1
|
Liu X, Ji M, Gao Y, Li Y, Zhao Z, Zhang J. Coat protein I genes are essential for the morphogenesis of the intestinal tract in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106291. [PMID: 40015883 DOI: 10.1016/j.pestbp.2025.106291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
The coat protein I (COPI) complex is crucial in several significant physiological processes in eukaryotes. The assembly of COPI vesicles is initiated by the recruitment of adenosine diphosphate-ribosylation factor 1 (Arf1) to the membrane. Previous studies have primarily focused on the roles of COPI in yeast, humans, insects, and beyond Drosophila. However, the function of COPI during the development of insects remains largely unknown. In this study, we first identified eight COPI assembly genes, including α-, β-, β'-, γ-, δ-, ε-, ζ-COPI, and Arf1 in Locusta migratoria. Quantitative reverse-transcription polymerase chain reaction revealed that these genes were uniformly expressed in multiple tissues, including wing pads, leg, foregut, midgut, hindgut, and gastric cecum, and on all developmental days in 5th-instar nymphs. The injection of double-stranded RNAs (dsRNAs) against LmCOPI and LmArf1 induced high silencing efficiency in the 3rd- and 5th-instar nymphs. Locusts treated with dsLmCOPIs and dsLmArf1 exhibited feeding cessation, leading to 100 % mortality. LmCOPIs and LmArf1 knockdown resulted in midgut and gastric cecum atrophy. Histological observation and hematoxylin-eosin staining indicated that the midgut and gastric cecum exhibited deformed structures, with defective microvilli and midgut peritrophic matrix. These results suggest that LmCOPIs and LmArf1 significantly affect the intestinal tract morphogenesis in locust nymphs. Thus, COPI assembly genes are promising RNA interference targets for managing L. migratoria, reducing the dependence on chemical pesticides for pest control.
Collapse
Affiliation(s)
- Xiaojian Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Mingzhu Ji
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Ya Gao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Yao Li
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Zhangwu Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Zhang H, Rui M, Ma Z, Gong S, Zhang S, Zhou Q, Gan C, Gong W, Wang S. Golgi-to-ER retrograde transport prevents premature differentiation of Drosophila type II neuroblasts via Notch-signal-sending daughter cells. iScience 2024; 27:108545. [PMID: 38213621 PMCID: PMC10783626 DOI: 10.1016/j.isci.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Stem cells are heterogeneous to generate diverse differentiated cell types required for organogenesis; however, the underlying mechanisms that differently maintain these heterogeneous stem cells are not well understood. In this study, we identify that Golgi-to-endoplasmic reticulum (ER) retrograde transport specifically maintains type II neuroblasts (NBs) through the Notch signaling. We reveal that intermediate neural progenitors (INPs), immediate daughter cells of type II NBs, provide Delta and function as the NB niche. The Delta used by INPs is mainly produced by NBs and asymmetrically distributed to INPs. Blocking retrograde transport leads to a decrease in INP number, which reduces Notch activity and results in the premature differentiation of type II NBs. Furthermore, the reduction of Delta could suppress tumor formation caused by type II NBs. Our results highlight the crosstalk between Golgi-to-ER retrograde transport, Notch signaling, stem cell niche, and fusion as an essential step in maintaining the self-renewal of type II NB lineage.
Collapse
Affiliation(s)
- Huanhuan Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhixin Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Sifan Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shuliu Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qingxia Zhou
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Congfeng Gan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wenting Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
3
|
Drees L, Schneider S, Riedel D, Schuh R, Behr M. The proteolysis of ZP proteins is essential to control cell membrane structure and integrity of developing tracheal tubes in Drosophila. eLife 2023; 12:e91079. [PMID: 37872795 PMCID: PMC10597583 DOI: 10.7554/elife.91079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
Membrane expansion integrates multiple forces to mediate precise tube growth and network formation. Defects lead to deformations, as found in diseases such as polycystic kidney diseases, aortic aneurysms, stenosis, and tortuosity. We identified a mechanism of sensing and responding to the membrane-driven expansion of tracheal tubes. The apical membrane is anchored to the apical extracellular matrix (aECM) and causes expansion forces that elongate the tracheal tubes. The aECM provides a mechanical tension that balances the resulting expansion forces, with Dumpy being an elastic molecule that modulates the mechanical stress on the matrix during tracheal tube expansion. We show in Drosophila that the zona pellucida (ZP) domain protein Piopio interacts and cooperates with the ZP protein Dumpy at tracheal cells. To resist shear stresses which arise during tube expansion, Piopio undergoes ectodomain shedding by the Matriptase homolog Notopleural, which releases Piopio-Dumpy-mediated linkages between membranes and extracellular matrix. Failure of this process leads to deformations of the apical membrane, tears the apical matrix, and impairs tubular network function. We also show conserved ectodomain shedding of the human TGFβ type III receptor by Notopleural and the human Matriptase, providing novel findings for in-depth analysis of diseases caused by cell and tube shape changes.
