeutic and vaccine applications. This review highlights key studies involved in the development of strategies employed to increase protein expression and control the immunogenicity of synthetic mRNA. Areas in the literature where improved understanding is needed will also be discussed.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA.
| | | | | | | | | |
Collapse
|
23
|
Prabhakaran R, Chithambaram S, Xia X. Escherichia coli and Staphylococcus phages: effect of translation initiation efficiency on differential codon adaptation mediated by virulent and temperate lifestyles. J Gen Virol 2015; 96:1169-1179. [PMID: 25614589 PMCID: PMC4631060 DOI: 10.1099/vir.0.000050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/11/2015] [Indexed: 12/19/2022] Open
Abstract
Rapid biosynthesis is key to the success of bacteria and viruses. Highly expressed genes in bacteria exhibit a strong codon bias corresponding to the differential availability of tRNAs. However, a large clade of lambdoid coliphages exhibits relatively poor codon adaptation to the host translation machinery, in contrast to other coliphages that exhibit strong codon adaptation to the host. Three possible explanations were previously proposed but dismissed: (1) the phage-borne tRNA genes that reduce the dependence of phage translation on host tRNAs, (2) lack of time needed for evolving codon adaptation due to recent host switching, and (3) strong strand asymmetry with biased mutation disrupting codon adaptation. Here, we examined the possibility that phages with relatively poor codon adaptation have poor translation initiation which would weaken the selection on codon adaptation. We measured translation initiation by: (1) the strength and position of the Shine-Dalgarno (SD) sequence, and (2) the stability of the secondary structure of sequences flanking the SD and start codon known to affect accessibility of the SD sequence and start codon. Phage genes with strong codon adaptation had significantly stronger SD sequences than those with poor codon adaptation. The former also had significantly weaker secondary structure in sequences flanking the SD sequence and start codon than the latter. Thus, lambdoid phages do not exhibit strong codon adaptation because they have relatively inefficient translation initiation and would benefit little from increased elongation efficiency. We also provided evidence suggesting that phage lifestyle (virulent versus temperate) affected selection intensity on the efficiency of translation initiation and elongation.
Collapse
Affiliation(s)
- Ramanandan Prabhakaran
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, PO Box 450, Station A, Ottawa, Ontario K1N 6N5, Canada
| | - Shivapriya Chithambaram
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, PO Box 450, Station A, Ottawa, Ontario K1N 6N5, Canada
| | - Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, PO Box 450, Station A, Ottawa, Ontario K1N 6N5, Canada
- Correspondence Xuhua Xia
| |
Collapse
|
24
|
Abstract
Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that “codon bias did not correlate with gene expression” and that “translation initiation, not elongation, is rate-limiting for gene expression” contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery.
Collapse
|
25
|
Abstract
mRNA is the central molecule of all forms of life. It is generally accepted that current life on Earth descended from an RNA world. mRNA, after its first therapeutic description in 1992, has recently come into increased focus as a method to deliver genetic information. The recent solution to the two main difficulties in using mRNA as a therapeutic, immune stimulation and potency, has provided the basis for a wide range of applications. While mRNA-based cancer immunotherapies have been in clinical trials for a few years, novel approaches; including, in vivo delivery of mRNA to replace or supplement proteins, mRNA-based generation of pluripotent stem cells, or genome engineering using mRNA-encoded meganucleases are beginning to be realized. This review presents the current state of mRNA drug technologies and potential applications, as well as discussing the challenges and prospects in mRNA development and drug discovery.
Collapse
Affiliation(s)
- Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Godinho RMDC, Matassoli FL, Lucas CGDO, Rigato PO, Gonçalves JLS, Sato MN, Maciel M, Peçanha LMT, August JT, Marques ETDA, de Arruda LB. Regulation of HIV-Gag expression and targeting to the endolysosomal/secretory pathway by the luminal domain of lysosomal-associated membrane protein (LAMP-1) enhance Gag-specific immune response. PLoS One 2014; 9:e99887. [PMID: 24932692 PMCID: PMC4059647 DOI: 10.1371/journal.pone.0099887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/19/2014] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.
