1
|
Arya P, Kolodny NH, Gobes SMH. Tracing the development of learned song preferences in the female zebra finch brain with functional magnetic resonance imaging. Dev Neurobiol 2024; 84:47-58. [PMID: 38466218 PMCID: PMC11009042 DOI: 10.1002/dneu.22934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.
Collapse
Affiliation(s)
- Payal Arya
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 02481, USA
| | - Nancy H. Kolodny
- Chemistry Department, Wellesley College, Wellesley, Massachusetts 02481, USA
| | - Sharon M. H. Gobes
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 02481, USA
| |
Collapse
|
2
|
Khodadadi M, Helluy X, Güntürkün O, Behroozi M. Segmented spin-echo echo-planar imaging improves whole-brain BOLD functional MRI in awake pigeon brains. NMR IN BIOMEDICINE 2024; 37:e5034. [PMID: 37681398 DOI: 10.1002/nbm.5034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) in awake small animals such as pigeons or songbirds opens a new window into the neural fundaments of cognitive behavior. However, high-field fMRI in the avian brain is challenging due to strong local magnetic field inhomogeneities caused by air cavities in the skull. A spoiled gradient-echo fMRI sequence has already been used to map the auditory network in songbirds, but due to susceptibility artifacts only 50% of the whole brain could be recorded. Since whole-brain fMRI coverage is vital to reveal whole-brain networks, an MRI sequence that is less susceptible to these artifacts was required. This was recently achieved in various bird species by using a rapid acquisition with relaxation enhancement (RARE) sequence. Weak blood oxygen level-dependent (BOLD) sensitivity, low temporal resolution, and heat caused by the long train of RF refocusing pulses are the main limits of RARE fMRI at high magnetic fields. To go beyond some of these limitations, we here describe the implementation of a two-segmented spin-echo echo-planar imaging (SE-EPI). The proposed sequence covers the whole brain of awake pigeons. The sequence was applied to investigate the auditory network in awake pigeons and assessed the relative merits of this method in comparison with the single-shot RARE sequence. At the same imaging resolution but with a volume acquisition of 3 s versus 4 s for RARE, the two-segmented SE-EPI provided twice the strength of BOLD activity compared with the single-shot RARE sequence, while the image signal-to-noise ratio (SNR) and in particular the temporal SNR were very similar for the two sequences. In addition, the activation patterns in two-segmented SE-EPI data are more symmetric and larger than single-shot RARE results. Two-segmented SE-EPI represents a valid alternative to the RARE sequence in avian fMRI research since it yields more than twice the BOLD sensitivity per unit of time with much less energy deposition and better temporal resolution, particularly for event-related experiments.
Collapse
Affiliation(s)
- Mina Khodadadi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Xavier Helluy
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Arya P, Petkova SP, Kulkarni PP, Kolodny NH, Gobes SMH. Tracing development of song memory with fMRI in zebra finches after a second tutoring experience. Commun Biol 2023; 6:345. [PMID: 36997617 PMCID: PMC10063632 DOI: 10.1038/s42003-023-04724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Sensory experiences in early development shape higher cognitive functions such as language acquisition in humans and song learning in birds. Zebra finches (Taeniopygia guttata) sequentially exposed to two different song 'tutors' during the sensitive period in development are able to learn from their second tutor and eventually imitate aspects of his song, but the neural substrate involved in learning a second song is unknown. We used fMRI to examine neural activity associated with learning two songs sequentially. We found that acquisition of a second song changes lateralization of the auditory midbrain. Interestingly, activity in the caudolateral Nidopallium (NCL), a region adjacent to the secondary auditory cortex, was related to the fidelity of second-song imitation. These findings demonstrate that experience with a second tutor can permanently alter neural activity in brain regions involved in auditory perception and song learning.
