1
|
Ciardo D, Haccard O, de Carli F, Hyrien O, Goldar A, Marheineke K. Dual DNA replication modes: varying fork speeds and initiation rates within the spatial replication program in Xenopus. Nucleic Acids Res 2025; 53:gkaf007. [PMID: 39883014 PMCID: PMC11781033 DOI: 10.1093/nar/gkaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping. The analysis revealed two independent spatiotemporal processes that regulate the replication dynamics in the Xenopus model system. These mechanisms are referred to as a fast and a slow replication mode, differing by their opposite replication fork speed and rate of origin firing. We found that Polo-like kinase 1 (Plk1) depletion abolished the spatial separation of these two replication modes. In contrast, neither replication checkpoint inhibition nor Rap1-interacting factor (Rif1) depletion affected the distribution of these replication patterns. These results suggest that Plk1 plays an essential role in the local coordination of the spatial replication program and the initiation-elongation coupling along the chromosomes in Xenopus, ensuring the timely completion of the S phase.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Haccard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay(NeuroPsi), F-91400 Saclay, France
| | - Francesco de Carli
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91190 Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
2
|
Haccard O, Ciardo D, Narrissamprakash H, Bronchain O, Kumagai A, Dunphy WG, Goldar A, Marheineke K. Rif1 restrains the rate of replication origin firing in Xenopus laevis. Commun Biol 2023; 6:788. [PMID: 37516798 PMCID: PMC10387115 DOI: 10.1038/s42003-023-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
Metazoan genomes are duplicated by the coordinated activation of clusters of replication origins at different times during S phase, but the underlying mechanisms of this temporal program remain unclear during early development. Rif1, a key replication timing factor, inhibits origin firing by recruiting protein phosphatase 1 (PP1) to chromatin counteracting S phase kinases. We have previously described that Rif1 depletion accelerates early Xenopus laevis embryonic cell cycles. Here, we find that in the absence of Rif1, patterns of replication foci change along with the acceleration of replication cluster activation. However, initiations increase only moderately inside active clusters. Our numerical simulations suggest that the absence of Rif1 compresses the temporal program towards more homogeneity and increases the availability of limiting initiation factors. We experimentally demonstrate that Rif1 depletion increases the chromatin-binding of the S phase kinase Cdc7/Drf1, the firing factors Treslin, MTBP, Cdc45, RecQL4, and the phosphorylation of both Treslin and MTBP. We show that Rif1 globally, but not locally, restrains the replication program in early embryos, possibly by inhibiting or excluding replication factors from chromatin.
Collapse
Affiliation(s)
- Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Diletta Ciardo
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hemalatha Narrissamprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, CERTO-Retina France, 91400, Saclay, France
| | - Akiko Kumagai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Arbona JM, Kabalane H, Barbier J, Goldar A, Hyrien O, Audit B. Neural network and kinetic modelling of human genome replication reveal replication origin locations and strengths. PLoS Comput Biol 2023; 19:e1011138. [PMID: 37253070 PMCID: PMC10256156 DOI: 10.1371/journal.pcbi.1011138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/09/2023] [Accepted: 04/30/2023] [Indexed: 06/01/2023] Open
Abstract
In human and other metazoans, the determinants of replication origin location and strength are still elusive. Origins are licensed in G1 phase and fired in S phase of the cell cycle, respectively. It is debated which of these two temporally separate steps determines origin efficiency. Experiments can independently profile mean replication timing (MRT) and replication fork directionality (RFD) genome-wide. Such profiles contain information on multiple origins' properties and on fork speed. Due to possible origin inactivation by passive replication, however, observed and intrinsic origin efficiencies can markedly differ. Thus, there is a need for methods to infer intrinsic from observed origin efficiency, which is context-dependent. Here, we show that MRT and RFD data are highly consistent with each other but contain information at different spatial scales. Using neural networks, we infer an origin licensing landscape that, when inserted in an appropriate simulation framework, jointly predicts MRT and RFD data with unprecedented precision and underlies the importance of dispersive origin firing. We furthermore uncover an analytical formula that predicts intrinsic from observed origin efficiency combined with MRT data. Comparison of inferred intrinsic origin efficiencies with experimental profiles of licensed origins (ORC, MCM) and actual initiation events (Bubble-seq, SNS-seq, OK-seq, ORM) show that intrinsic origin efficiency is not solely determined by licensing efficiency. Thus, human replication origin efficiency is set at both the origin licensing and firing steps.
Collapse
Affiliation(s)
- Jean-Michel Arbona
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, France
| | - Hadi Kabalane
- ENS de Lyon, CNRS, Laboratoire de Physique, Lyon, France
| | - Jeremy Barbier
- ENS de Lyon, CNRS, Laboratoire de Physique, Lyon, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benjamin Audit
- ENS de Lyon, CNRS, Laboratoire de Physique, Lyon, France
| |
Collapse
|
4
|
Birtwistle MR. Modeling the Dynamics of Eukaryotic DNA Synthesis in Remembrance of Tunde Ogunnaike. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29631, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina29631, United States
| |
Collapse
|
5
|
Rhind N. DNA replication timing: Biochemical mechanisms and biological significance. Bioessays 2022; 44:e2200097. [PMID: 36125226 PMCID: PMC9783711 DOI: 10.1002/bies.202200097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/27/2022]
Abstract
The regulation of DNA replication is a fascinating biological problem both from a mechanistic angle-How is replication timing regulated?-and from an evolutionary one-Why is replication timing regulated? Recent work has provided significant insight into the first question. Detailed biochemical understanding of the mechanism and regulation of replication initiation has made possible robust hypotheses for how replication timing is regulated. Moreover, technical progress, including high-throughput, single-molecule mapping of replication initiation and single-cell assays of replication timing, has allowed for direct testing of these hypotheses in mammalian cells. This work has consolidated the conclusion that differential replication timing is a consequence of the varying probability of replication origin initiation. The second question is more difficult to directly address experimentally. Nonetheless, plausible hypotheses can be made and one-that replication timing contributes to the regulation of chromatin structure-has received new experimental support.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Organization of DNA Replication Origin Firing in Xenopus Egg Extracts: The Role of Intra-S Checkpoint. Genes (Basel) 2021; 12:genes12081224. [PMID: 34440398 PMCID: PMC8394201 DOI: 10.3390/genes12081224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.