Collapse
Affiliation(s)
- Leonard Drees
- Research Group Molecular Organogenesis, Department of Molecular Developmental Biology, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Susi Schneider
- Cell biology, Institute for Biology, Leipzig UniversityLeipzigGermany
| | - Dietmar Riedel
- Facility for electron microscopy, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Reinhard Schuh
- Research Group Molecular Organogenesis, Department of Molecular Developmental Biology, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Matthias Behr
- Cell biology, Institute for Biology, Leipzig UniversityLeipzigGermany
| |
Collapse
|
4
|
Scholl A, Ndoja I, Dhakal N, Morante D, Ivan A, Newman D, Mossington T, Clemans C, Surapaneni S, Powers M, Jiang L. The Osiris family genes function as novel regulators of the tube maturation process in the Drosophila trachea. PLoS Genet 2023; 19:e1010571. [PMID: 36689473 PMCID: PMC9870157 DOI: 10.1371/journal.pgen.1010571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
Drosophila trachea is a premier model to study tube morphogenesis. After the formation of continuous tubes, tube maturation follows. Tracheal tube maturation starts with an apical secretion pulse that deposits extracellular matrix components to form a chitin-based apical luminal matrix (aECM). This aECM is then cleared and followed by the maturation of taenidial folds. Finally, air fills the tubes. Meanwhile, the cellular junctions are maintained to ensure tube integrity. Previous research has identified several key components (ER, Golgi, several endosomes) of protein trafficking pathways that regulate the secretion and clearance of aECM, and the maintenance of cellular junctions. The Osiris (Osi) gene family is located at the Triplo-lethal (Tpl) locus on chromosome 3R 83D4-E3 and exhibits dosage sensitivity. Here, we show that three Osi genes (Osi9, Osi15, Osi19), function redundantly to regulate adherens junction (AJ) maintenance, luminal clearance, taenidial fold formation, tube morphology, and air filling during tube maturation. The localization of Osi proteins in endosomes (Rab7-containing late endosomes, Rab11-containing recycling endosomes, Lamp-containing lysosomes) and the reduction of these endosomes in Osi mutants suggest the possible role of Osi genes in tube maturation through endosome-mediated trafficking. We analyzed tube maturation in zygotic rab11 and rab7 mutants, respectively, to determine whether endosome-mediated trafficking is required. Interestingly, similar tube maturation defects were observed in rab11 but not in rab7 mutants, suggesting the involvement of Rab11-mediated trafficking, but not Rab7-mediated trafficking, in this process. To investigate whether Osi genes regulate tube maturation primarily through the maintenance of Rab11-containing endosomes, we overexpressed rab11 in Osi mutant trachea. Surprisingly, no obvious rescue was observed. Thus, increasing endosome numbers is not sufficient to rescue tube maturation defects in Osi mutants. These results suggest that Osi genes regulate other aspects of endosome-mediated trafficking, or regulate an unknown mechanism that converges or acts in parallel with Rab11-mediated trafficking during tube maturation.
Collapse
Affiliation(s)
- Aaron Scholl
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Istri Ndoja
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Niraj Dhakal
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Doria Morante
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Abigail Ivan
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Darren Newman
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Thomas Mossington
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Christian Clemans
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Sruthi Surapaneni
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Michael Powers
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
| |
Collapse
|
5
|
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Camelo C, Körte A, Jacobs T, Luschnig S. Tracheal tube fusion in Drosophila involves release of extracellular vesicles from multivesicular bodies. J Cell Sci 2022; 135:274235. [PMID: 35019140 DOI: 10.1242/jcs.259590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022] Open
Abstract
Extracellular vesicles (EVs) comprise diverse types of cell-released membranous structures that are thought to play important roles in intercellular communication. While the formation and functions of EVs have been investigated extensively in cultured cells, studies of EVs in vivo have remained scarce. We report here that EVs are present in the developing lumen of tracheal tubes in Drosophila embryos. We defined two distinct EV subpopulations, one of which contains the Munc13-4 homologue Staccato (Stac) and is spatially and temporally associated with tracheal tube fusion (anastomosis) events. The formation of Stac-positive luminal EVs depends on the tracheal tip-cell-specific GTPase Arl3, which is also required for the formation of Stac-positive multivesicular bodies, suggesting that Stac-EVs derive from fusion of Stac-MVBs with the luminal membrane in tip cells during anastomosis formation. The GTPases Rab27 and Rab35 cooperate downstream of Arl3 to promote Stac-MVB formation and tube fusion. We propose that Stac-MVBs act as membrane reservoirs that facilitate tracheal lumen fusion in a process regulated by Arl3, Rab27, Rab35, and Stac/Munc13-4.
Collapse
Affiliation(s)
- Carolina Camelo
- Institute of Integrative Cell Biology and Physiology, University of Münster, D-48143 Münster, Germany.,Cells in Motion (CiM) Interfaculty Centre, D-48149 Münster, Germany
| | - Anna Körte
- Institute of Integrative Cell Biology and Physiology, University of Münster, D-48143 Münster, Germany.,Cells in Motion (CiM) Interfaculty Centre, D-48149 Münster, Germany
| | - Thea Jacobs
- Institute of Integrative Cell Biology and Physiology, University of Münster, D-48143 Münster, Germany.,Cells in Motion (CiM) Interfaculty Centre, D-48149 Münster, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, University of Münster, D-48143 Münster, Germany.,Cells in Motion (CiM) Interfaculty Centre, D-48149 Münster, Germany
| |
Collapse
|
7
|
Veldsman WP, Ma KY, Hui JHL, Chan TF, Baeza JA, Qin J, Chu KH. Comparative genomics of the coconut crab and other decapod crustaceans: exploring the molecular basis of terrestrial adaptation. BMC Genomics 2021; 22:313. [PMID: 33931033 PMCID: PMC8086120 DOI: 10.1186/s12864-021-07636-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background The complex life cycle of the coconut crab, Birgus latro, begins when an obligate terrestrial adult female visits the intertidal to hatch zoea larvae into the surf. After drifting for several weeks in the ocean, the post-larval glaucothoes settle in the shallow subtidal zone, undergo metamorphosis, and the early juveniles then subsequently make their way to land where they undergo further physiological changes that prevent them from ever entering the sea again. Here, we sequenced, assembled and analyzed the coconut crab genome to shed light on its adaptation to terrestrial life. For comparison, we also assembled the genomes of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus, and the short-tailed marine-living red king crab, Paralithodes camtschaticus. Our selection of the latter two organisms furthermore allowed us to explore parallel evolution of the crab-like form in anomurans. Results All three assembled genomes are large, repeat-rich and AT-rich. Functional analysis reveals that the coconut crab has undergone proliferation of genes involved in the visual, respiratory, olfactory and cytoskeletal systems. Given that the coconut crab has atypical mitochondrial DNA compared to other anomurans, we argue that an abundance of kif22 and other significantly proliferated genes annotated with mitochondrial and microtubule functions, point to unique mechanisms involved in providing cellular energy via nuclear protein-coding genes supplementing mitochondrial and microtubule function. We furthermore detected in the coconut crab a significantly proliferated HOX gene, caudal, that has been associated with posterior development in Drosophila, but we could not definitively associate this gene with carcinization in the Anomura since it is also significantly proliferated in the ornate spiny lobster. However, a cuticle-associated coatomer gene, gammacop, that is significantly proliferated in the coconut crab, may play a role in hardening of the adult coconut crab abdomen in order to mitigate desiccation in terrestrial environments. Conclusion The abundance of genomic features in the three assembled genomes serve as a source of hypotheses for future studies of anomuran environmental adaptations such as shell-utilization, perception of visual and olfactory cues in terrestrial environments, and cuticle sclerotization. We hypothesize that the coconut crab exhibits gene proliferation in lieu of alternative splicing as a terrestrial adaptation mechanism and propose life-stage transcriptomic assays to test this hypothesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07636-9.