Collapse
Affiliation(s)
- Payal Arya
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Stela P Petkova
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Praveen P Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, 02115, USA
| | - Nancy H Kolodny
- Chemistry Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sharon M H Gobes
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
4
|
Van der Linden A, Balthazart J. Rapid changes in auditory processing in songbirds following acute aromatase inhibition as assessed by fMRI. Horm Behav 2018; 104:63-76. [PMID: 29605635 DOI: 10.1016/j.yhbeh.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. This review introduces functional MRI (fMRI) as an outstanding tool to assess rapid effects of sex steroids on auditory processing in seasonal songbirds. We emphasize specific advantages of this method as compared to other more conventional and invasive methods used for this purpose and summarize an exemplary auditory fMRI study performed on male starlings exposed to different types of starling song before and immediately after the inhibition of aromatase activity by an i.p. injection of Vorozole™. We describe how most challenges that relate to the necessity to anesthetize subjects and minimize image- and sound-artifacts can be overcome in order to obtain a voxel-based 3D-representation of changes in auditory brain activity to various sound stimuli before and immediately after a pharmacologically-induced depletion of endogenous estrogens. Analysis of the fMRI data by assumption-free statistical methods identified fast specific changes in activity in the auditory brain regions that were stimulus-specific, varying over different seasons, and in several instances lateralized to the left side of the brain. This set of results illustrates the unique features of fMRI that provides opportunities to localize and quantify the brain responses to rapid changes in hormonal status. fMRI offers a new image-guided research strategy in which the spatio-temporal profile of fast neuromodulations can be identified and linked to specific behavioral inputs or outputs. This approach can also be combined with more localized invasive methods to investigate the mechanisms underlying the observed neural changes.
Collapse
Affiliation(s)
- Annemie Van der Linden
- Bio-Imaging Laboratory, University of Antwerp, CDE, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
5
|
David SV. Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding. Hear Res 2018; 360:107-123. [PMID: 29331232 PMCID: PMC6292525 DOI: 10.1016/j.heares.2017.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 01/11/2023]
Abstract
For several decades, auditory neuroscientists have used spectro-temporal encoding models to understand how neurons in the auditory system represent sound. Derived from early applications of systems identification tools to the auditory periphery, the spectro-temporal receptive field (STRF) and more sophisticated variants have emerged as an efficient means of characterizing representation throughout the auditory system. Most of these encoding models describe neurons as static sensory filters. However, auditory neural coding is not static. Sensory context, reflecting the acoustic environment, and behavioral context, reflecting the internal state of the listener, can both influence sound-evoked activity, particularly in central auditory areas. This review explores recent efforts to integrate context into spectro-temporal encoding models. It begins with a brief tutorial on the basics of estimating and interpreting STRFs. Then it describes three recent studies that have characterized contextual effects on STRFs, emerging over a range of timescales, from many minutes to tens of milliseconds. An important theme of this work is not simply that context influences auditory coding, but also that contextual effects span a large continuum of internal states. The added complexity of these context-dependent models introduces new experimental and theoretical challenges that must be addressed in order to be used effectively. Several new methodological advances promise to address these limitations and allow the development of more comprehensive context-dependent models in the future.
Collapse
Affiliation(s)
- Stephen V David
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, MC L335A, Portland, OR 97239, United States.
| |
Collapse
|
6
|
Auditory evoked BOLD responses in awake compared to lightly anaesthetized zebra finches. Sci Rep 2017; 7:13563. [PMID: 29051552 PMCID: PMC5648849 DOI: 10.1038/s41598-017-13014-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is increasingly used in cognitive neuroscience and has become a valuable tool in the study of auditory processing in zebra finches, a well-established model of learned vocal communication. Due to its sensitivity to head motion, most fMRI studies in animals are performed in anaesthetized conditions, which might significantly impact neural activity evoked by stimuli and cognitive tasks. In this study, we (1) demonstrate the feasibility of fMRI in awake zebra finches and (2) explore how light anaesthesia regimes affect auditory-evoked BOLD responses to biologically relevant songs. After an acclimation procedure, we show that fMRI can be successfully performed during wakefulness, enabling the detection of reproducible BOLD responses to sound. Additionally, two light anaesthesia protocols were tested (isoflurane and a combination of medetomidine and isoflurane), of which isoflurane alone appeared to be the most promising given the high success rate, non-invasive induction, and quick recovery. By comparing auditory evoked BOLD responses in awake versus lightly anaesthetized conditions, we observed overall effects of anaesthetics on cerebrovascular reactivity as reflected in the extent of positive and negative BOLD responses. Further, our results indicate that light anaesthesia has limited effects on selective BOLD responses to natural versus synthetic sounds.