Collapse
Affiliation(s)
- Rodrigo Maciel da Costa Godinho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Lemos Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paula Ordonhez Rigato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Luiz Santos Gonçalves
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Notomi Sato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Milton Maciel
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America; Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ligia Maria Torres Peçanha
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ernesto Torres de Azevedo Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America; Departamento de Virologia, Fiocruz - Pernambuco, Recife, Brazil
| | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Abstract
Studying phage codon adaptation is important not only for understanding the process of translation elongation, but also for reengineering phages for medical and industrial purposes. To evaluate the effect of mutation and selection on phage codon usage, we developed an index to measure selection imposed by host translation machinery, based on the difference in codon usage between all host genes and highly expressed host genes. We developed linear and nonlinear models to estimate the C→T mutation bias in different phage lineages and to evaluate the relative effect of mutation and host selection on phage codon usage. C→T-biased mutations occur more frequently in single-stranded DNA (ssDNA) phages than in double-stranded DNA (dsDNA) phages and affect not only synonymous codon usage, but also nonsynonymous substitutions at second codon positions, especially in ssDNA phages. The host translation machinery affects codon adaptation in both dsDNA and ssDNA phages, with a stronger effect on dsDNA phages than on ssDNA phages. Strand asymmetry with the associated local variation in mutation bias can significantly interfere with codon adaptation in both dsDNA and ssDNA phages.
Collapse
|
28
|
Chithambaram S, Prabhakaran R, Xia X. Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli. Mol Biol Evol 2014; 31:1606-17. [PMID: 24586046 PMCID: PMC4032129 DOI: 10.1093/molbev/msu087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Because phages use their host translation machinery, their codon usage should evolve toward that of highly expressed host genes. We used two indices to measure codon adaptation of phages to their host, rRSCU (the correlation in relative synonymous codon usage [RSCU] between phages and their host) and Codon Adaptation Index (CAI) computed with highly expressed host genes as the reference set (because phage translation depends on host translation machinery). These indices used for this purpose are appropriate only when hosts exhibit little mutation bias, so only phages parasitizing Escherichia coli were included in the analysis. For double-stranded DNA (dsDNA) phages, both rRSCU and CAI decrease with increasing number of transfer RNA genes encoded by the phage genome. rRSCU is greater for dsDNA phages than for single-stranded DNA (ssDNA) phages, and the low rRSCU values are mainly due to poor concordance in RSCU values for Y-ending codons between ssDNA phages and the E. coli host, consistent with the predicted effect of C→T mutation bias in the ssDNA phages. Strong C→T mutation bias would improve codon adaptation in codon families (e.g., Gly) where U-ending codons are favored over C-ending codons (“U-friendly” codon families) by highly expressed host genes but decrease codon adaptation in other codon families where highly expressed host genes favor C-ending codons against U-ending codons (“U-hostile” codon families). It is remarkable that ssDNA phages with increasing C→T mutation bias also increased the usage of codons in the “U-friendly” codon families, thereby achieving CAI values almost as large as those of dsDNA phages. This represents a new type of codon adaptation.