Collapse
|
7
|
Rapsomaniki MA, Maxouri S, Nathanailidou P, Garrastacho MR, Giakoumakis NN, Taraviras S, Lygeros J, Lygerou Z. In silico analysis of DNA re-replication across a complete genome reveals cell-to-cell heterogeneity and genome plasticity. NAR Genom Bioinform 2021; 3:lqaa112. [PMID: 33554116 PMCID: PMC7846089 DOI: 10.1093/nargab/lqaa112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023] Open
Abstract
DNA replication is a complex and remarkably robust process: despite its inherent uncertainty, manifested through stochastic replication timing at a single-cell level, multiple control mechanisms ensure its accurate and timely completion across a population. Disruptions in these mechanisms lead to DNA re-replication, closely connected to genomic instability and oncogenesis. Here, we present a stochastic hybrid model of DNA re-replication that accurately portrays the interplay between discrete dynamics, continuous dynamics and uncertainty. Using experimental data on the fission yeast genome, model simulations show how different regions respond to re-replication and permit insight into the key mechanisms affecting re-replication dynamics. Simulated and experimental population-level profiles exhibit a good correlation along the genome, robust to model parameters, validating our approach. At a single-cell level, copy numbers of individual loci are affected by intrinsic properties of each locus, in cis effects from adjoining loci and in trans effects from distant loci. In silico analysis and single-cell imaging reveal that cell-to-cell heterogeneity is inherent in re-replication and can lead to genome plasticity and a plethora of genotypic variations.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Stella Maxouri
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Patroula Nathanailidou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | | | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| |
Collapse
|
8
|
Ciardo D, Haccard O, Narassimprakash H, Chiodelli V, Goldar A, Marheineke K. Polo-like kinase 1 (Plk1) is a positive regulator of DNA replication in the Xenopus in vitro system. Cell Cycle 2020; 19:1817-1832. [PMID: 32573322 PMCID: PMC7469467 DOI: 10.1080/15384101.2020.1782589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/24/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is a cell cycle kinase essential for mitosis progression, but also important for checkpoint recovery and adaptation in response to DNA damage and replication stress. However, although Plk1 is expressed in S phase, little is known about its function during unperturbed DNA replication. Using Xenopus laevis egg extracts, mimicking early embryonic replication, we demonstrate that Plk1 is simultaneously recruited to chromatin with pre-replication proteins where it accumulates throughout S phase. Further, we found that chromatin-bound Plk1 is phosphorylated on its activating site T201, which appears to be sensitive to dephosphorylation by protein phosphatase 2A. Extracts immunodepleted of Plk1 showed a decrease in DNA replication, rescued by wild type recombinant Plk1. Inversely, modest Plk1 overexpression accelerated DNA replication. Plk1 depletion led to an increase in Chk1 phosphorylation and to a decrease in Cdk2 activity, which strongly suggests that Plk1 could inhibit the ATR/Chk1-dependent intra-S phase checkpoint during normal S phase. In addition, we observed that phosphorylated Plk1 levels are high during the rapid, early cell cycles of Xenopus development but decrease after the mid-blastula transition when the cell cycle and the replication program slow down along with more active checkpoints. These data shed new light on the role of Plk1 as a positive regulating factor for DNA replication in early, rapidly dividing embryos.
Collapse
Affiliation(s)
- Diletta Ciardo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Hemalatha Narassimprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Chiodelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
9
|
Maffeo C, Chou HY, Aksimentiev A. Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations. ADVANCED THEORY AND SIMULATIONS 2019; 2:1800191. [PMID: 31728433 PMCID: PMC6855400 DOI: 10.1002/adts.201800191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Abstract
Reproduction, the hallmark of biological activity, requires making an accurate copy of the genetic material to allow the progeny to inherit parental traits. In all living cells, the process of DNA replication is carried out by a concerted action of multiple protein species forming a loose protein-nucleic acid complex, the replisome. Proofreading and error correction generally accompany replication but also occur independently, safeguarding genetic information through all phases of the cell cycle. Advances in biochemical characterization of intracellular processes, proteomics and the advent of single-molecule biophysics have brought about a treasure trove of information awaiting to be assembled into an accurate mechanistic model of the DNA replication process. In this review, we describe recent efforts to model elements of DNA replication and repair processes using computer simulations, an approach that has gained immense popularity in many areas of molecular biophysics but has yet to become mainstream in the DNA metabolism community. We highlight the use of diverse computational methods to address specific problems of the fields and discuss unexplored possibilities that lie ahead for the computational approaches in these areas.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Han-Yi Chou
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign,1110 W Green St, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Ciardo D, Goldar A, Marheineke K. On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway. Genes (Basel) 2019; 10:E94. [PMID: 30700024 PMCID: PMC6410103 DOI: 10.3390/genes10020094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
DNA replication in eukaryotes is achieved by the activation of multiple replication origins which needs to be precisely coordinated in space and time. This spatio-temporal replication program is regulated by many factors to maintain genome stability, which is frequently threatened through stresses of exogenous or endogenous origin. Intra-S phase checkpoints monitor the integrity of DNA synthesis and are activated when replication forks are stalled. Their activation leads to the stabilization of forks, to the delay of the replication program by the inhibition of late firing origins, and the delay of G2/M phase entry. In some cell cycles during early development these mechanisms are less efficient in order to allow rapid cell divisions. In this article, we will review our current knowledge of how the intra-S phase checkpoint regulates the replication program in budding yeast and metazoan models, including early embryos with rapid S phases. We sum up current models on how the checkpoint can inhibit origin firing in some genomic regions, but allow dormant origin activation in other regions. Finally, we discuss how numerical and theoretical models can be used to connect the multiple different actors into a global process and to extract general rules.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | | | | |
Collapse
|
11
|
Arbona JM, Goldar A, Hyrien O, Arneodo A, Audit B. The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation. eLife 2018; 7:35192. [PMID: 29856315 PMCID: PMC6033540 DOI: 10.7554/elife.35192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/31/2018] [Indexed: 01/22/2023] Open
Abstract