Collapse
|
7
|
The perception of self in birds. Neurosci Biobehav Rev 2016; 69:1-14. [DOI: 10.1016/j.neubiorev.2016.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022]
|
8
|
Lau C, Pienkowski M, Zhang JW, McPherson B, Wu EX. Chronic exposure to broadband noise at moderate sound pressure levels spatially shifts tone-evoked responses in the rat auditory midbrain. Neuroimage 2015; 122:44-51. [DOI: 10.1016/j.neuroimage.2015.07.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 02/09/2023] Open
|
9
|
Karten HJ, Brzozowska-Prechtl A, Lovell PV, Tang DD, Mello CV, Wang H, Mitra PP. Digital atlas of the zebra finch (Taeniopygia guttata) brain: a high-resolution photo atlas. J Comp Neurol 2014; 521:3702-15. [PMID: 23896990 DOI: 10.1002/cne.23443] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 03/12/2013] [Accepted: 07/18/2013] [Indexed: 11/06/2022]
Abstract
We describe a set of new comprehensive, high-quality, high-resolution digital images of histological sections from the brain of male zebra finches (Taeniopygia guttata) and make them publicly available through an interactive website (http://zebrafinch.brainarchitecture.org/). These images provide a basis for the production of a dimensionally accurate and detailed digital nonstereotaxic atlas. Nissl- and myelin-stained brain sections are provided in the transverse, sagittal, and horizontal planes, with the transverse plane approximating the more traditional Frankfurt plane. In addition, a separate set of brain sections in this same plane is stained for tyrosine hydroxylase, revealing the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the songbird brain. For a subset of sagittal sections we also prepared a corresponding set of drawings, defining and annotating various nuclei, fields, and fiber tracts that are visible under Nissl and myelin staining. This atlas of the zebra finch brain is expected to become an important tool for birdsong research and comparative studies of brain organization and evolution.
Collapse
Affiliation(s)
- Harvey J Karten
- Department of Neuroscience, University of California at San Diego, La Jolla, California, 92093
| | | | | | | | | | | | | |
Collapse
|
10
|
Differential effects of prenatal chronic high-decibel noise and music exposure on the excitatory and inhibitory synaptic components of the auditory cortex analog in developing chicks (Gallus gallus domesticus). Neuroscience 2014; 269:302-17. [DOI: 10.1016/j.neuroscience.2014.03.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023]
|
11
|
Abstract
Songbirds spend much of their time learning, producing, and listening to complex vocal sequences we call songs. Songs are learned via cultural transmission, and singing, usually by males, has a strong impact on the behavioral state of the listeners, often promoting affiliation, pair bonding, or aggression. What is it in the acoustic structure of birdsong that makes it such a potent stimulus? We suggest that birdsong potency might be driven by principles similar to those that make music so effective in inducing emotional responses in humans: a combination of rhythms and pitches-and the transitions between acoustic states-affecting emotions through creating expectations, anticipations, tension, tension release, or surprise. Here we propose a framework for investigating how birdsong, like human music, employs the above "musical" features to affect the emotions of avian listeners. First we analyze songs of thrush nightingales (Luscinia luscinia) by examining their trajectories in terms of transitions in rhythm and pitch. These transitions show gradual escalations and graceful modifications, which are comparable to some aspects of human musicality. We then explore the feasibility of stripping such putative musical features from the songs and testing how this might affect patterns of auditory responses, focusing on fMRI data in songbirds that demonstrate the feasibility of such approaches. Finally, we explore ideas for investigating whether musical features of birdsong activate avian brains and affect avian behavior in manners comparable to music's effects on humans. In conclusion, we suggest that birdsong research would benefit from current advances in music theory by attempting to identify structures that are designed to elicit listeners' emotions and then testing for such effects experimentally. Birdsong research that takes into account the striking complexity of song structure in light of its more immediate function - to affect behavioral state in listeners - could provide a useful animal model for studying basic principles of music neuroscience in a system that is very accessible for investigation, and where developmental auditory and social experience can be tightly controlled.
