1
|
Wolfstetter G, Masudi T, Uçkun E, Zhu JY, Yi M, Anthonydhason V, Guan J, Sonnenberg H, Han Z, Palmer RH. Alk Tango reveals a role for Jeb/Alk signaling in the Drosophila heart. Cell Commun Signal 2025; 23:229. [PMID: 40382638 DOI: 10.1186/s12964-025-02150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/11/2025] [Indexed: 05/20/2025] Open
Abstract
Anaplastic lymphoma kinase (Alk) signaling is important in a variety of biological contexts such as cell type specification, regulation of metabolic and endocrine programs, behavior, and cancer. In this work, we generated a Tango GPCR assay-based, dimerization-sensitive Alk activity reporter (AlkTango) and followed receptor activation throughout Drosophila development. AlkTango reports Alk activation in embryonic and larval tissues previously linked to Alk signaling. Remarkably, AlkTango was active in the heart of Drosophila larvae and adult flies. We show that cardiomyocytes express Alk from late embryonic stages to adulthood, while jeb expression in pericardial cells coincided with AlkTango activity. Perturbation of cardiac Alk signaling leads to decreased adult survival as well as lower fitness and increased lethality in response to heat stress. In keeping with a role for Alk, heart measurements reveal arrythmia and irregular muscle contraction upon ligand stimulation. Finally, activation of cardiac Alk signaling induces hyperplasia in the accessory wing hearts of adult flies.
Collapse
Affiliation(s)
- G Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - T Masudi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - E Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - J Y Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - M Yi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - V Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - J Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - H Sonnenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Z Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - R H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| |
Collapse
|
2
|
King TR, Kramer J, Cheng YS, Swope D, Kramer SG. Enabled/VASP is required to mediate proper sealing of opposing cardioblasts during Drosophila dorsal vessel formation. Dev Dyn 2021; 250:1173-1190. [PMID: 33587326 DOI: 10.1002/dvdy.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The Drosophila dorsal vessel (DV) is comprised of two opposing rows of cardioblasts (CBs) that migrate toward the dorsal midline during development. While approaching the midline, CBs change shape, enabling dorsal and ventral attachments with their contralateral partners to create a linear tube with a central lumen. We previously demonstrated DV closure occurs via a "buttoning" mechanism where specific CBs advance ahead of their lateral neighbors, and attach creating transient holes, which eventually seal. RESULTS Here, we investigate the role of the actin-regulatory protein enabled (Ena) in DV closure. Loss of Ena results in DV cell shape and alignment defects. Live analysis of DV formation in ena mutants shows a reduction in CB leading edge protrusion length and gaps in the DV between contralateral CB pairs. These gaps occur primarily between a specific genetic subtype of CBs, which express the transcription factor seven-up (Svp) and form the ostia inflow tracts of the heart. In WT embryos these gaps between Svp+ CBs are observed transiently during the final stages of DV closure. CONCLUSIONS Our data suggest that Ena modulates the actin cytoskeleton in order to facilitate the complete sealing of the DV during the final stages of cardiac tube formation.
Collapse
Affiliation(s)
- Tiffany R King
- Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, Department of Pathology and Laboratory Medicine, Piscataway, New Jersey, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.,Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Limpitikul WB, Viswanathan MC, O'Rourke B, Yue DT, Cammarato A. Conservation of cardiac L-type Ca 2+ channels and their regulation in Drosophila: A novel genetically-pliable channelopathic model. J Mol Cell Cardiol 2018; 119:64-74. [PMID: 29684406 PMCID: PMC6154789 DOI: 10.1016/j.yjmcc.2018.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/28/2023]
Abstract
Dysregulation of L-type Ca2+ channels (LTCCs) underlies numerous cardiac pathologies. Understanding their modulation with high fidelity relies on investigating LTCCs in their native environment with intact interacting proteins. Such studies benefit from genetic manipulation of endogenous channels in cardiomyocytes, which often proves cumbersome in mammalian models. Drosophila melanogaster, however, offers a potentially efficient alternative as it possesses a relatively simple heart, is genetically pliable, and expresses well-conserved genes. Fluorescence in situ hybridization confirmed an abundance of Ca-α1D and Ca-α1T mRNA in fly myocardium, which encode subunits that specify hetero-oligomeric channels homologous to mammalian LTCCs and T-type Ca2+ channels, respectively. Cardiac-specific knockdown of Ca-α1D via interfering RNA abolished cardiac contraction, suggesting Ca-α1D (i.e. A1D) represents the primary functioning Ca2+ channel in Drosophila hearts. Moreover, we successfully isolated viable single cardiomyocytes and recorded Ca2+ currents via patch clamping, a feat never before accomplished with the fly model. The profile of Ca2+ currents recorded in individual cells when Ca2+ channels were hypomorphic, absent, or under selective LTCC blockage by nifedipine, additionally confirmed the predominance of A1D current across all activation voltages. T-type current, activated at more negative voltages, was also detected. Lastly, A1D channels displayed Ca2+-dependent inactivation, a critical negative feedback mechanism of LTCCs, and the current through them was augmented by forskolin, an activator of the protein kinase A pathway. In sum, the Drosophila heart possesses a conserved compendium of Ca2+ channels, suggesting that the fly may serve as a robust and effective platform for studying cardiac channelopathies.