The time-dependent rate I(t) of origin firing per length of unreplicated DNA presents a universal bell shape in eukaryotes that has been interpreted as the result of a complex time-evolving interaction between origins and limiting firing factors. Here, we show that a normal diffusion of replication fork components towards localized potential replication origins (p-oris) can more simply account for the I(t) universal bell shape, as a consequence of a competition between the origin firing time and the time needed to replicate DNA separating two neighboring p-oris. We predict the I(t) maximal value to be the product of the replication fork speed with the squared p-ori density. We show that this relation is robustly observed in simulations and in experimental data for several eukaryotes. Our work underlines that fork-component recycling and potential origins localization are sufficient spatial ingredients to explain the universality of DNA replication kinetics. Before a cell can divide, it must duplicate its DNA. In eukaryotes – organisms such as animals and fungi, which store their DNA in the cell’s nucleus – DNA replication starts at specific sites in the genome called replication origins. At each origin sits a protein complex that will activate when it randomly captures an activating protein that diffuses within the nucleus. Once a replication origin activates or “fires”, the complex then splits into two new complexes that move away from each other as they duplicate the DNA. If an active complex collides with an inactive one at another origin, the latter is inactivated – a phenomenon known as origin passivation. When two active complexes meet, they release the activating proteins, which diffuse away and eventually activate other origins in unreplicated DNA. The number of origins that activate each minute divided by the length of unreplicated DNA is referred to as the “rate of origin firing”. In all eukaryotes, this rate – also known as I(t) – follows the same pattern. First, it increases until more than half of the DNA is duplicated. Then it decreases until everything is duplicated. This means that, if plotted out, the graph of origin firing rate would always be a bell-shaped curve, even for organisms with genomes of different sizes that have different numbers of origins. The reason for this universal shape remained unclear. Scientists had tried to create numerical simulations that model the rate of origin firing. However, for these simulations to reproduce the bell-shape curve, a number of untested assumptions had to be made about how DNA replication takes place. In addition, these models ignored the fact that it takes time to replicate the DNA between origins. To take this time into account, Arbona et al. instead decided to model the replication origins as discrete and distinct entities. This way of building the mathematical model succeeded in reproducing the universal bell curve shape without additional assumptions. With this simulation, the balance between origin activation and passivation is enough to achieve the observed pattern. The new model also predicts that the maximum rate of origin firing is determined by the speed of DNA replication and the density of origins in the genome. Arbona et al. verified this prediction in yeast, fly, frog and human cells – organisms with different sized genomes that take between 20 minutes and 8 hours to replicate their DNA. Lastly, the prediction also held true in yeast treated with hydroxyurea, an anticancer drug that slows DNA replication. A better understanding of DNA replication can help scientists to understand how this process is perturbed in cancers and how drugs that target DNA replication can treat these diseases. Future work will explore how the 3D organization of the genome affects the diffusion of activating proteins within the cell nucleus.
Collapse
Affiliation(s)
- Jean-Michel Arbona
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | | | - Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Arneodo
- LOMA, Univ de Bordeaux, CNRS, UMR 5798, Talence, France
| | - Benjamin Audit
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
12
|
Zhao PA, Rivera-Mulia JC, Gilbert DM. Replication Domains: Genome Compartmentalization into Functional Replication Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:229-257. [DOI: 10.1007/978-981-10-6955-0_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Gispan A, Carmi M, Barkai N. Model-based analysis of DNA replication profiles: predicting replication fork velocity and initiation rate by profiling free-cycling cells. Genome Res 2016; 27:310-319. [PMID: 28028072 PMCID: PMC5287236 DOI: 10.1101/gr.205849.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Eukaryotic cells initiate DNA synthesis by sequential firing of hundreds of origins. This ordered replication is described by replication profiles, which measure the DNA content within a cell population. Here, we show that replication dynamics can be deduced from replication profiles of free-cycling cells. While such profiles lack explicit temporal information, they are sensitive to fork velocity and initiation capacity through the passive replication pattern, namely the replication of origins by forks emanating elsewhere. We apply our model-based approach to a compendium of profiles that include most viable budding yeast mutants implicated in replication. Predicted changes in fork velocity or initiation capacity are verified by profiling synchronously replicating cells. Notably, most mutants implicated in late (or early) origin effects are explained by global modulation of fork velocity or initiation capacity. Our approach provides a rigorous framework for analyzing DNA replication profiles of free-cycling cells.
Collapse
Affiliation(s)
- Ariel Gispan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
14
|
4D Visualization of replication foci in mammalian cells corresponding to individual replicons. Nat Commun 2016; 7:11231. [PMID: 27052570 PMCID: PMC4829660 DOI: 10.1038/ncomms11231] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
Since the pioneering proposal of the replicon model of DNA replication 50 years ago, the predicted replicons have not been identified and quantified at the cellular level. Here, we combine conventional and super-resolution microscopy of replication sites in live and fixed cells with computational image analysis. We complement these data with genome size measurements, comprehensive analysis of S-phase dynamics and quantification of replication fork speed and replicon size in human and mouse cells. These multidimensional analyses demonstrate that replication foci (RFi) in three-dimensional (3D) preserved somatic mammalian cells can be optically resolved down to single replicons throughout S-phase. This challenges the conventional interpretation of nuclear RFi as replication factories, that is, the complex entities that process multiple clustered replicons. Accordingly, 3D genome organization and duplication can be now followed within the chromatin context at the level of individual replicons.
Collapse
|
15
|
Löb D, Lengert N, Chagin VO, Reinhart M, Casas-Delucchi CS, Cardoso MC, Drossel B. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression. Nat Commun 2016; 7:11207. [PMID: 27052359 PMCID: PMC4829661 DOI: 10.1038/ncomms11207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/02/2016] [Indexed: 01/02/2023] Open
Abstract
DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.
Collapse
Affiliation(s)
- D. Löb
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - N. Lengert
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - V. O. Chagin
- Laboratory of Chromosome Stability, Institute of Cytology, St Petersburg 194064, Russia
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - M. Reinhart
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - C. S. Casas-Delucchi
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - M. C. Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - B. Drossel
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
16
|
Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations. Sci Rep 2016; 6:22469. [PMID: 26935043 PMCID: PMC4776152 DOI: 10.1038/srep22469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
We propose a non-local model of DNA replication that takes into account the observed
uncertainty on the position and time of replication initiation in eukaryote cell
populations. By picturing replication initiation as a two-state system and
considering all possible transition configurations, and by taking into account the
chromatin’s fractal dimension, we derive an analytical expression for
the rate of replication initiation. This model predicts with no free parameter the
temporal profiles of initiation rate, replication fork density and fraction of
replicated DNA, in quantitative agreement with corresponding experimental data from
both S. cerevisiae and human cells and provides a quantitative estimate of
initiation site redundancy. This study shows that, to a large extent, the program
that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon
that emerges from the stochastic nature of replication origins initiation.