Collapse
Affiliation(s)
- Werner Pieter Veldsman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ka Yan Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jerome Ho Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA.,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA.,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo, 1281, Coquimbo, Chile
| | - Jing Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Abuin L, Prieto-Godino LL, Pan H, Gutierrez C, Huang L, Jin R, Benton R. In vivo assembly and trafficking of olfactory Ionotropic Receptors. BMC Biol 2019; 17:34. [PMID: 30995910 PMCID: PMC6472016 DOI: 10.1186/s12915-019-0651-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/22/2019] [Indexed: 01/29/2023] Open
Abstract
Background Ionotropic receptors (IRs) are a large, divergent subfamily of ionotropic glutamate receptors (iGluRs) that are expressed in diverse peripheral sensory neurons and function in olfaction, taste, hygrosensation and thermosensation. Analogous to the cell biological properties of their synaptic iGluR ancestors, IRs are thought to form heteromeric complexes that localise to the ciliated dendrites of sensory neurons. IR complexes are composed of selectively expressed ‘tuning’ receptors and one of two broadly expressed co-receptors (IR8a or IR25a). While the extracellular ligand-binding domain (LBD) of tuning IRs is likely to define the stimulus specificity of the complex, the role of this domain in co-receptors is unclear. Results We identify a sequence in the co-receptor LBD, the ‘co-receptor extra loop’ (CREL), which is conserved across IR8a and IR25a orthologues but not present in either tuning IRs or iGluRs. The CREL contains a single predicted N-glycosylation site, which we show bears a sugar modification in recombinantly expressed IR8a. Using the Drosophila olfactory system as an in vivo model, we find that a transgenically encoded IR8a mutant in which the CREL cannot be N-glycosylated is impaired in localisation to cilia in some, though not all, populations of sensory neurons expressing different tuning IRs. This defect can be complemented by the presence of endogenous wild-type IR8a, indicating that IR complexes contain at least two IR8a subunits and that this post-translational modification is dispensable for protein folding or complex assembly. Analysis of the subcellular distribution of the mutant protein suggests that its absence from sensory cilia is due to a failure in exit from the endoplasmic reticulum. Protein modelling and in vivo analysis of tuning IR and co-receptor subunit interactions by a fluorescent protein fragment complementation assay reveal that the CREL N-glycosylation site is likely to be located on the external face of a heterotetrameric IR complex. Conclusions Our data reveal an important role for the IR co-receptor LBD in control of intracellular transport, provide novel insights into the stoichiometry and assembly of IR complexes and uncover an unexpected heterogeneity in the trafficking regulation of this sensory receptor family. Electronic supplementary material The online version of this article (10.1186/s12915-019-0651-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liliane Abuin
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.,Present address: The Francis Crick Institute, 1 Brill Place, London, NW1 1BF, UK
| | - Haiyun Pan
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA.,Conagen, 15 DeAngelo Dr, Bedford, MA, 01730, USA
| | - Craig Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Scholl A, O'Brien MJ, Chandran RR, Jiang L. The novel gene
apnoia
regulates
Drosophila
tracheal tube size. Dev Dyn 2019; 248:477-487. [DOI: 10.1002/dvdy.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Aaron Scholl
- Department of Biological SciencesOakland University Rochester Michigan
| | | | | | - Lan Jiang
- Department of Biological SciencesOakland University Rochester Michigan
| |
Collapse
|
10
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
11
|
Ruan Y, Li Y, Zhang M, Chen X, Liu Z, Wang S, Jiang S. Visualisation of insect tracheal systems by lactic acid immersion. J Microsc 2018; 271:230-236. [PMID: 29762877 DOI: 10.1111/jmi.12711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/17/2018] [Accepted: 04/24/2018] [Indexed: 01/05/2023]
Abstract
The endeavours to reveal the tracheal system of insects and some arachnids has a long history. The traditional way to observe a tracheal system in an insect body is by utilising the glycerin immersion method. In this study, we developed the lactic acid immersion method, which reveals a more complete tracheal system. By mounting various types of live specimens or body parts directly into lactic acid, multiple intact and complex tracheal systems were clearly visualised. The lactic acid immersion contributed to revealing tracheal systems by penetrating body tissue while reserving enough time for observation before the penetration of the tracheae. Preliminary comparisons were conducted between lactic acid and other mediae, including glycerin. It turned out that lactic acid immersion provides better details and more distinct structures. In our test, the optimal time for observing the tracheal system was 10-25 min after the organism was immersed in lactic acid.
Collapse
Affiliation(s)
- Y Ruan
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Y Li
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, U.S.A
| | - M Zhang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - X Chen
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Z Liu
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - S Wang
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China
| | - S Jiang
- School of Applied Chemistry and Biological Technology, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Wingen A, Carrera P, Ekaterini Psathaki O, Voelzmann A, Paululat A, Hoch M. Debris buster is a Drosophila scavenger receptor essential for airway physiology. Dev Biol 2017; 430:52-68. [PMID: 28821389 DOI: 10.1016/j.ydbio.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023]
Abstract
Scavenger receptors class B (SR-B) are multifunctional transmembrane proteins, which in vertebrates participate in lipid transport, pathogen clearance, lysosomal delivery and intracellular sorting. Drosophila has 14 SR-B members whose functions are still largely unknown. Here, we reveal a novel role for the SR-B family member Debris buster (Dsb) in Drosophila airway physiology. Larvae lacking dsb show yeast avoidance behavior, hypoxia, and severe growth defects associated with impaired elongation and integrity along the airways. Furthermore, in dsb mutant embryos, the barrier function of the posterior spiracles, which are critical for gas exchange, is not properly established and liquid clearance is locally impaired at the spiracular lumen. We found that Dsb is specifically expressed in a group of distal epithelial cells of the posterior spiracle organ and not throughout the entire airways. Furthermore, tissue-specific knockdown and rescue experiments demonstrate that Dsb function in the airways is only required in the posterior spiracles. Dsb localizes in intracellular vesicles, and a subset of these associate with lysosomes. However, we found that depletion of proteins involved in vesicular transport to the apical membrane, but not in lysosomal function, causes dsb-like airway elongation defects. We propose a model in which Dsb sorts components of the apical extracellular matrix which are essential for airway physiology. Since SR-B LIMP2-deficient mice show reduced expression of several apical plasma membrane proteins, sorting of proteins to the apical membrane is likely an evolutionary conserved function of Dsb and LIMP2. Our data provide insights into a spatially confined function of the SR-B Dsb in intracellular trafficking critical for the physiology of the whole tubular airway network.