Collapse
Affiliation(s)
- Shivapriya Chithambaram
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramanandan Prabhakaran
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Mayrose I, Stern A, Burdelova EO, Sabo Y, Laham-Karam N, Zamostiano R, Bacharach E, Pupko T. Synonymous site conservation in the HIV-1 genome. BMC Evol Biol 2013; 13:164. [PMID: 23914950 PMCID: PMC3750384 DOI: 10.1186/1471-2148-13-164] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Synonymous or silent mutations are usually thought to evolve neutrally. However, accumulating recent evidence has demonstrated that silent mutations may destabilize RNA structures or disrupt cis regulatory motifs superimposed on coding sequences. Such observations suggest the existence of stretches of codon sites that are evolutionary conserved at both DNA-RNA and protein levels. Such stretches may point to functionally important regions within protein coding sequences not necessarily reflecting functional constraints on the amino-acid sequence. The HIV-1 genome is highly compact, and often harbors overlapping functional elements at the protein, RNA, and DNA levels. This superimposition of functions leads to complex selective forces acting on all levels of the genome and proteome. Considering the constraints on HIV-1 to maintain such a highly compact genome, we hypothesized that stretches of synonymous conservation would be common within its genome. RESULTS We used a combined computational-experimental approach to detect and characterize regions exhibiting strong purifying selection against synonymous substitutions along the HIV-1 genome. Our methodology is based on advanced probabilistic evolutionary models that explicitly account for synonymous rate variation among sites and rate dependencies among adjacent sites. These models are combined with a randomization procedure to automatically identify the most statistically significant regions of conserved synonymous sites along the genome. Using this procedure we identified 21 conserved regions. Twelve of these are mapped to regions within overlapping genes, seven correlate with known functional elements, while the functions of the remaining four are yet unknown. Among these four regions, we chose the one that deviates most from synonymous rate homogeneity for in-depth computational and experimental characterization. In our assays aiming to quantify viral fitness in both early and late stages of the replication cycle, no differences were observed between the mutated and the wild type virus following the introduction of synonymous mutations. CONCLUSIONS The contradiction between the inferred purifying selective forces and the lack of effect of these mutations on viral replication may be explained by the fact that the phenotype was measured in single-cycle infection assays in cell culture. Such a system does not account for the complexity of HIV-1 infections in vivo, which involves multiple infection cycles and interaction with the host immune system.
Collapse
Affiliation(s)
- Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel-Aviv 69978, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Detection of the HIV-1 minus-strand-encoded antisense protein and its association with autophagy. J Virol 2013; 87:5089-105. [PMID: 23427159 DOI: 10.1128/jvi.00225-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HIV-1 proteins are synthesized from a single transcript in an unspliced form or following splicing, but the existence of an antisense protein (ASP) expressed from an antisense polyadenylated transcript has been suggested. Difficulties linked to the detection of this protein in mammalian cells led us to codon optimize its cDNA. Codon-optimized ASP was indeed efficiently detected in various transfected cell lines following flow cytometry and confocal microscopy analyses. Western blot analyses also led to the detection of optimized ASP in transfected cells but also provided evidence of its instability and high multimerization potential. ASP was mainly distributed in the cytoplasm in a punctate manner, which was reminiscent of autophagosomes. In agreement with this observation, a significant increase in ASP-positive cells and loss of its punctate distribution was observed in transfected cells when autophagy was inhibited at early steps. Induction of autophagy was confirmed by Western blot analyses that showed an ASP-mediated increase in levels of LC3b-II and Beclin 1, as well as colocalization and interaction between ASP and LC3. Interestingly, Myc-tagged ASP was detected in the context of proviral DNA following autophagy inhibition with a concomitant increase in the level and punctate distribution of LC3b-II. Finally, 3-methyladenine treatment of transfected or infected U937 cells decreased extracellular p24 levels in wild-type proviral DNA and to a much lesser extent in ASP-mutated proviral DNA. This study provides the first detection of ASP in mammalian cells by Western blotting. ASP-induced autophagy might explain the inherent difficulty in detecting this viral protein and might justify its presumed low abundance in infected cells.