Collapse
|
17
|
Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O. Replication landscape of the human genome. Nat Commun 2016; 7:10208. [PMID: 26751768 PMCID: PMC4729899 DOI: 10.1038/ncomms10208] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. The physical origin and termination sites of DNA replication in human cells have remained elusive. Here the authors use Okazaki fragment sequencing to reveal global replication patterns and show how chromatin and transcription modulate the process.
Collapse
Affiliation(s)
- Nataliya Petryk
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Malik Kahli
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| | - Yves d'Aubenton-Carafa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yimin Shen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Maud Silvain
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Chun-Long Chen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Olivier Hyrien
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| |
Collapse
|
18
|
Platel M, Goldar A, Wiggins JM, Barbosa P, Libeau P, Priam P, Narassimprakash H, Grodzenski X, Marheineke K. Tight Chk1 Levels Control Replication Cluster Activation in Xenopus. PLoS One 2015; 10:e0129090. [PMID: 26046346 PMCID: PMC4457610 DOI: 10.1371/journal.pone.0129090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/05/2015] [Indexed: 12/03/2022] Open
Abstract
DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data.
Collapse
Affiliation(s)
- Marie Platel
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Arach Goldar
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Jennifer M. Wiggins
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pedro Barbosa
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pierre Libeau
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Pierre Priam
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Hemalatha Narassimprakash
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Xenia Grodzenski
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
| | - Kathrin Marheineke
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Paris South University, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
19
|
Koren A. DNA replication timing: Coordinating genome stability with genome regulation on the X chromosome and beyond. Bioessays 2014; 36:997-1004. [PMID: 25138663 DOI: 10.1002/bies.201400077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies based on next-generation DNA sequencing have revealed that the female inactive X chromosome is replicated in a rapid, unorganized manner, and undergoes increased rates of mutation. These observations link the organization of DNA replication timing to gene regulation on one hand, and to the generation of mutations on the other hand. More generally, the exceptional biology of the inactive X chromosome highlights general principles of genome replication. Cells may control replication timing by a combination of intrinsic replication origin properties, local chromatin states and global levels of replication factors, leading to a functional separation between the activity of genes and their mutation.
Collapse
Affiliation(s)
- Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
20
|
Abstract
The reasons why some DNA replication origins fire earlier than others have remained elusive. New work by Gindin et al suggests that the distribution of replication origins, not their timing per se, is the major determinant of the timing of genome replication in human cells.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
21
|
Sherstyuk VV, Shevchenko AI, Zakian SM. Epigenetic landscape for initiation of DNA replication. Chromosoma 2013; 123:183-99. [PMID: 24337246 DOI: 10.1007/s00412-013-0448-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
The key genetic process of DNA replication is initiated at specific sites referred to as replication origins. In eukaryotes, origins of DNA replication are not specified by a defined nucleotide sequence. Recent studies have shown that the structural context and topology of DNA sequence, chromatin features, and its transcriptional activity play an important role in origin choice. During differentiation and development, significant changes in chromatin organization and transcription occur, influencing origin activity and choice. In the last few years, a number of different genome-wide studies have broadened the understanding of replication origin regulation. In this review, we discuss the epigenetic factors and mechanisms that modulate origin choice and firing.
Collapse
Affiliation(s)
- Vladimir V Sherstyuk
- Russian Academy of Sciences, Siberian Branch, Institute of Cytology and Genetics, pr. Akad. Lavrentieva 10, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
22
|
Hyrien O, Rappailles A, Guilbaud G, Baker A, Chen CL, Goldar A, Petryk N, Kahli M, Ma E, d'Aubenton-Carafa Y, Audit B, Thermes C, Arneodo A. From simple bacterial and archaeal replicons to replication N/U-domains. J Mol Biol 2013; 425:4673-89. [PMID: 24095859 DOI: 10.1016/j.jmb.2013.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
The Replicon Theory proposed 50 years ago has proven to apply for replicons of the three domains of life. Here, we review our knowledge of genome organization into single and multiple replicons in bacteria, archaea and eukarya. Bacterial and archaeal replicator/initiator systems are quite specific and efficient, whereas eukaryotic replicons show degenerate specificity and efficiency, allowing for complex regulation of origin firing time. We expand on recent evidence that ~50% of the human genome is organized as ~1,500 megabase-sized replication domains with a characteristic parabolic (U-shaped) replication timing profile and linear (N-shaped) gradient of replication fork polarity. These N/U-domains correspond to self-interacting segments of the chromatin fiber bordered by open chromatin zones and replicate by cascades of origin firing initiating at their borders and propagating to their center, possibly by fork-stimulated initiation. The conserved occurrence of this replication pattern in the germline of mammals has resulted over evolutionary times in the formation of megabase-sized domains with an N-shaped nucleotide compositional skew profile due to replication-associated mutational asymmetries. Overall, these results reveal an evolutionarily conserved but developmentally plastic organization of replication that is driving mammalian genome evolution.
Collapse
Affiliation(s)
- Olivier Hyrien
- Ecole Normale Supérieure, IBENS UMR8197 U1024, Paris 75005, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
A pool of peptides extracted from wheat bud chromatin inhibits tumor cell growth by causing defective DNA synthesis. Cell Div 2013; 8:11. [PMID: 23915323 PMCID: PMC3750333 DOI: 10.1186/1747-1028-8-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/02/2013] [Indexed: 01/06/2023] Open
Abstract
Background We previously reported that a pool of low molecular weight peptides can be extracted by alkali treatment of DNA preparations obtained from prokaryotic and eukaryotic cells after intensive deproteinization. This class of peptides, isolated from wheat bud chromatin, induces growth inhibition, DNA damage, G2 checkpoint activation and apoptosis in HeLa cells. In this work we studied their mechanism of action by investigating their ability to interfere with DNA synthesis. Methods BrdUrd comet assays were used to detect DNA replication defects during S phase. DNA synthesis, cell proliferation, cell cycle progression and DNA damage response pathway activation were assessed using 3H-thymidine incorporation, DNA flow cytometry and Western blotting, respectively. Results BrdUrd labelling close to DNA strand discontinuities (comet tails) detects the number of active replicons. This number was significantly higher in treated cells (compared to controls) from entry until mid S phase, but markedly lower in late S phase, indicating the occurrence of defective DNA synthesis. In mid S phase the treated cells showed less 3H-thymidine incorporation with respect to the controls, which supports an early arrest of DNA synthesis. DNA damage response activation was also shown in both p53-defective HeLa cells and p53-proficient U2OS cells by the detection of the phosphorylated form of H2AX after peptide treatment. These events were accompanied in both cell lines by an increase in p21 levels and, in U2OS cells, of phospho-p53 (Ser15) levels. At 24 h of recovery after peptide treatment the cell cycle phase distribution was similar to that seen in controls and CDK1 kinase accumulation was not detected. Conclusion The data reported here show that the antiproliferative effect exhibited by these chromatin peptides results from their ability to induce genomic stress during DNA synthesis. This effect seems to be S-phase specific since surviving cells are able to progress through their normal cell cycle when the peptide fraction is removed from the culture medium. It is likely that the subsequent apoptosis is a consequence of the failed attempt of the tumour cells to repair the DNA damage induced by the peptides.