Collapse
Affiliation(s)
- Almut Wingen
- Developmental Genetic&Molecular Physiology Unit, Life&Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany
| | - Pilar Carrera
- Developmental Genetic&Molecular Physiology Unit, Life&Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany.
| | - Olympia Ekaterini Psathaki
- Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany; EM Unit, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - André Voelzmann
- Developmental Genetic&Molecular Physiology Unit, Life&Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany
| | - Achim Paululat
- Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | - Michael Hoch
- Developmental Genetic&Molecular Physiology Unit, Life&Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Strasse 31, D-53115 Bonn, Germany.
| |
Collapse
|
13
|
Hayashi S, Dong B. Shape and geometry control of the Drosophila tracheal tubule. Dev Growth Differ 2017; 59:4-11. [PMID: 28093725 DOI: 10.1111/dgd.12336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
For efficient respiration, tubular airways must be constructed with an optimal diameter and length for the dimensions of the body. In Drosophila, the growth of embryonic tracheal tubules proceeds in two dimensions, by axial elongation and diameter expansion. The growth forces in each dimension are controlled by distinct genetic programs and cellular mechanisms. Recent studies reveal that the apical cortex and the apical extracellular matrix filling the luminal space are essential for the generation, balancing, and equilibrium of these growth forces. We here discuss the mechanical properties and architecture of the apical cortex and extracellular matrix, and their crucial roles in the tissue-level coordination of tubule shape and geometry.
Collapse
Affiliation(s)
- Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Shandong, China
| |
Collapse
|
14
|
Myat MM, Patel U. Receptor-Type Guanylyl Cyclase at 76C (Gyc76C) Regulates De Novo Lumen Formation during Drosophila Tracheal Development. PLoS One 2016; 11:e0161865. [PMID: 27642749 PMCID: PMC5028017 DOI: 10.1371/journal.pone.0161865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 11/25/2022] Open
Abstract
Lumen formation and maintenance are important for the development and function of essential organs such as the lung, kidney and vasculature. In the Drosophila embryonic trachea, lumena form de novo to connect the different tracheal branches into an interconnected network of tubes. Here, we identify a novel role for the receptor type guanylyl cyclase at 76C (Gyc76C) in de novo lumen formation in the Drosophila trachea. We show that in embryos mutant for gyc76C or its downsteam effector protein kinase G (PKG) 1, tracheal lumena are disconnected. Dorsal trunk (DT) cells of gyc76C mutant embryos migrate to contact each other and complete the initial steps of lumen formation, such as the accumulation of E-cadherin (E-cad) and formation of an actin track at the site of lumen formation. However, the actin track and E-cad contact site of gyc76C mutant embryos did not mature to become a new lumen and DT lumena did not fuse. We also observed failure of the luminal protein Vermiform to be secreted into the site of new lumen formation in gyc76C mutant trachea. These DT lumen formation defects were accompanied by altered localization of the Arf-like 3 GTPase (Arl3), a known regulator of vesicle-vesicle and vesicle-membrane fusion. In addition to the DT lumen defect, lumena of gyc76C mutant terminal cells were shorter compared to wild-type cells. These studies show that Gyc76C and downstream PKG-dependent signaling regulate de novo lumen formation in the tracheal DT and terminal cells, most likely by affecting Arl3-mediated luminal secretion.
Collapse
Affiliation(s)
- Monn Monn Myat
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, United States of America
- Department of Biology, Medgar Evers College-City University of New York, Brooklyn, New York, United States of America
- * E-mail:
| | - Unisha Patel
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
15
|
Dong B, Hayashi S. Shaping of biological tubes by mechanical interaction of cell and extracellular matrix. Curr Opin Genet Dev 2015; 32:129-34. [DOI: 10.1016/j.gde.2015.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/14/2015] [Accepted: 02/21/2015] [Indexed: 01/19/2023]
|
16
|
Nie J, Mahato S, Zelhof AC. The actomyosin machinery is required for Drosophila retinal lumen formation. PLoS Genet 2014; 10:e1004608. [PMID: 25233220 PMCID: PMC4168998 DOI: 10.1371/journal.pgen.1004608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Multicellular tubes consist of polarized cells wrapped around a central lumen and are essential structures underlying many developmental and physiological functions. In Drosophila compound eyes, each ommatidium forms a luminal matrix, the inter-rhabdomeral space, to shape and separate the key phototransduction organelles, the rhabdomeres, for proper visual perception. In an enhancer screen to define mechanisms of retina lumen formation, we identified Actin5C as a key molecule. Our results demonstrate that the disruption of lumen formation upon the reduction of Actin5C is not linked to any discernible defect in microvillus formation, the rhabdomere terminal web (RTW), or the overall morphogenesis and basal extension of the rhabdomere. Second, the failure of proper lumen formation is not the result of previously identified processes of retinal lumen formation: Prominin localization, expansion of the apical membrane, or secretion of the luminal matrix. Rather, the phenotype observed with Actin5C is phenocopied upon the decrease of the individual components of non-muscle myosin II (MyoII) and its upstream activators. In photoreceptor cells MyoII localizes to the base of the rhabdomeres, overlapping with the actin filaments of the RTW. Consistent with the well-established roll of actomyosin-mediated cellular contraction, reduction of MyoII results in reduced distance between apical membranes as measured by a decrease in lumen diameter. Together, our results indicate the actomyosin machinery coordinates with the localization of apical membrane components and the secretion of an extracellular matrix to overcome apical membrane adhesion to initiate and expand the retinal lumen. Biological tubes are integral units of tissues and organs such as lung, kidney, and the cardiovascular system. The fundamental design of tubes involves a central lumen wrapped by a sheet of cells. To function properly, the tubes require a precise genetic control over their creation, the diametric growth and maintenance of the lumen during development. In the fruit fly, Drosophila melanogaster, the photoreceptor cells of the eye form a tubular structure. The formation of the retinal lumen is critical for separating and positioning the light sensing organelles of each photoreceptor cell to achieve visual sensitivity. In an effort to investigate the mechanisms of Drosophila retinal lumen formation, we identified a contractile machinery that was present at the apical portion of photoreceptor cells. Our data is consistent with the idea that a contractile force contributes to the initial separation of the juxtaposed apical membranes and subsequent enlargement of the luminal space. Our work suggests that building a biological tube requires not only an extrinsic pushing force provided by the growing central lumen, but also a cell intrinsic pulling force powered by contraction of cells lining the lumen. Our findings expand and demonstrate the coordination of several molecular mechanisms to generate a tube.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Simpla Mahato