Collapse
|
31
|
Goñi N, Iriarte A, Comas V, Soñora M, Moreno P, Moratorio G, Musto H, Cristina J. Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development. Virol J 2012; 9:263. [PMID: 23134595 PMCID: PMC3543350 DOI: 10.1186/1743-422x-9-263] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 11/02/2012] [Indexed: 11/20/2022] Open
Abstract
Background Influenza A virus (IAV) is a member of the family Orthomyxoviridae and contains eight segments of a single-stranded RNA genome with negative polarity. The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 IAV strain (H1N1pdm) in Mexico and USA. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. A comprehensive study to investigate the effect of selection pressure imposed by the human host on the codon usage of an emerging, pandemic IAV strain and the trends in viral codon usage involved over the pandemic time period is much needed. Results We performed a comprehensive codon usage analysis of 310 IAV strains from the pandemic of 2009. Highly biased codon usage for Ala, Arg, Pro, Thr and Ser were found. Codon usage is strongly influenced by underlying biases in base composition. When correspondence analysis (COA) on relative synonymous codon usage (RSCU) is applied, the distribution of IAV ORFs in the plane defined by the first two major dimensional factors showed that different strains are located at different places, suggesting that IAV codon usage also reflects an evolutionary process. Conclusions A general association between codon usage bias, base composition and poor adaptation of the virus to the respective host tRNA pool, suggests that mutational pressure is the main force shaping H1N1 pdm IAV codon usage. A dynamic process is observed in the variation of codon usage of the strains enrolled in these studies. These results suggest a balance of mutational bias and natural selection, which allow the virus to explore and re-adapt its codon usage to different environments. Recoding of IAV taking into account codon bias, base composition and adaptation to host tRNA may provide important clues to develop new and appropriate vaccines.
Collapse
Affiliation(s)
- Natalia Goñi
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
32
|
van der Kuyl AC, Berkhout B. The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 2012; 9:92. [PMID: 23131071 PMCID: PMC3511177 DOI: 10.1186/1742-4690-9-92] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/14/2012] [Indexed: 01/09/2023] Open
Abstract
Viruses often deviate from their hosts in the nucleotide composition of their genomes. The RNA genome of the lentivirus family of retroviruses, including human immunodeficiency virus (HIV), contains e.g. an above average percentage of adenine (A) nucleotides, while being extremely poor in cytosine (C). Such a deviant base composition has implications for the amino acids that are encoded by the open reading frames (ORFs), both in the requirement of specific tRNA species and in the preference for amino acids encoded by e.g. A-rich codons. Nucleotide composition does obviously affect the secondary and tertiary structure of the RNA genome and its biological functions, but it does also influence phylogenetic analysis of viral genome sequences, and possibly the activity of the integrated DNA provirus. Over time, the nucleotide composition of the HIV-1 genome is exceptionally conserved, varying by less than 1% per base position per isolate within either group M, N, or O during 1983–2009. This extreme stability of the nucleotide composition may possibly be achieved by negative selection, perhaps conserving semi-stable RNA secondary structure as reverse transcription would be significantly affected for a less A-rich genome where secondary structures are expected to be more stable and thus more difficult to unfold. This review will discuss all aspects of the lentiviral genome composition, both of the RNA and of its derived double-stranded DNA genome, with a focus on HIV-1, the nucleotide composition over time, the effects of artificially humanized codons as well as contributions of immune system pressure on HIV nucleotide bias.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, AZ 1105, The Netherlands.
| | | |
Collapse
|
33
|
Li L, Saade F, Petrovsky N. The future of human DNA vaccines. J Biotechnol 2012; 162:171-82. [PMID: 22981627 DOI: 10.1016/j.jbiotec.2012.08.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 01/03/2023]
Abstract
DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | | | | |
Collapse
|
34
|
Reprogramming a GFP reporter gene subjects it to complex lentiviral gene regulation. Methods Mol Biol 2012; 813:85-106. [PMID: 22083737 DOI: 10.1007/978-1-61779-412-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Late human immunodeficiency virus (HIV)-derived RNAs encoding relevant therapeutic targets or promising vaccine compounds, such as the HIV-1 group-specific antigen (Gag), are translocated from the nucleus into the cytoplasm via sophisticated export machinery. Relevant steps include the concerted action of several cis-acting RNA elements with the viral Rev-shuttle protein and several cellular components (Ran1/Exportin; Crm1). Based on detailed understanding of the molecular mechanisms guiding this complex process, we used rational codon usage modification to design and reprogram a GFP encoding reporter RNA now exactly mimicking the complex transcriptional and posttranscriptional regulation of late lentiviral mRNAs.