Collapse
|
24
|
Abstract
Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.
Collapse
Affiliation(s)
- Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
25
|
Aparicio OM. Location, location, location: it's all in the timing for replication origins. Genes Dev 2013; 27:117-28. [PMID: 23348837 DOI: 10.1101/gad.209999.112] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The differential replication timing of eukaryotic replication origins has long been linked with epigenetic regulation of gene expression and more recently with genome stability and mutation rates; however, the mechanism has remained obscure. Recent studies have shed new light by identifying novel factors that determine origin timing in yeasts and mammalian cells and implicate the spatial organization of origins within nuclear territories in the mechanism. These new insights, along with recent findings that several initiation factors are limiting relative to licensed origins, support and shape an emerging model for replication timing control. The mechanisms that control the spatial organization of replication origins have potential impacts for genome regulation beyond replication.
Collapse
Affiliation(s)
- Oscar M Aparicio
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
26
|
Audit B, Baker A, Chen CL, Rappailles A, Guilbaud G, Julienne H, Goldar A, d'Aubenton-Carafa Y, Hyrien O, Thermes C, Arneodo A. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nat Protoc 2012; 8:98-110. [PMID: 23237832 DOI: 10.1038/nprot.2012.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.
Collapse
|
27
|
Demczuk A, Gauthier MG, Veras I, Kosiyatrakul S, Schildkraut CL, Busslinger M, Bechhoefer J, Norio P. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol 2012; 10:e1001360. [PMID: 22807655 PMCID: PMC3393677 DOI: 10.1371/journal.pbio.1001360] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/30/2012] [Indexed: 12/03/2022] Open
Abstract
The temporal order of replication of mammalian chromosomes appears to be linked to their functional organization, but the process that establishes and modifies this order during cell differentiation remains largely unknown. Here, we studied how the replication of the Igh locus initiates, progresses, and terminates in bone marrow pro-B cells undergoing B cell commitment. We show that many aspects of DNA replication can be quantitatively explained by a mechanism involving the stochastic firing of origins (across the S phase and the Igh locus) and extensive variations in their firing rate (along the locus). The firing rate of origins shows a high degree of coordination across Igh domains that span tens to hundreds of kilobases, a phenomenon not observed in simple eukaryotes. Differences in domain sizes and firing rates determine the temporal order of replication. During B cell commitment, the expression of the B-cell-specific factor Pax5 sharply alters the temporal order of replication by modifying the rate of origin firing within various Igh domains (particularly those containing Pax5 binding sites). We propose that, within the Igh CH-3′RR domain, Pax5 is responsible for both establishing and maintaining high rates of origin firing, mostly by controlling events downstream of the assembly of pre-replication complexes. Each time a mammalian cell duplicates its genome in preparation for cell division it activates thousands of so called “DNA origins of replication.” The timely and complete duplication of the genome depends on careful orchestration of origin activation, which is modified when cells differentiate to perform a specific function. We currently lack a universally accepted model of origin regulation that can explain the replication dynamics in complex eukaryotes. Here, we studied the mouse immunoglobulin heavy-chain locus, one of the antibody-encoding portions of the genome, where origins change activity when antibody-producing B cells differentiate in the bone marrow. We show that multiple aspects of DNA replication initiation, progression, and termination can be explained mathematically by the interplay between randomly firing origins and two independent variables: the speed of progression of replication forks and the firing rate of origins along the locus. The rate of origin firing varies extensively along the locus during B cell differentiation and, thus, is a dominant factor in establishing the temporal order of replication. A differentiation factor called Pax5 can alter the temporal order of replication by modifying the rate of origin firing across various parts of the locus.
Collapse
Affiliation(s)
- Agnieszka Demczuk
- Department of Oncology, Montefiore Medical Center, Moses Division, Bronx, New York, United States of America
| | | | - Ingrid Veras
- Department of Oncology, Montefiore Medical Center, Moses Division, Bronx, New York, United States of America
| | - Settapong Kosiyatrakul
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Carl L. Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Paolo Norio
- Department of Oncology, Montefiore Medical Center, Moses Division, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Bechhoefer J, Rhind N. Replication timing and its emergence from stochastic processes. Trends Genet 2012; 28:374-81. [PMID: 22520729 DOI: 10.1016/j.tig.2012.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/28/2023]
Abstract
The temporal organization of DNA replication has puzzled cell biologists since before the mechanism of replication was understood. The realization that replication timing correlates with important features, such as transcription, chromatin structure and genome evolution, and is misregulated in cancer and aging has only deepened the fascination. Many ideas about replication timing have been proposed, but most have been short on mechanistic detail. However, recent work has begun to elucidate basic principles of replication timing. In particular, mathematical modeling of replication kinetics in several systems has shown that the reproducible replication timing patterns seen in population studies can be explained by stochastic origin firing at the single-cell level. This work suggests that replication timing need not be controlled by a hierarchical mechanism that imposes replication timing from a central regulator, but instead results from simple rules that affect individual origins.
Collapse
Affiliation(s)
- John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | | |
Collapse
|
29
|
Abstract
In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.
