1
|
Zhao J, Zhang H, Pan C, He Q, Zheng K, Tang Y. Advances in research on the relationship between the LMNA gene and human diseases (Review). Mol Med Rep 2024; 30:236. [PMID: 39422026 PMCID: PMC11529173 DOI: 10.3892/mmr.2024.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The LMNA gene, which is responsible for encoding lamin A/C proteins, is recognized as a primary constituent of the nuclear lamina. This protein serves crucial roles in various cellular physiological activities, including the maintenance of cellular structural stability, regulation of gene expression, mechanosensing and cellular motility. A significant association has been established between the LMNA gene and several major human diseases. Mutations, dysregulated expression of the LMNA gene, and improper processing of its encoded protein can result in a spectrum of pathological conditions. These diseases, collectively termed laminopathies, are directly attributed to LMNA gene dysfunction. The present review examines the recent advancements in research concerning the LMNA gene and its association with human diseases, while exploring its pathological roles. Particular emphasis is placed on the current status of LMNA gene research in the context of tumors. This includes an analysis of the abundance of LMNA alterations in cancer and its interplay with various signaling pathways. The aim of the present review was to provide novel perspectives for studying the development of LMNA‑related diseases and additional theoretical insights for basic and clinical translational research in this field.
Collapse
Affiliation(s)
- Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Huijuan Zhang
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chenglong Pan
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qian He
- School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
Johnson S, Cowley K, Hawkins TJ, Määttä A. Pulling force deforms hair follicle root sheath nuclei and surrounding dermal collagen matrix differently at infundibulum, isthmus and suprabulbar regions. Exp Dermatol 2019; 28:862-866. [PMID: 31021445 DOI: 10.1111/exd.13948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
Abstract
The biomechanical properties of the collagenous dermal matrix are well described but responses to mechanical force by the hair follicles have not been characterised so far. We applied a pulling force on hair follicles to visualise and quantify changes in the keratin-14 and involucrin-positive cell layers of the follicles using nuclear dimensions as an indicator of tissue deformation. Moreover, we used second-harmonic generation imaging to visualise changes in the dermal collagen. We report how the anatomical regions of the follicle respond to the force. Nuclei of the isthmus region were most affected. The nuclei in both K14-positive outer root sheath cells and in involucrin-positive cells were significantly compressed, whereas the response in the infundibulum and suprabulbar regions was more variable. The deformation of the nuclei did not correlate with lamin A/C expression. The changes in the collagenous matrix were distinct at different depths of the dermis as collagen fibrils were compressed closer to each other in the region adjacent to upper suprabulbar follicle and pulled apart near the infundibulum. Thus, the responses to the force are locally defined and the cells in the permanent and cycling parts of the follicle behave differently.
Collapse
Affiliation(s)
- Simeon Johnson
- Department of Biosciences, Durham University, Durham, UK
| | - Kevin Cowley
- Procter & Gamble, Reading Innovation Centre, Reading, UK
| | | | - Arto Määttä
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
3
|
Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep 2017; 7:15678. [PMID: 29142250 PMCID: PMC5688158 DOI: 10.1038/s41598-017-15901-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Skin ageing is an inevitable consequence of life and accelerated by exposure to ultraviolet (UV) rays. Senescence is an irreversible growth arrest and senescent cells accumulate in ageing tissues, at sites of age-related pathologies and in pre-neoplastic lesions. Conventionally, senescent cells have been detected by senescence associated-β-galactosidase (SA-β-gal) staining, a procedure that requires enzymatic activity, which is lost in fixed tissue samples. We previously demonstrated that loss of lamin B1 is a novel marker to identify senescent cells. Here, we demonstrate that loss of lamin B1 facilitates the detection and quantification of senescent cells upon UV-exposure in vitro and upon chronic UV-exposure and skin regeneration in vivo. Taken together, this marker enables the study of environmental conditions on tissue ageing and regeneration in vivo, serves as a diagnostic tool to distinguish senescent from proliferating cells in pre-neoplastic lesions, and facilitates investigating the role of senescent cells in various age-related pathologies.