Collapse
|
35
|
Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 2012; 20:948-53. [PMID: 22334017 PMCID: PMC3345990 DOI: 10.1038/mt.2012.7] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Advances in the optimization of in vitro-transcribed mRNA are bringing mRNA-mediated therapy closer to reality. In cultured cells, we recently achieved high levels of translation with high-performance liquid chromatography (HPLC)-purified, in vitro-transcribed mRNAs containing the modified nucleoside pseudouridine. Importantly, pseudouridine rendered the mRNA non-immunogenic. Here, using erythropoietin (EPO)-encoding mRNA complexed with TransIT-mRNA, we evaluated this new generation of mRNA in vivo. A single injection of 100 ng (0.005 mg/kg) mRNA elevated serum EPO levels in mice significantly by 6 hours and levels were maintained for 4 days. In comparison, mRNA containing uridine produced 10–100-fold lower levels of EPO lasting only 1 day. EPO translated from pseudouridine-mRNA was functional and caused a significant increase of both reticulocyte counts and hematocrits. As little as 10 ng mRNA doubled reticulocyte numbers. Weekly injection of 100 ng of EPO mRNA was sufficient to increase the hematocrit from 43 to 57%, which was maintained with continued treatment. Even when a large amount of pseudouridine-mRNA was injected, no inflammatory cytokines were detectable in plasma. Using macaques, we could also detect significantly-increased serum EPO levels following intraperitoneal injection of rhesus EPO mRNA. These results demonstrate that HPLC-purified, pseudouridine-containing mRNAs encoding therapeutic proteins have great potential for clinical applications.
Collapse
|
36
|
Ka WH, Jeong YY, You JC. Identification of the HIV-1 packaging RNA sequence (Ψ) as a major determinant for the translation inhibition conferred by the HIV-1 5' UTR. Biochem Biophys Res Commun 2011; 417:501-7. [PMID: 22166215 DOI: 10.1016/j.bbrc.2011.11.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
The HIV-1 5' untranslated region (UTR) contains conserved sequences and unique structural motifs associated with many steps in virus replication. Because unspliced HIV mRNA containing the full-length UTR serves as a template for replication and transcription as well as packaging genomic RNA into virion, it has been postulated that the UTR may play a role in translational regulation. However, the effect and the region(s) responsible for translation control remain controversial. We used deletion mutations of the 5' UTR region in both cell-based and in vitro assays to determine if secondary structural elements within the 5' UTR confer translation inhibition, and to identify which of these elements are involved. The results indicate clearly that the entire HIV-1 5' UTR confers translation inhibition in vitro and in cells; the Psi (Ψ) region specifically has the most translation inhibitory activity among the highly-structured elements in the HIV-1 5' UTR. Moreover, it was found that the SL4 structure in the Psi (Ψ) region is the major determinant of translation inhibition, and that elimination of the SL4 RNA sequence led to increased translation. The results suggest a functional role for the Psi element and the SL4 structure in the translational control of HIV-1 full-length mRNA.
Collapse
Affiliation(s)
- Won Hye Ka
- Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | |
Collapse
|
37
|
Su X, Fricke J, Kavanagh D, Irvine DJ. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm 2011; 8:774-87. [PMID: 21417235 PMCID: PMC3354687 DOI: 10.1021/mp100390w] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biodegradable core--shell structured nanoparticles with a poly(β-amino ester) (PBAE) core enveloped by a phospholipid bilayer shell were developed for in vivo mRNA delivery with a view toward delivery of mRNA-based vaccines. The pH-responsive PBAE component was chosen to promote endosome disruption, while the lipid surface layer was selected to minimize toxicity of the polycation core. Messenger RNA was efficiently adsorbed via electrostatic interactions onto the surface of these net positively charged nanoparticles. In vitro, mRNA-loaded particle uptake by dendritic cells led to mRNA delivery into the cytosol with low cytotoxicity, followed by translation of the encoded protein in these difficult-to-transfect cells at a frequency of ~30%. Particles loaded with mRNA administered intranasally (i.n.) in mice led to the expression of the reporter protein luciferase in vivo as soon as 6 h after administration, a time point when naked mRNA given i.n. showed no expression. At later time points, luciferase expression was detected in naked mRNA-treated mice, but this group showed a wide variation in levels of transfection, compared to particle-treated mice. This system may thus be promising for noninvasive delivery of mRNA-based vaccines.