Collapse
Affiliation(s)
- Worawan B Limpitikul
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - Meera C Viswanathan
- Institute of CardioScience, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - Brian O'Rourke
- Institute of CardioScience, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - David T Yue
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States
| | - Anthony Cammarato
- Institute of CardioScience, Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States; Department of Physiology, The Johns Hopkins University School of Medicine, Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, United States.
| |
Collapse
|
4
|
Matsubayashi Y, Louani A, Dragu A, Sánchez-Sánchez BJ, Serna-Morales E, Yolland L, Gyoergy A, Vizcay G, Fleck RA, Heddleston JM, Chew TL, Siekhaus DE, Stramer BM. A Moving Source of Matrix Components Is Essential for De Novo Basement Membrane Formation. Curr Biol 2017; 27:3526-3534.e4. [PMID: 29129537 PMCID: PMC5714436 DOI: 10.1016/j.cub.2017.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3, 4, 5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6, 7, 8, 9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components. Macrophages are major producers of basement membrane in the Drosophila embryo Basement membrane components require hierarchical deposition during development Macrophage migration is essential to evenly deliver a subset of matrix components Uneven macrophage dispersal leads to uneven matrix incorporation and lethality
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | - Adam Louani
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Eduardo Serna-Morales
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Lawrence Yolland
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Attila Gyoergy
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gema Vizcay
- Centre for Ultrastructure Imaging, King's College London, London SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructure Imaging, King's College London, London SE1 1UL, UK
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Daria E Siekhaus
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
5
|
Lammers K, Abeln B, Hüsken M, Lehmacher C, Psathaki OE, Alcorta E, Meyer H, Paululat A. Formation and function of intracardiac valve cells in the Drosophila heart. J Exp Biol 2017; 220:1852-1863. [DOI: 10.1242/jeb.156265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023]
Abstract
Drosophila harbors a simple tubular heart that ensures hemolymph circulation within the body. The heart is built by a few different cell types, including cardiomyocytes that define the luminal heart channel and ostia cells that constitute openings in the heart wall allowing hemolymph to enter the heart chamber. Regulation of flow directionality within a tube, such as blood flow in arteries or insect hemolymph within the heart lumen, requires a dedicated gate, valve, or flap-like structure that prevents backflow of fluids. In the Drosophila heart, intracardiac valves provide this directionality of hemolymph streaming, with one valve being present in larvae and three valves in the adult fly. Each valve is built by two specialized cardiomyocytes that exhibit a unique histology. We found that the capacity to open and close the heart lumen relies on a unique myofibrillar setting as well as on the presence of large membranous vesicles. These vesicles are of endocytic origin and probably represent unique organelles of valve cells. Moreover, we characterised the working mode of the cells in real time. Valve cells exhibit a highly flexible shape and during each heartbeat, oscillating shape changes result in closing and opening of the heart channel. Finally, we identified a set of novel valve cell markers useful for future in-depth analyses of cell differentiation in wildtype and mutant animals.
Collapse
Affiliation(s)
- Kay Lammers
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Bettina Abeln
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Mirko Hüsken
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Christine Lehmacher
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | | | - Esther Alcorta
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, C/ Julián Clavería s/n, 33.006 Oviedo, Spain
| | - Heiko Meyer
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Achim Paululat
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| |
Collapse
|
6
|
Lovato TL, Cripps RM. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3. [PMID: 27695700 PMCID: PMC5044875 DOI: 10.3390/jcdd3020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart.