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Andrew C. Zelhof
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Tröße C, Nilsen F, Dalvin S. RNA interference mediated knockdown of the KDEL receptor and COPB2 inhibits digestion and reproduction in the parasitic copepod Lepeophtheirus salmonis. Comp Biochem Physiol B Biochem Mol Biol 2013; 170:1-9. [PMID: 24382395 DOI: 10.1016/j.cbpb.2013.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/29/2022]
Abstract
Retrograde transport of proteins from the endoplasmic reticulum to the Golgi is an essential part of the secretory pathway that all newly synthesised secreted and membrane proteins in eukaryotic cells undergo. The aim of this study was to characterise two components of the retrograde transport pathway in the parasitic copepod Lepeophtheirus salmonis (salmon louse) on a molecular and functional level. LsKDELR and LsCOPB2 were confirmed to be the salmon louse homologues of the chosen target proteins by sequence similarity. Ontogenetic analysis by qRT-PCR revealed the highest expression levels of both genes in adult females and the earliest larval stage. LsKDELR and LsCOPB2 localisation in adult females was detected by immunofluorescence and in situ hybridisation, respectively. Both LsKDELR and LsCOPB2 were found in the ovaries, the oocytes and the gut. LsKDELR and LsCOPB2 were knocked down by RNA interference in preadult females, which was confirmed by qRT-PCR. LsCOPB2 knockdown lice had a significantly higher mortality and failed to develop normally, while both LsCOPB2 and LsKDELR knockdown caused disturbed digestion and the absence of egg strings. This shows the potential of LsKDELR and LsCOPB2 as suitable target candidates for new pest control methods.
Collapse
Affiliation(s)
- Christiane Tröße
- Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway.
| | - Frank Nilsen
- SLRC-Sea Lice Research Centre, Department of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - Sussie Dalvin
- SLRC-Sea Lice Research Centre, Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| |
Collapse
|
18
|
Wang Q, Shen B, Zheng P, Feng H, Guo Y, Cao W, Chen L, Liu X, Zhao G, Xu S, Shen W, Chen J, Teng J. BmCREC is an endoplasmic reticulum (ER) resident protein and required for ER/Golgi morphology. J Biol Chem 2013; 288:26649-57. [PMID: 23921381 DOI: 10.1074/jbc.m113.463018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Silkworm posterior silkgland is a model for studying intracellular trafficking. Here, using this model, we identify several potential cargo proteins of BmKinesin-1 and focus on one candidate, BmCREC. BmCREC (also known as Bombyx mori DNA supercoiling factor, BmSCF) was previously proposed to supercoil DNA in the nucleus. However, we show here that BmCREC is localized in the ER lumen. Its C-terminal tetrapeptide HDEF is recognized by the KDEL receptor, and subsequently it is retrogradely transported by coat protein I (COPI) vesicles to the ER. Lacking the HDEF tetrapeptide of BmCREC or knocking down COPI subunits results in decreased ER retention and simultaneously increased secretion of BmCREC. Furthermore, we find that BmCREC knockdown markedly disrupts the morphology of the ER and Golgi apparatus and leads to a defect of posterior silkgland tube expansion. Together, our results clarify the ER retention mechanism of BmCREC and reveal that BmCREC is indispensable for maintaining ER/Golgi morphology.
Collapse
Affiliation(s)
- Qiao Wang
- From the Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education and State Key Laboratory of Biomembrane and Membrane Bioengineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zuo L, Iordanou E, Chandran RR, Jiang L. Novel mechanisms of tube-size regulation revealed by the Drosophila trachea. Cell Tissue Res 2013; 354:343-54. [PMID: 23824100 DOI: 10.1007/s00441-013-1673-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/27/2013] [Indexed: 12/17/2022]
Abstract
The size of various tubes within tubular organs such as the lung, vascular system and kidney must be finely tuned for the optimal delivery of gases, nutrients, waste and cells within the entire organism. Aberrant tube sizes lead to devastating human illnesses, such as polycystic kidney disease, fibrocystic breast disease, pancreatic cystic neoplasm and thyroid nodules. However, the underlying mechanisms that are responsible for tube-size regulation have yet to be fully understood. Therefore, no effective treatments are available for disorders caused by tube-size defects. Recently, the Drosophila tracheal system has emerged as an excellent in vivo model to explore the fundamental mechanisms of tube-size regulation. Here, we discuss the role of the apical luminal matrix, cell polarity and signaling pathways in regulating tube size in Drosophila trachea. Previous studies of the Drosophila tracheal system have provided general insights into epithelial tube morphogenesis. Mechanisms that regulate tube size in Drosophila trachea could be well conserved in mammalian tubular organs. This knowledge should greatly aid our understanding of tubular organogenesis in vertebrates and potentially lead to new avenues for the treatment of human disease caused by tube-size defects.
Collapse
Affiliation(s)
- Li Zuo
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; School of Health and Rehabilitation Sciences, The Ohio State College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ekaterini Iordanou
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Rachana R Chandran
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; Dodge Hall of Engineering 322, 2200 N. Squirrel Road, Rochester, MI 48309, USA
| |
Collapse
|
20
|
Tiklová K, Tsarouhas V, Samakovlis C. Control of airway tube diameter and integrity by secreted chitin-binding proteins in Drosophila. PLoS One 2013; 8:e67415. [PMID: 23826295 PMCID: PMC3691276 DOI: 10.1371/journal.pone.0067415] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/18/2013] [Indexed: 01/08/2023] Open
Abstract
The transporting function of many branched tubular networks like our lungs and circulatory system depend on the sizes and shapes of their branches. Understanding the mechanisms of tube size control during organ development may offer new insights into a variety of human pathologies associated with stenoses or cystic dilations in tubular organs. Here, we present the first secreted luminal proteins involved in tube diametric expansion in the Drosophila airways. obst-A and gasp are conserved among insect species and encode secreted proteins with chitin binding domains. We show that the widely used tracheal marker 2A12, recognizes the Gasp protein. Analysis of obst-A and gasp single mutants and obst-A; gasp double mutant shows that both genes are primarily required for airway tube dilation. Similarly, Obst-A and Gasp control epidermal cuticle integrity and larval growth. The assembly of the apical chitinous matrix of the airway tubes is defective in gasp and obst-A mutants. The defects become exaggerated in double mutants indicating that the genes have partially redundant functions in chitin structure modification. The phenotypes in luminal chitin assembly in the airway tubes are accompanied by a corresponding reduction in tube diameter in the mutants. Conversely, overexpression of Obst-A and Gasp causes irregular tube expansion and interferes with tube maturation. Our results suggest that the luminal levels of matrix binding proteins determine the extent of diametric growth. We propose that Obst-A and Gasp organize luminal matrix assembly, which in turn controls the apical shapes of adjacent cells during tube diameter expansion.