Collapse
|
30
|
Karschau J, Blow JJ, de Moura APS. Optimal placement of origins for DNA replication. PHYSICAL REVIEW LETTERS 2012; 108:058101. [PMID: 22400964 PMCID: PMC3476000 DOI: 10.1103/physrevlett.108.058101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Indexed: 05/31/2023]
Abstract
DNA replication is an essential process in biology and its timing must be robust so that cells can divide properly. Random fluctuations in the formation of replication starting points, called origins, and the subsequent activation of proteins lead to variations in the replication time. We analyze these stochastic properties of DNA and derive the positions of origins corresponding to the minimum replication time. We show that under some conditions the minimization of replication time leads to the grouping of origins, and relate this to experimental data in a number of species showing origin grouping.
Collapse
Affiliation(s)
- Jens Karschau
- Institute for Complex Systems and Mathematical Biology, SUPA, King's College, University of Aberdeen, Aberdeen 24 3UE, United Kingdom.
| | | | | |
Collapse
|
31
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
32
|
Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput Biol 2011; 7:e1002322. [PMID: 22219720 PMCID: PMC3248390 DOI: 10.1371/journal.pcbi.1002322] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/07/2011] [Indexed: 12/28/2022] Open
Abstract
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics. Eukaryotic chromosomes replicate from multiple replication origins that fire at different times in S phase. The mechanisms that specify origin position and firing time and coordinate origins to ensure complete genome duplication are unclear. Previous studies proposed either that origins are arranged in temporally coordinated groups or fire independently of each other in a stochastic manner. Here, we have performed a quantitative analysis of human genome replication kinetics using a combination of DNA combing, which reveals local patterns of origin firing and replication fork progression on single DNA molecules, and massive sequencing of newly replicated DNA, which reveals the population-averaged replication timing profile of the entire genome. We show that origins are activated synchronously in large regions of uniform replication timing but more gradually in temporal transition regions and that the rate of origin firing increases as replication progresses. Large regions of unidirectional fork progression are abundant in embryonic stem cells but rare in differentiated cells. We propose a model in which replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA in a manner that explains the shape of the replication timing profile. These results provide a fundamental insight into the temporal regulation of mammalian genome replication.
Collapse
|
33
|
Ma E, Hyrien O, Goldar A. Do replication forks control late origin firing in Saccharomyces cerevisiae? Nucleic Acids Res 2011; 40:2010-9. [PMID: 22086957 PMCID: PMC3300028 DOI: 10.1093/nar/gkr982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent studies of eukaryotic DNA replication timing profiles suggest that the time-dependent rate of origin firing, I(t), has a universal shape, which ensures a reproducible replication completion time. However, measurements of I(t) are based on population averages, which may bias the shape of the I(t) because of imperfect cell synchrony and cell-to-cell variability. Here, we measure the population-averaged I(t) profile from synchronized Saccharomyces cerevisiae cells using DNA combing and we extract the single-cell I(t) profile using numerical deconvolution. The single cell I(t) and the population-averaged I(t) extracted from DNA combing and replication timing profiles are similar, indicating a genome scale invariance of the replication process, and excluding cell-to-cell variability in replication time as an explanation for the shape of I(t). The single cell I(t) correlates with fork density in wild-type cells, which is specifically loosened in late S phase in the clb5Δ mutant. A previously proposed numerical model that reproduces the wild-type I(t) profile, could also describe the clb5Δ mutant I(t) once modified to incorporate the decline in CDK activity and the looser dependency of initiation on fork density in the absence of Clb5p. Overall, these results suggest that the replication forks emanating from early fired origins facilitate origin firing in later-replicating regions.
Collapse
Affiliation(s)
- Emilie Ma
- Commissariat à l'Energie Atomique (CEA), iBiTec-S, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
34
|
Barberis M, Spiesser TW, Klipp E. Replication origins and timing of temporal replication in budding yeast: how to solve the conundrum? Curr Genomics 2011; 11:199-211. [PMID: 21037857 PMCID: PMC2878984 DOI: 10.2174/138920210791110942] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 11/22/2022] Open
Abstract
Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the "replicon paradigm" or "temporal program" vs. the "stochastic firing". Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions.
Collapse
Affiliation(s)
- Matteo Barberis
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Invalidenstraβe 42, 10115 Berlin, Germany
| | | | | |
Collapse
|
35
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
36
|
Lee TJ, Pascuzzi PE, Settlage SB, Shultz RW, Tanurdzic M, Rabinowicz PD, Menges M, Zheng P, Main D, Murray JAH, Sosinski B, Allen GC, Martienssen RA, Hanley-Bowdoin L, Vaughn MW, Thompson WF. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state. PLoS Genet 2010; 6:e1000982. [PMID: 20548960 PMCID: PMC2883604 DOI: 10.1371/journal.pgen.1000982] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/12/2010] [Indexed: 12/23/2022] Open
Abstract
DNA replication programs have been studied extensively in yeast and animal systems, where they have been shown to correlate with gene expression and certain epigenetic modifications. Despite the conservation of core DNA replication proteins, little is known about replication programs in plants. We used flow cytometry and tiling microarrays to profile DNA replication of Arabidopsis thaliana chromosome 4 (chr4) during early, mid, and late S phase. Replication profiles for early and mid S phase were similar and encompassed the majority of the euchromatin. Late S phase exhibited a distinctly different profile that includes the remaining euchromatin and essentially all of the heterochromatin. Termination zones were consistent between experiments, allowing us to define 163 putative replicons on chr4 that clustered into larger domains of predominately early or late replication. Early-replicating sequences, especially the initiation zones of early replicons, displayed a pattern of epigenetic modifications specifying an open chromatin conformation. Late replicons, and the termination zones of early replicons, showed an opposite pattern. Histone H3 acetylated on lysine 56 (H3K56ac) was enriched in early replicons, as well as the initiation zones of both early and late replicons. H3K56ac was also associated with expressed genes, but this effect was local whereas replication time correlated with H3K56ac over broad regions. The similarity of the replication profiles for early and mid S phase cells indicates that replication origin activation in euchromatin is stochastic. Replicon organization in Arabidopsis is strongly influenced by epigenetic modifications to histones and DNA. The domain organization of Arabidopsis is more similar to that in Drosophila than that in mammals, which may reflect genome size and complexity. The distinct patterns of association of H3K56ac with gene expression and early replication provide evidence that H3K56ac may be associated with initiation zones and replication origins. During growth and development, all plants and animals must replicate their DNA. This process is regulated to ensure that all sequences are completely and accurately replicated and is limited to S phase of the cell cycle. In the cell, DNA is packaged with histone proteins into chromatin, and both DNA and histones are subject to epigenetic modifications that affect chromatin state. Euchromatin and heterochromatin are chromatin states marked by epigenetic modifications specifying open and closed conformations, respectively. Using the model plant Arabidopsis thaliana, we show that the time at which a DNA sequence replicates is influenced by the epigenetic modifications to the surrounding chromatin. DNA replication occurs in two phases, with euchromatin replicating in early and mid S phase and heterochromatin replicating late. DNA replication time has been linked to gene expression in other organisms, and this is also true in Arabidopsis because more genes are active in euchromatin when compared to heterochromatin. The earliest replicating DNA sequences are associated with acetylation of histone H3 on lysine 56 (H3K56ac). H3K56ac is also abundant in active genes, but the patterns of association of H3K56ac with gene expression and DNA replication are distinct, suggesting that H3K56ac is independently linked to both processes.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Pete E. Pascuzzi
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sharon B. Settlage
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Randall W. Shultz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Pablo D. Rabinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Margit Menges
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ping Zheng
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, United States of America
| | - Dorrie Main
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, United States of America
| | - James A. H. Murray
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Bryon Sosinski
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - George C. Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Linda Hanley-Bowdoin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew W. Vaughn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - William F. Thompson
- Departments of Plant Biology, Genetics, and Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
37
|
Raghuraman MK, Brewer BJ. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res 2010; 18:19-34. [PMID: 20012185 DOI: 10.1007/s10577-009-9099-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program of replication in particular. But what exactly is a temporal program of replication, and how might it arise? In this article, we explore this question, drawing again on the wealth of experimental information in unicellular model organisms.