Collapse
|
12
|
Van Ruijssevelt L, De Groof G, Van der Kant A, Poirier C, Van Audekerke J, Verhoye M, Van der Linden A. Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds. J Vis Exp 2013. [PMID: 23770665 DOI: 10.3791/4369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.
Collapse
|
13
|
Noninvasive diffusive optical imaging of the auditory response to birdsong in the zebra finch. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:227-38. [PMID: 23322445 DOI: 10.1007/s00359-012-0788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/08/2012] [Accepted: 12/17/2012] [Indexed: 01/15/2023]
Abstract
Songbirds communicate by learned vocalizations with concomitant changes in neurophysiological and genomic activities in discrete parts of the brain. Here, we tested a novel implementation of diffusive optical imaging (also known as diffuse optical imaging, DOI) for monitoring brain physiology associated with vocal signal perception. DOI noninvasively measures brain activity using red and near-infrared light delivered through optic fibers (optodes) resting on the scalp. DOI does not harm subjects, so it raises the possibility of repeatedly measuring brain activity and the effects of accumulated experience in the same subject over an entire life span, all while leaving tissue intact for further study. We developed a custom-made apparatus for interfacing optodes to the zebra finch (Taeniopygia guttata) head using 3D modeling software and rapid prototyping technology, and applied it to record responses to presentations of birdsong in isoflurane-anesthetized zebra finches. We discovered a subtle but significant difference between the hemoglobin spectra of zebra finches and mammals which has a major impact in how hemodynamic responses are interpreted in the zebra finch. Our measured responses to birdsong playback were robust, highly repeatable, and readily observed in single trials. Responses were complex in shape and closely paralleled responses described in mammals. They were localized to the caudal medial portion of the brain, consistent with response localization from prior gene expression, electrophysiological, and functional magnetic resonance imaging studies. These results define an approach for collecting neurophysiological data from songbirds that should be applicable to diverse species and adaptable for studies in awake behaving animals.
Collapse
|
14
|
Van Ruijssevelt L, Van der Kant A, De Groof G, Van der Linden A. Current state-of-the-art of auditory functional MRI (fMRI) on zebra finches: technique and scientific achievements. ACTA ACUST UNITED AC 2012; 107:156-69. [PMID: 22960664 DOI: 10.1016/j.jphysparis.2012.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 01/27/2023]
Abstract
Songbirds provide an excellent model system exhibiting vocal learning associated with an extreme brain plasticity linked to quantifiable behavioral changes. This animal model has thus far been intensively studied using electrophysiological, histological and molecular mapping techniques. However, these approaches do not provide a global view of the brain and/or do not allow repeated measures, which are necessary to establish correlations between alterations in neural substrate and behavior. In contrast, functional Magnetic Resonance Imaging (fMRI) is a non-invasive in vivo technique which allows one (i) to study brain function in the same subject over time, and (ii) to address the entire brain at once. During the last decades, fMRI has become one of the most popular neuroimaging techniques in cognitive neuroscience for the study of brain activity during various tasks ranging from simple sensory-motor to highly cognitive tasks. By alternating various stimulation periods with resting periods during scanning, resting and task-specific regional brain activity can be determined with this technique. Despite its obvious benefits, fMRI has, until now, only been sparsely used to study cognition in non-human species such as songbirds. The Bio-Imaging Lab (University of Antwerp, Belgium) was the first to implement Blood Oxygen Level Dependent (BOLD) fMRI in songbirds - and in particular zebra finches - for the visualization of sound perception and processing in auditory and song control brain regions. The present article provides an overview of the establishment and optimization of this technique in our laboratory and of the resulting scientific findings. The introduction of fMRI in songbirds has opened new research avenues that permit experimental analysis of complex sensorimotor and cognitive processes underlying vocal communication in this animal model.