Collapse
Affiliation(s)
- Katarína Tiklová
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vasilios Tsarouhas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Ile KE, Renault AD. Compartmentalizing the embryo: lipids and septate junction mediated barrier function. Fly (Austin) 2012; 7:18-22. [PMID: 23221483 PMCID: PMC3660746 DOI: 10.4161/fly.22938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a class of enzymes that can dephosphorylate a number of lysophopholipids in vitro. Analysis of knockouts of LPP family members has demonstrated striking but diverse developmental roles for these enzymes. LPP3 is required for mouse vascular development while the Drosophila LPPs Wunen (Wun) and Wunen2 (Wun2) are required during embryogenesis for germ cell migration and survival. In a recent publication we examined if these fly LPPs have further developmental roles and found that Wun is required for proper tracheal formation. In particular we highlight a role for Wun in septate junction mediated barrier function in the tracheal system. In this paper we discuss further the possible mechanisms by which LPPs may influence barrier activity.
Collapse
Affiliation(s)
- Kristina E Ile
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
22
|
Baer MM, Palm W, Eaton S, Leptin M, Affolter M. Microsomal triacylglycerol transfer protein (MTP) is required to expand tracheal lumen in Drosophila in a cell-autonomous manner. J Cell Sci 2012; 125:6038-48. [PMID: 23132924 DOI: 10.1242/jcs.110452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Drosophila tracheal system is a useful model for dissecting the molecular mechanisms controlling the assembly and expansion of tubular organs. We have identified microsomal triacylglycerol transfer protein (MTP) as a new player involved in the lumen expansion in unicellular tubes. MTP is an endoplasmic reticulum resident protein that can transfer triglycerides and phospholipids between membranes in vitro. MTP lipid transfer activity is crucial for the assembly and secretion of apoB family lipoproteins, which are carriers of lipids between different tissues. Here we describe an unexpected role of MTP in tracheal development, which we postulate to be independent of its known function in lipoprotein secretion. We propose that, in tracheal cells, MTP is involved in regulation of de novo apical membrane delivery to the existing lumen and thus promotes proper expansion of the larval tracheal system.
Collapse
Affiliation(s)
- Magdalena M Baer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Förster D, Luschnig S. Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila. Nat Cell Biol 2012; 14:526-34. [PMID: 22446736 DOI: 10.1038/ncb2456] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/07/2012] [Indexed: 12/21/2022]
Abstract
Although many organ functions rely on epithelial tubes with correct dimensions, mechanisms underlying tube size control are poorly understood. We analyse the cellular mechanism of tracheal tube elongation in Drosophila, and describe an essential role of the conserved tyrosine kinase Src42A in this process. We show that Src42A is required for polarized cell shape changes and cell rearrangements that mediate tube elongation. In contrast, diametric expansion is controlled by apical secretion independently of Src42A. Constitutive activation of Src42A induces axial cell stretching and tracheal overelongation, indicating that Src42A acts instructively in this process. We propose that Src42A-dependent recycling of E-Cadherin at adherens junctions is limiting for cell shape changes and rearrangements in the axial dimension of the tube. Thus, we define distinct cellular processes that independently control axial and diametric expansion of a cylindrical epithelium in a developing organ. Whereas exocytosis-dependent membrane growth drives circumferential tube expansion, Src42A is required to orient membrane growth in the axial dimension of the tube.
Collapse
Affiliation(s)
- Dominique Förster
- Institute of Molecular Life Sciences (IMLS), Ph.D. Program in Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | |
Collapse
|
24
|
Armbruster K, Luschnig S. The Drosophila Sec7 domain guanine nucleotide exchange factor protein Gartenzwerg localizes at the cis-Golgi and is essential for epithelial tube expansion. J Cell Sci 2012; 125:1318-28. [PMID: 22349697 DOI: 10.1242/jcs.096263] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein trafficking through the secretory pathway plays a key role in epithelial organ development and function. The expansion of tracheal tubes in Drosophila depends on trafficking of coatomer protein complex I (COPI)-coated vesicles between the Golgi complex and the endoplasmic reticulum (ER). However, it is not clear how this pathway is regulated. Here we describe an essential function of the Sec7 domain guanine nucleotide exchange factor (GEF) gartenzwerg (garz) in epithelial tube morphogenesis and protein secretion. garz is essential for the recruitment of COPI components and for normal Golgi organization. A GFP-Garz fusion protein is distributed in the cytoplasm and accumulates at the cis-Golgi. Localization to the Golgi requires the C-terminal part of Garz. Conversely, blocking the GDP-GTP nucleotide exchange reaction leads to constitutive Golgi localization, suggesting that Garz cycles in a GEF-activity-dependent manner between cytoplasmic and Golgi-membrane-localized pools. The related human ARF-GEF protein GBF1 can substitute for garz function in Drosophila tracheal cells, indicating that the relevant functions of these proteins are conserved. We show that garz interacts genetically with the ARF1 homolog ARF79F and with the ARF1-GAP homolog Gap69C, thus placing garz in a regulatory circuit that controls COPI trafficking in Drosophila. Interestingly, overexpression of garz causes accumulation of secreted proteins in the ER, suggesting that excessive garz activity leads to increased retrograde trafficking. Thus, garz might regulate epithelial tube morphogenesis and secretion by controlling the rate of trafficking of COPI vesicles.