Collapse
Affiliation(s)
- M K Raghuraman
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98133, USA.
| | | |
Collapse
|
38
|
Abstract
Eukaryotic DNA replication is a complex process. Replication starts at thousand origins that are activated at different times in S phase and terminates when converging replication forks meet. Potential origins are much more abundant than actually fire within a given S phase. The choice of replication origins and their time of activation is never exactly the same in any two cells. Individual origins show different efficiencies and different firing time probability distributions, conferring stochasticity to the DNA replication process. High-throughput microarray and sequencing techniques are providing increasingly huge datasets on the population-averaged spatiotemporal patterns of DNA replication in several organisms. On the other hand, single-molecule replication mapping techniques such as DNA combing provide unique information about cell-to-cell variability in DNA replication patterns. Mathematical modelling is required to fully comprehend the complexity of the chromosome replication process and to correctly interpret these data. Mathematical analysis and computer simulations have been recently used to model and interpret genome-wide replication data in the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe, in Xenopus egg extracts and in mammalian cells. These works reveal how stochasticity in origin usage confers robustness and reliability to the DNA replication process.
Collapse
Affiliation(s)
- Olivier Hyrien
- Ecole Normale Supérieure, UMR CNRS 8541, 46 rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
39
|
Abstract
Eukaryotic chromosomes replicate with defined timing patterns. However, the mechanism that regulates the timing of replication is unknown. In particular, there is an apparent conflict between population experiments, which show defined average replication times, and single-molecule experiments, which show that origins fire stochastically. Here, we provide a simple simulation that demonstrates that stochastic origin firing can produce defined average patterns of replication firing if two criteria are met. The first is that origins must have different relative firing probabilities, with origins that have relatively high firing probability being likely to fire in early S phase and origins with relatively low firing probability being unlikely to fire in early S phase. The second is that the firing probability of all origins must increase during S phase to ensure that origins with relatively low firing probability, which are unlikely to fire in early S phase, become likely to fire in late S phase. In addition, we propose biochemically plausible mechanisms for these criteria and point out how stochastic and defined origin firing can be experimentally distinguished in population experiments.
Collapse
|
40
|
Gauthier MG, Herrick J, Bechhoefer J. Defects and DNA replication. PHYSICAL REVIEW LETTERS 2010; 104:218104. [PMID: 20867141 DOI: 10.1103/physrevlett.104.218104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Indexed: 05/29/2023]
Abstract
We introduce a rate-equation formalism to study DNA replication kinetics in the presence of defects resulting from DNA damage and find a crossover between two regimes: a normal regime, where the influence of defects is local, and an initiation-limited regime. In the latter, defects have a global impact on replication, whose progress is set by the rate at which origins of replication are activated, or initiated. Normal, healthy cells have defect densities in the normal regime. Our model can explain an observed correlation between interorigin separation and rate of DNA replication.
Collapse
Affiliation(s)
- Michel G Gauthier
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
| | | | | |
Collapse
|
41
|
Brümmer A, Salazar C, Zinzalla V, Alberghina L, Höfer T. Mathematical modelling of DNA replication reveals a trade-off between coherence of origin activation and robustness against rereplication. PLoS Comput Biol 2010; 6:e1000783. [PMID: 20485558 PMCID: PMC2869307 DOI: 10.1371/journal.pcbi.1000783] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 04/13/2010] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic genomes are duplicated from multiple replication origins exactly once per cell cycle. In Saccharomyces cerevisiae, a complex molecular network has been identified that governs the assembly of the replication machinery. Here we develop a mathematical model that links the dynamics of this network to its performance in terms of rate and coherence of origin activation events, number of activated origins, the resulting distribution of replicon sizes and robustness against DNA rereplication. To parameterize the model, we use measured protein expression data and systematically generate kinetic parameter sets by optimizing the coherence of origin firing. While randomly parameterized networks yield unrealistically slow kinetics of replication initiation, networks with optimized parameters account for the experimentally observed distribution of origin firing times. Efficient inhibition of DNA rereplication emerges as a constraint that limits the rate at which replication can be initiated. In addition to the separation between origin licensing and firing, a time delay between the activation of S phase cyclin-dependent kinase (S-Cdk) and the initiation of DNA replication is required for preventing rereplication. Our analysis suggests that distributive multisite phosphorylation of the S-Cdk targets Sld2 and Sld3 can generate both a robust time delay and contribute to switch-like, coherent activation of replication origins. The proposed catalytic function of the complex formed by Dpb11, Sld3 and Sld2 strongly enhances coherence and robustness of origin firing. The model rationalizes how experimentally observed inefficient replication from fewer origins is caused by premature activation of S-Cdk, while premature activity of the S-Cdk targets Sld2 and Sld3 results in DNA rereplication. Thus the model demonstrates how kinetic deregulation of the molecular network governing DNA replication may result in genomic instability.