Collapse
Affiliation(s)
- Lisbeth Van Ruijssevelt
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken, Building Uc, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | |
Collapse
|
15
|
Petkov CI, Jarvis ED. Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. FRONTIERS IN EVOLUTIONARY NEUROSCIENCE 2012; 4:12. [PMID: 22912615 PMCID: PMC3419981 DOI: 10.3389/fnevo.2012.00012] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 07/20/2012] [Indexed: 11/18/2022]
Abstract
Vocal learners such as humans and songbirds can learn to produce elaborate patterns of structurally organized vocalizations, whereas many other vertebrates such as non-human primates and most other bird groups either cannot or do so to a very limited degree. To explain the similarities among humans and vocal-learning birds and the differences with other species, various theories have been proposed. One set of theories are motor theories, which underscore the role of the motor system as an evolutionary substrate for vocal production learning. For instance, the motor theory of speech and song perception proposes enhanced auditory perceptual learning of speech in humans and song in birds, which suggests a considerable level of neurobiological specialization. Another, a motor theory of vocal learning origin, proposes that the brain pathways that control the learning and production of song and speech were derived from adjacent motor brain pathways. Another set of theories are cognitive theories, which address the interface between cognition and the auditory-vocal domains to support language learning in humans. Here we critically review the behavioral and neurobiological evidence for parallels and differences between the so-called vocal learners and vocal non-learners in the context of motor and cognitive theories. In doing so, we note that behaviorally vocal-production learning abilities are more distributed than categorical, as are the auditory-learning abilities of animals. We propose testable hypotheses on the extent of the specializations and cross-species correspondences suggested by motor and cognitive theories. We believe that determining how spoken language evolved is likely to become clearer with concerted efforts in testing comparative data from many non-human animal species.
Collapse
Affiliation(s)
- Christopher I. Petkov
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
- Centre for Behavior and Evolution, Newcastle UniversityNewcastle upon Tyne, UK
| | - Erich D. Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke UniversityDurham, NC, USA
| |
Collapse
|
16
|
BOLD fMRI investigation of the rat auditory pathway and tonotopic organization. Neuroimage 2012; 60:1205-11. [PMID: 22297205 DOI: 10.1016/j.neuroimage.2012.01.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022] Open
Abstract
Rodents share general anatomical, physiological and behavioral features in the central auditory system with humans. In this study, monaural broadband noise and pure tone sounds are presented to normal rats and the resulting hemodynamic responses are measured with blood oxygenation level-dependent (BOLD) fMRI using a standard spin-echo echo planar imaging sequence (without sparse temporal sampling). The cochlear nucleus (CN), superior olivary complex, lateral lemniscus, inferior colliculus (IC), medial geniculate body and primary auditory cortex, all major auditory structures, are activated by broadband stimulation. The CN and IC BOLD signal changes increase monotonically with sound pressure level. Pure tone stimulation with three distinct frequencies (7, 20 and 40 kHz) reveals the tonotopic organization of the IC. The activated regions shift from dorsolateral to ventromedial IC with increasing frequency. These results agree with electrophysiology and immunohistochemistry findings, indicating the feasibility of auditory fMRI in rats. This is the first fMRI study of the rodent ascending auditory pathway.
Collapse
|
17
|
Poirier C, Verhoye M, Boumans T, Van der Linden A. Implementation of spin-echo blood oxygen level-dependent (BOLD) functional MRI in birds. NMR IN BIOMEDICINE 2010; 23:1027-1032. [PMID: 20806227 DOI: 10.1002/nbm.1525] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The advent of high-field MRI systems has allowed the implementation of blood oxygen level-dependent functional MRI (BOLD fMRI) on small animals. An increased magnetic field improves the signal-to-noise ratio and thus allows an improvement in the spatial resolution. However, it also increases susceptibility artefacts in the commonly acquired gradient-echo images. This problem is particularly prominent in songbird MRI because of the presence of numerous air cavities in the skull of birds. These T(2)*-related image artefacts can be circumvented using spin-echo BOLD fMRI. In this article, we describe the implementation of spin-echo BOLD fMRI in zebra finches, a small songbird of 15-25 g, extensively studied in the behavioural neurosciences of birdsong. Because the main topics in this research domain are song perception and song learning, the protocol implemented used auditory stimuli. Despite the auditory nature of the stimuli and the weak contrast-to-noise ratio of spin-echo BOLD fMRI compared with gradient-echo BOLD fMRI, we succeeded in detecting statistically significant differences in BOLD responses triggered by different stimuli. This study shows that spin-echo BOLD fMRI is a viable approach for the investigation of auditory processing in the whole brain of small songbirds. It can also be applied to study auditory processing in other small animals, as well as other sensory modalities.