Collapse
Affiliation(s)
- Kristina Armbruster
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
25
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
26
|
Townley AK, Schmidt K, Hodgson L, Stephens DJ. Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion. J Cell Sci 2012; 125:673-84. [PMID: 22331354 DOI: 10.1242/jcs.091355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.
Collapse
Affiliation(s)
- Anna K Townley
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
27
|
Wang S, Meyer H, Ochoa-Espinosa A, Buchwald U, Onel S, Altenhein B, Heinisch JJ, Affolter M, Paululat A. GBF1 (Gartenzwerg)-dependent secretion is required for Drosophila tubulogenesis. J Cell Sci 2012; 125:461-72. [PMID: 22302994 DOI: 10.1242/jcs.092551] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here we report on the generation and in vivo analysis of a series of loss-of-function mutants for the Drosophila ArfGEF, Gartenzwerg. The Drosophila gene gartenzwerg (garz) encodes the orthologue of mammalian GBF1. garz is expressed ubiquitously in embryos with substantially higher abundance in cells forming diverse tubular structures such as salivary glands, trachea, proventriculus or hindgut. In the absence of functional Garz protein, the integrity of the Golgi complex is impaired. As a result, both vesicle transport of cargo proteins and directed apical membrane delivery are severely disrupted. Dysfunction of the Arf1-COPI machinery caused by a loss of Garz leads to perturbations in establishing a polarized epithelial architecture of tubular organs. Furthermore, insufficient apical transport of proteins and other membrane components causes incomplete luminal diameter expansion and deficiencies in extracellular matrix assembly. The fact that homologues of Garz are present in every annotated metazoan genome indicates that secretion processes mediated by the GBF-type ArfGEFs play a universal role in animal development.
Collapse
Affiliation(s)
- Shuoshuo Wang
- Department of Biology, University of Osnabrück, Zoology/Developmental Biology, Barbarastraße 11, D-49069 Osnabrück, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kitazawa D, Yamaguchi M, Mori H, Inoue YH. COPI-mediated membrane trafficking is required for cytokinesis in Drosophila male meiotic divisions. J Cell Sci 2012; 125:3649-60. [DOI: 10.1242/jcs.103317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coatomer protein complex, COPI, mediates retrograde vesicle transport from the Golgi apparatus to the ER. Here, we investigated the meiotic phenotype of Drosophila spermatocytes expressing dsRNA of 52 genes encoding membrane trafficking-related factors. We identified COPI as an essential factor for male meiosis. In Drosophila male meiotic divisions, COPI is localized in the ER-Golgi intermediate compartment of tER-Golgi units scattered throughout the spermatocyte cytoplasm. Prior to chromosome segregation, the vesicles assemble at the spindle pole periphery through a poleward movement, mediated by minus-ended motor dynein along astral microtubules. At the end of each meiotic division, COPI-containing vesicles are equally partitioned between 2 daughter cells. Our present data strongly suggest that spermatocytes possess a regulatory mechanism, to fulfill equal inheritance of several types of membrane vesicles. Using testis-specific knockdown of COPI subunits or small GTPase Arf, or mutations of the γCOP gene, we examined the role of COPI in male meiosis. COPI depletion resulted in the failure of cytokinesis, through disrupted accumulation of essential proteins and lipid components at the cleavage furrow region. Furthermore, it caused a reduction in the number of overlapping central spindle microtubules, which are essential for cytokinesis. Drosophila spermatocytes construct ER-based intracellular structures associated with astral and spindle microtubules. COPI depletion resulted in severe disruption of these ER-based structures. Thus, we propose that COPI plays an important role in Drosophila male meiosis, not only through vesicle transport to the cleavage furrow region, but also via the formation of ER-based structures.
Collapse
|
29
|
Abstract
The asymmetric polarization of cells allows specialized functions to be performed at discrete subcellular locales. Spatiotemporal coordination of polarization between groups of cells allowed the evolution of metazoa. For instance, coordinated apical-basal polarization of epithelial and endothelial cells allows transport of nutrients and metabolites across cell barriers and tissue microenvironments. The defining feature of such tissues is the presence of a central, interconnected luminal network. Although tubular networks are present in seemingly different organ systems, such as the kidney, lung, and blood vessels, common underlying principles govern their formation. Recent studies using in vivo and in vitro models of lumen formation have shed new light on the molecular networks regulating this fundamental process. We here discuss progress in understanding common design principles underpinning de novo lumen formation and expansion.
Collapse
|
30
|
Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes. Proc Natl Acad Sci U S A 2011; 108:E211-7. [PMID: 21628559 DOI: 10.1073/pnas.1102637108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Blood feeding by vector mosquitoes provides the entry point for disease pathogens and presents an acute metabolic challenge that must be overcome to complete the gonotrophic cycle. Based on recent data showing that coatomer protein I (COPI) vesicle transport is involved in cellular processes beyond Golgi-endoplasmic reticulum retrograde protein trafficking, we disrupted COPI functions in the Yellow Fever mosquito Aedes aegypti to interfere with blood meal digestion. Surprisingly, we found that decreased expression of the γCOPI coatomer protein led to 89% mortality in blood-fed mosquitoes by 72 h postfeeding compared with 0% mortality in control dsRNA-injected blood-fed mosquitoes and 3% mortality in γCOPI dsRNA-injected sugar-fed mosquitoes. Similar results were obtained using dsRNA directed against five other COPI coatomer subunits (α, β, β', δ, and ζ). We also examined midgut tissues by EM, quantitated heme in fecal samples, and characterized feeding-induced protein expression in midgut, fat body, and ovary tissues of COPI-deficient mosquitoes. We found that COPI defects disrupt epithelial cell membrane integrity, stimulate premature blood meal excretion, and block induced expression of several midgut protease genes. To study the role of COPI transport in ovarian development, we injected γCOPI dsRNA after blood feeding and found that, although blood digestion was normal, follicles in these mosquitoes were significantly smaller by 48 h postinjection and lacked eggshell proteins. Together, these data show that COPI functions are critical to mosquito blood digestion and egg maturation, a finding that could also apply to other blood-feeding arthropod vectors.