Collapse
Affiliation(s)
- Anneke Brümmer
- Research Group Modelling of Biological Systems (B086), German Cancer Research Center, Heidelberg, Germany
- BioQuant Center, Heidelberg, Germany
| | - Carlos Salazar
- Research Group Modelling of Biological Systems (B086), German Cancer Research Center, Heidelberg, Germany
- BioQuant Center, Heidelberg, Germany
| | | | - Lilia Alberghina
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
- * E-mail: (LA); (TH)
| | - Thomas Höfer
- Research Group Modelling of Biological Systems (B086), German Cancer Research Center, Heidelberg, Germany
- BioQuant Center, Heidelberg, Germany
- * E-mail: (LA); (TH)
| |
Collapse
|
42
|
Conti C, Leo E, Eichler GS, Sordet O, Martin MM, Fan A, Aladjem MI, Pommier Y. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res 2010; 70:4470-80. [PMID: 20460513 DOI: 10.1158/0008-5472.can-09-3028] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein acetylation is a reversible process regulated by histone deacetylases (HDAC) that is often altered in human cancers. Suberoylanilide hydroxamic acid (SAHA) is the first HDAC inhibitor to be approved for clinical use as an anticancer agent. Given that histone acetylation is a key determinant of chromatin structure, we investigated how SAHA may affect DNA replication and integrity to gain deeper insights into the basis for its anticancer activity. Nuclear replication factories were visualized with confocal immunofluorescence microscopy and single-replicon analyses were conducted by genome-wide molecular combing after pulse labeling with two thymidine analogues. We found that pharmacologic concentrations of SAHA induce replication-mediated DNA damage with activation of histone gammaH2AX. Single DNA molecule analyses indicated slowdown in replication speed along with activation of dormant replication origins in response to SAHA. Similar results were obtained using siRNA-mediated depletion of HDAC3 expression, implicating this HDAC member as a likely target in the SAHA response. Activation of dormant origins was confirmed by molecular analyses of the beta-globin locus control region. Our findings demonstrate that SAHA produces profound alterations in DNA replication that cause DNA damage, establishing a critical link between robust chromatin acetylation and DNA replication in human cancer cells.
Collapse
Affiliation(s)
- Chiara Conti
- Laboratory of Molecular Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
de Moura APS, Retkute R, Hawkins M, Nieduszynski CA. Mathematical modelling of whole chromosome replication. Nucleic Acids Res 2010; 38:5623-33. [PMID: 20457753 PMCID: PMC2943597 DOI: 10.1093/nar/gkq343] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
All chromosomes must be completely replicated prior to cell division, a requirement that demands the activation of a sufficient number of appropriately distributed DNA replication origins. Here we investigate how the activity of multiple origins on each chromosome is coordinated to ensure successful replication. We present a stochastic model for whole chromosome replication where the dynamics are based upon the parameters of individual origins. Using this model we demonstrate that mean replication time at any given chromosome position is determined collectively by the parameters of all origins. Combining parameter estimation with extensive simulations we show that there is a range of model parameters consistent with mean replication data, emphasising the need for caution in interpreting such data. In contrast, the replicated-fraction at time points through S phase contains more information than mean replication time data and allowed us to use our model to uniquely estimate many origin parameters. These estimated parameters enable us to make a number of predictions that showed agreement with independent experimental data, confirming that our model has predictive power. In summary, we demonstrate that a stochastic model can recapitulate experimental observations, including those that might be interpreted as deterministic such as ordered origin activation times.
Collapse
Affiliation(s)
- Alessandro P S de Moura
- Department of Physics, University of Aberdeen, Aberdeen AB24 3UE and School of Biology, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
44
|
|
45
|
Universal temporal profile of replication origin activation in eukaryotes. PLoS One 2009; 4:e5899. [PMID: 19521533 PMCID: PMC2690853 DOI: 10.1371/journal.pone.0005899] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/20/2009] [Indexed: 01/25/2023] Open
Abstract
Although replication proteins are conserved among eukaryotes, the sequence requirements for replication initiation differ between species. In all species, however, replication origins fire asynchronously throughout S phase. The temporal program of origin firing is reproducible in cell populations but largely probabilistic at the single-cell level. The mechanisms and the significance of this program are unclear. Replication timing has been correlated with gene activity in metazoans but not in yeast. One potential role for a temporal regulation of origin firing is to minimize fluctuations in replication end time and avoid persistence of unreplicated DNA in mitosis. Here, we have extracted the population-averaged temporal profiles of replication initiation rates for S. cerevisiae, S. pombe, D. melanogaster, X. laevis and H. sapiens from genome-wide replication timing and DNA combing data. All the profiles have a strikingly similar shape, increasing during the first half of S phase then decreasing before its end. A previously proposed minimal model of stochastic initiation modulated by accumulation of a recyclable, limiting replication-fork factor and fork-promoted initiation of new origins, quantitatively described the observed profiles without requiring new implementations. The selective pressure for timely completion of genome replication and optimal usage of replication proteins that must be imported into the cell nucleus can explain the generic shape of the profiles. We have identified a universal behavior of eukaryotic replication initiation that transcends the mechanisms of origin specification. The population-averaged efficiency of replication origin usage changes during S phase in a strikingly similar manner in a highly diverse set of eukaryotes. The quantitative model previously proposed for origin activation in X. laevis can be generalized to explain this evolutionary conservation.
Collapse
|
46
|
Gauthier MG, Bechhoefer J. Control of DNA replication by anomalous reaction-diffusion kinetics. PHYSICAL REVIEW LETTERS 2009; 102:158104. [PMID: 19518676 DOI: 10.1103/physrevlett.102.158104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Indexed: 05/27/2023]
Abstract
We propose a simple model for the control of DNA replication in which the rate of initiation of replication origins is controlled by protein-DNA interactions. Analyzing recent data from Xenopus frog embryos, we find that the initiation rate is reaction limited until nearly the end of replication, when it becomes diffusion limited. Initiation of origins is suppressed when the diffusion-limited search time dominates. To fit the experimental data, we find that the interaction between DNA and the rate-limiting protein must be subdiffusive.
Collapse
Affiliation(s)
- Michel G Gauthier
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | |
Collapse
|
47
|
Affiliation(s)
- Suckjoon Jun
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Nick Rhind
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|