Collapse
Affiliation(s)
- Xingfang Su
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge MA 02139
| | | | | | - Darrell J. Irvine
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge MA 02139
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139
- Ragon Institute of MGH, MIT and Harvard, Boston, MA 02129
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
38
|
van Weringh A, Ragonnet-Cronin M, Pranckeviciene E, Pavon-Eternod M, Kleiman L, Xia X. HIV-1 modulates the tRNA pool to improve translation efficiency. Mol Biol Evol 2011; 28:1827-34. [PMID: 21216840 PMCID: PMC3098512 DOI: 10.1093/molbev/msr005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite its poorly adapted codon usage, HIV-1 replicates and is expressed extremely well in human host cells. HIV-1 has recently been shown to package non-lysyl transfer RNAs (tRNAs) in addition to the tRNA(Lys) needed for priming reverse transcription and integration of the HIV-1 genome. By comparing the codon usage of HIV-1 genes with that of its human host, we found that tRNAs decoding codons that are highly used by HIV-1 but avoided by its host are overrepresented in HIV-1 virions. In particular, tRNAs decoding A-ending codons, required for the expression of HIV's A-rich genome, are highly enriched. Because the affinity of Gag-Pol for all tRNAs is nonspecific, HIV packaging is most likely passive and reflects the tRNA pool at the time of viral particle formation. Codon usage of HIV-1 early genes is similar to that of highly expressed host genes, but codon usage of HIV-1 late genes was better adapted to the selectively enriched tRNA pool, suggesting that alterations in the tRNA pool are induced late in viral infection. If HIV-1 genes are adapting to an altered tRNA pool, codon adaptation of HIV-1 may be better than previously thought.
Collapse
Affiliation(s)
- Anna van Weringh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Japanese encephalitis virus-based replicon RNAs/particles as an expression system for HIV-1 Pr55 Gag that is capable of producing virus-like particles. Virus Res 2009; 144:298-305. [PMID: 19406175 DOI: 10.1016/j.virusres.2009.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
Ectopic expression of the structural protein Pr55(Gag) of HIV-1 has been limited by the presence of inhibitory sequences in the gag coding region that must normally be counteracted by HIV-1 Rev and RRE. Here, we describe a cytoplasmic RNA replicon based on the RNA genome of Japanese encephalitis virus (JEV) that is capable of expressing HIV-1 gag without requiring Rev/RRE. This replicon system was constructed by deleting all three JEV structural protein-coding regions (C, prM, and E) from the 5'-proximal region of the genome and simultaneously inserting an HIV-1 gag expression cassette driven by the internal ribosome entry site of encephalomyocarditis virus into the 3'-proximal noncoding region of the genome. Transfection of this JEV replicon RNA led to expression of Pr55(Gag) in the absence of Rev/RRE in the cytoplasm of hamster BHK-21, human HeLa, and mouse NIH/3T3 cells. Production of the Pr55(Gag) derived from this JEV replicon RNA appeared to be increased by approximately 3-fold when compared to that based on an alphavirus replicon RNA. Biochemical and morphological analyses demonstrated that the Pr55(Gag) proteins were released into the culture medium in the form of virus-like particles. We also observed that the JEV replicon RNAs expressing the Pr55(Gag) could be encapsidated into single-round infectious JEV replicon particles when transfected into a stable packaging cell line that provided the three JEV structural proteins in trans. This ectopic expression of the HIV-1 Pr55(Gag) by JEV-based replicon RNAs/particles in diverse cell types may represent a useful molecular platform for various biological applications in medicine and industry.
Collapse
|