Collapse
|
31
|
Wang Q, Shen B, Zheng P, Feng H, Chen L, Zhang J, Zhang C, Zhang G, Teng J, Chen J. Silkworm coatomers and their role in tube expansion of posterior silkgland. PLoS One 2010; 5:e13252. [PMID: 20967265 PMCID: PMC2953498 DOI: 10.1371/journal.pone.0013252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022] Open
Abstract
Background Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation. Methodology/Principal Findings Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits (α,β,β′, δ, ε, and ζ-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI, as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of α-, β′- and γ-COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of α-COP disrupted the integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for PSG tube expansion. Conclusions/Significance The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and would facilitate the establishment of silkworm PSG as an efficient bioreactor.
Collapse
Affiliation(s)
- Qiao Wang
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Birong Shen
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Pengli Zheng
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Hui Feng
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Liang Chen
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Jing Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
| | - Chuanxi Zhang
- Institute of Insect Sciences, Zhejiang University, Zhejiang, China
| | - Guozheng Zhang
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhejiang, China
| | - Junlin Teng
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (JT); (JC)
| | - Jianguo Chen
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, China
- The Center for Theoretical Biology, Peking University, Beijing, China
- * E-mail: (JT); (JC)
| |
Collapse
|
32
|
Schottenfeld J, Song Y, Ghabrial AS. Tube continued: morphogenesis of the Drosophila tracheal system. Curr Opin Cell Biol 2010; 22:633-9. [PMID: 20739171 PMCID: PMC2948593 DOI: 10.1016/j.ceb.2010.07.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/07/2023]
Abstract
The Drosophila respiratory organ (tracheal system) consists of epithelial tubes, the morphogenesis of which is controlled by distinct sets of signaling pathways and transcription factors. The downstream events controlling tube formation and shape are only now beginning to be identified. Here we review recent insight into the communication between neighboring tracheal cells, their interactions with the surrounding matrix, and the impact of these processes on tube morphogenesis. We focus on cell-cell interactions that drive rearrangement of cells within the epithelium and that are essential for maintenance of epithelial integrity, and also on cell-matrix interactions that play key roles in determining and maintaining the size and shape of tube lumens.
Collapse
Affiliation(s)
- Jodi Schottenfeld
- Department of Cell & Developmental Biology, 1214 BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
From A to Z: apical structures and zona pellucida-domain proteins. Trends Cell Biol 2010; 20:524-32. [DOI: 10.1016/j.tcb.2010.06.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 12/29/2022]
|
34
|
Behr M. Molecular aspects of respiratory and vascular tube development. Respir Physiol Neurobiol 2010; 173 Suppl:S33-6. [PMID: 20403463 DOI: 10.1016/j.resp.2010.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/03/2023]
Abstract
Lung, cardiovascular system, liver and kidney are some examples for organs that develop ramified three-dimensional networks of epithelial tubes. The tube morphology affects flow rates of transported materials, such as liquids and gases. Therefore, it is important to understand how tube morphology is controlled. In Drosophila melanogaster many evolutionarily conserved genetic pathways have been shown to be involved in airway patterning. Recent studies identified a number of conserved mechanisms that drive Drosophila airway maturation, such as controlling tube size, barrier formation and lumen clearance. Genetically highly ordered branching modes previously have been found, also for mouse lung development. The understanding of tube patterning, outgrowth, ramification and maturation also is of clinical relevance, since many factors are evolutionarily conserved and may have similar functions in humans. This meeting report highlights novel findings concerning tube development in the fruit fly (D. melanogaster), the zebrafish (Danio rerio) and the laboratory mouse (Mus musculus).
Collapse
Affiliation(s)
- Matthias Behr
- Life & Medical Sciences Institute, Program Unit Development, Genetics & Molecular Physiology, Laboratory for Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31, Bonn, Germany.
| |
Collapse
|
35
|
Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila. Curr Biol 2009; 20:62-8. [PMID: 20045324 DOI: 10.1016/j.cub.2009.11.062] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/24/2022]
Abstract
Epithelial tubes in developing organs, such as mammalian lungs and insect tracheae, need to expand their initially narrow lumina to attain their final, functional dimensions. Despite its critical role for organ function, the cellular mechanism of tube expansion remains unclear. Tracheal tube expansion in Drosophila involves apical secretion and deposition of a luminal matrix, but the mechanistic role of secretion and the nature of forces involved in the process were not previously clear. Here we address the roles of cell-intrinsic and extrinsic processes in tracheal tube expansion. We identify mutations in the sec24 gene stenosis, encoding a cargo-binding subunit of the COPII complex. Via genetic-mosaic analyses, we show that stenosis-dependent secretion drives tube expansion in a cell-autonomous fashion. Strikingly, single cells autonomously adjust both tube diameter and length by implementing a sequence of events including apical membrane growth, cell flattening, and taenidial cuticle formation. Known luminal components are not required for this process. Thus, a cell-intrinsic program, rather than nonautonomous extrinsic cues, controls the dimensions of tracheal tubes. These results indicate a critical role of membrane-associated proteins in the process and imply a mechanism that coordinates autonomous behaviors of individual cells within epithelial structures.
Collapse
|
36
|
Kondylis V, Rabouille C. The Golgi apparatus: lessons from Drosophila. FEBS Lett 2009; 583:3827-38. [PMID: 19800333 DOI: 10.1016/j.febslet.2009.09.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/26/2009] [Indexed: 11/19/2022]
Abstract
Historically, Drosophila has been a model organism for studying molecular and developmental biology leading to many important discoveries in this field. More recently, the fruit fly has started to be used to address cell biology issues including studies of the secretory pathway, and more specifically on the functional integrity of the Golgi apparatus. A number of advances have been made that are reviewed below. Furthermore, with the development of RNAi technology, Drosophila tissue culture cells have been used to perform genome-wide screens addressing similar issues. Last, the Golgi function has been involved in specific developmental processes, thus shedding new light on the functions of a number of Golgi proteins.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Cell Microscopy Centre, Department of Cell Biology, UMC Utrecht, AZU H02.313, Heidelberglaan 100, Utrecht, The Netherlands.
| | | |
Collapse
|
37
|
Kondylis V, Pizette S, Rabouille C. The early secretory pathway in development: A tale of proteins and mRNAs. Semin Cell Dev Biol 2009; 20:817-27. [DOI: 10.1016/j.semcdb.2009.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/24/2022]
|
38
|
On vesicle formation and tethering in the ER–Golgi shuttle. Curr Opin Cell Biol 2009; 21:531-6. [DOI: 10.1016/j.ceb.2009.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 03/24/2009] [Accepted: 03/24/2009] [Indexed: 01/13/2023]
|