Collapse
Affiliation(s)
- Colline Poirier
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
18
|
Akutagawa E, Konishi M. New brain pathways found in the vocal control system of a songbird. J Comp Neurol 2010; 518:3086-100. [PMID: 20533361 DOI: 10.1002/cne.22383] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Songbirds use a complex network of discrete brain areas and connecting fiber tracts to sing their song, but our knowledge of this circuitry may be incomplete. The forebrain area, "caudal mesopallium" (CM), has received much attention recently for its song-related activities. HVC, a prominent song system nucleus, projects to a restricted area of the CM known as the avalanche nucleus (Av). However, the other connections of Av remain unknown. Here we used tract-tracing methods to examine the connections of Av to other song system nuclei. Injections of biotinylated dextran amine (BDA) into Av labeled both afferent terminals and neurons in HVC and the interfacial nucleus of the nidopallium (NIf), suggesting that there is complex feedforward and feedback communication between these nuclei (HVC<-->Av<-->NIf). Labeled neurons were also found in the uvaeform nucleus (Uva), which was substantiated by BDA injections into Uva that labeled terminals in Av. Double fluorescent tracing experiments confirm that both HVC and Uva project to Av. The present study adds complex new connections that expand the traditional song system circuitry into the caudal mesopallium. These new pathways are likely to have broad implications for deciphering how this intricate system works.
Collapse
Affiliation(s)
- Eugene Akutagawa
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
19
|
Van der Linden A, Van Meir V, Boumans T, Poirier C, Balthazart J. MRI in small brains displaying extensive plasticity. Trends Neurosci 2009; 32:257-66. [PMID: 19307029 DOI: 10.1016/j.tins.2009.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 12/18/2008] [Accepted: 01/06/2009] [Indexed: 01/28/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (ME-MRI), blood oxygen-level-dependent functional MRI (BOLD fMRI) and diffusion tensor imaging (DTI) can now be applied to animal species as small as mice or songbirds. These techniques confirmed previous findings but are also beginning to reveal new phenomena that were difficult or impossible to study previously. These imaging techniques will lead to major technical and conceptual advances in systems neurosciences. We illustrate these new developments with studies of the song control and auditory systems in songbirds, a spatially organized neuronal circuitry that mediates the acquisition, production and perception of complex learned vocalizations. This neural system is an outstanding model for studying vocal learning, brain steroid hormone action, brain plasticity and lateralization of brain function.
Collapse
|
20
|
Poirier C, Boumans T, Verhoye M, Balthazart J, Van der Linden A. Own-song recognition in the songbird auditory pathway: selectivity and lateralization. J Neurosci 2009; 29:2252-8. [PMID: 19228978 PMCID: PMC2677151 DOI: 10.1523/jneurosci.4650-08.2009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/17/2008] [Accepted: 01/08/2009] [Indexed: 11/21/2022] Open
Abstract
The songbird brain is able to discriminate between the bird's own song and other conspecific songs. Determining where in the brain own- song selectivity emerges is of great importance because experience-dependent mechanisms are necessarily involved and because brain regions sensitive to self-generated vocalizations could mediate auditory feedback that is necessary for song learning and maintenance. Using functional MRI, here we show that this selectivity is present at the midbrain level. Surprisingly, the selectivity was found to be lateralized toward the right side, a finding reminiscent of the potential right lateralization of song production in zebra finches but also of own-face and own-voice recognition in human beings. These results indicate that a midbrain structure can process subtle information about the identity of a subject through experience-dependent mechanisms, challenging the classical perception of subcortical regions as primitive and nonplastic structures. They also open questions about the evolution of the cognitive skills and lateralization in vertebrates.
Collapse
Affiliation(s)
- Colline Poirier
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, B-2020 Antwerp, Belgium.
| | | | | | | | | |
Collapse
|