Collapse
|
7
|
Garlena RA, Lennox AL, Baker LR, Parsons TE, Weinberg SM, Stronach BE. The receptor tyrosine kinase Pvr promotes tissue closure by coordinating corpse removal and epidermal zippering. Development 2015; 142:3403-15. [PMID: 26293306 DOI: 10.1242/dev.122226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
A leading cause of human birth defects is the incomplete fusion of tissues, often manifested in the palate, heart or neural tube. To investigate the molecular control of tissue fusion, embryonic dorsal closure and pupal thorax closure in Drosophila are useful experimental models. We find that Pvr mutants have defects in dorsal midline closure with incomplete amnioserosa internalization and epidermal zippering, as well as cardia bifida. These defects are relatively mild in comparison to those seen with other signaling mutants, such as in the JNK pathway, and we demonstrate that JNK signaling is not perturbed by altering Pvr receptor tyrosine kinase activity. Rather, modulation of Pvr levels in the ectoderm has an impact on PIP3 membrane accumulation, consistent with a link to PI3K signal transduction. Polarized PI3K activity influences protrusive activity from the epidermal leading edge and the protrusion area changes in accord with Pvr signaling intensity, providing a possible mechanism to explain Pvr mutant phenotypes. Tissue-specific rescue experiments indicate a partial requirement in epithelial tissue, but confirm the essential role of Pvr in hemocytes for embryonic survival. Taken together, we argue that inefficient removal of the internalizing amnioserosa tissue by mutant hemocytes coupled with impaired midline zippering of mutant epithelium creates a situation in some embryos whereby dorsal midline closure is incomplete. Based on these observations, we suggest that efferocytosis (corpse clearance) could contribute to proper tissue closure and thus might underlie some congenital birth defects.
Collapse
Affiliation(s)
- Rebecca A Garlena
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ashley L Lennox
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lewis R Baker
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Beth E Stronach
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
8
|
Abstract
Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
9
|
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63:411-36. [PMID: 21415126 PMCID: PMC3082451 DOI: 10.1124/pr.110.003293] [Citation(s) in RCA: 706] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process.
Collapse
Affiliation(s)
- Udai Bhan Pandey
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | |
Collapse
|
10
|
Sperling SR. Systems biology approaches to heart development and congenital heart disease. Cardiovasc Res 2011; 91:269-78. [DOI: 10.1093/cvr/cvr126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
11
|
Ma L, Bradu A, Podoleanu AG, Bloor JW. Arrhythmia caused by a Drosophila tropomyosin mutation is revealed using a novel optical coherence tomography instrument. PLoS One 2010; 5:e14348. [PMID: 21179409 PMCID: PMC3003684 DOI: 10.1371/journal.pone.0014348] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/23/2010] [Indexed: 12/15/2022] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a severe cardiac condition that causes high mortality. Many genes have been confirmed to be involved in this disease. An ideal system with which to uncover disease mechanisms would be one that can measure the changes in a wide range of cardiac activities associated with mutations in specific, diversely functional cardiac genes. Such a system needs a genetically manipulable model organism that allows in vivo measurement of cardiac phenotypes and a detecting instrument capable of recording multiple phenotype parameters. Methodology and Principal Findings With a simple heart, a transparent body surface at larval stages and available genetic tools we chose Drosophila melanogaster as our model organism and developed for it a dual en-face/Doppler optical coherence tomography (OCT) instrument capable of recording multiple aspects of heart activity, including heart contraction cycle dynamics, ostia dynamics, heartbeat rate and rhythm, speed of heart wall movement and light reflectivity of cardiomyocytes in situ. We applied this OCT instrument to a model of Tropomyosin-associated DCM established in adult Drosophila. We show that DCM pre-exists in the larval stage and is accompanied by an arrhythmia previously unidentified in this model. We also detect reduced mobility and light reflectivity of cardiomyocytes in mutants. Conclusion These results demonstrate the capability of our OCT instrument to characterize in detail cardiac activity in genetic models for heart disease in Drosophila.
Collapse
Affiliation(s)
- Lisha Ma
- Cell and Developmental Biology Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Drosophila as a lipotoxicity model organism — more than a promise? Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:215-21. [DOI: 10.1016/j.bbalip.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/04/2009] [Accepted: 09/13/2009] [Indexed: 12/13/2022]
|
13
|
Medioni C, Sénatore S, Salmand PA, Lalevée N, Perrin L, Sémériva M. The fabulous destiny of the Drosophila heart. Curr Opin Genet Dev 2009; 19:518-25. [PMID: 19717296 DOI: 10.1016/j.gde.2009.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/22/2009] [Indexed: 01/08/2023]
Abstract
For the last 15 years the fly cardiovascular system has attracted developmental geneticists for its potential as a model system of organogenesis. Heart development in Drosophila indeed provides a remarkable system for elucidating the basic molecular and cellular mechanisms of morphogenesis and, more recently, for understanding the genetic control of cardiac physiology. The success of these studies can in part be attributed to multidisciplinary approaches, the multiplicity of existing genetic tools, and a detailed knowledge of the system. Striking similarities with vertebrate cardiogenesis have long been stressed, in particular concerning the conservation of key molecular regulators of cardiogenesis and the new data presented here confirm Drosophila cardiogenesis as a model not only for organogenesis but also for the study of molecular mechanisms of human cardiac disease.
Collapse
Affiliation(s)
- Caroline Medioni
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR 6216 CNRS-Université de la Méditerranée, Campus de Luminy, Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|