Collapse
Affiliation(s)
- Audrey Shimei Wang
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Peh Fern Ong
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Alexandre Chojnowski
- Developmental and Regenerative Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Carlos Clavel
- Hair & Pigment Development, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore.
| | - Oliver Dreesen
- Cell Ageing, Institute of Medical Biology, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore.
| |
Collapse
|
4
|
Rodríguez SA, Grochová D, McKenna T, Borate B, Trivedi NS, Erdos MR, Eriksson M. Global genome splicing analysis reveals an increased number of alternatively spliced genes with aging. Aging Cell 2016; 15:267-78. [PMID: 26685868 PMCID: PMC4783335 DOI: 10.1111/acel.12433] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 01/21/2023] Open
Abstract
Alternative splicing (AS) is a key regulatory mechanism for the development of different tissues; however, not much is known about changes to alternative splicing during aging. Splicing events may become more frequent and widespread genome‐wide as tissues age and the splicing machinery stringency decreases. Using skin, skeletal muscle, bone, thymus, and white adipose tissue from wild‐type C57BL6/J male mice (4 and 18 months old), we examined the effect of age on splicing by AS analysis of the differential exon usage of the genome. The results identified a considerable number of AS genes in skeletal muscle, thymus, bone, and white adipose tissue between the different age groups (ranging from 27 to 246 AS genes corresponding to 0.3–3.2% of the total number of genes analyzed). For skin, skeletal muscle, and bone, we included a later age group (28 months old) that showed that the number of alternatively spliced genes increased with age in all three tissues (P < 0.01). Analysis of alternatively spliced genes across all tissues by gene ontology and pathway analysis identified 158 genes involved in RNA processing. Additional analysis of AS in a mouse model for the premature aging disease Hutchinson–Gilford progeria syndrome was performed. The results show that expression of the mutant protein, progerin, is associated with an impaired developmental splicing. As progerin accumulates, the number of genes with AS increases compared to in wild‐type skin. Our results indicate the existence of a mechanism for increased AS during aging in several tissues, emphasizing that AS has a more important role in the aging process than previously known.
Collapse
Affiliation(s)
- Sofía A. Rodríguez
- Department of Biosciences and Nutrition; Center for Innovative Medicine; Karolinska Institutet; Novum SE-141 83 Huddinge Sweden
| | - Diana Grochová
- Department of Biosciences and Nutrition; Center for Innovative Medicine; Karolinska Institutet; Novum SE-141 83 Huddinge Sweden
| | - Tomás McKenna
- Department of Biosciences and Nutrition; Center for Innovative Medicine; Karolinska Institutet; Novum SE-141 83 Huddinge Sweden
| | - Bhavesh Borate
- National Human Genome Research Institute; National Institutes of Health; Bethesda MD USA
| | - Niraj S. Trivedi
- National Human Genome Research Institute; National Institutes of Health; Bethesda MD USA
| | - Michael R. Erdos
- National Human Genome Research Institute; National Institutes of Health; Bethesda MD USA
| | - Maria Eriksson
- Department of Biosciences and Nutrition; Center for Innovative Medicine; Karolinska Institutet; Novum SE-141 83 Huddinge Sweden
| |
Collapse
|
5
|
Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses. PLoS One 2016; 11:e0146791. [PMID: 26752403 PMCID: PMC4709225 DOI: 10.1371/journal.pone.0146791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023] Open
Abstract
Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease.
Collapse
|
6
|
Broers JLV, Ramaekers FCS. The role of the nuclear lamina in cancer and apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:27-48. [PMID: 24563342 DOI: 10.1007/978-1-4899-8032-8_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Not long after the discovery of lamin proteins, it became clear that not all lamin subtypes are ubiquitously expressed in cells and tissues. Especially, A-type lamins showed an inverse correlation with proliferation and were thus initially called statins. Here we compare the findings of both A- and B-type lamin expression in various normal tissues and their neoplastic counterparts. Based on immunocytochemistry it becomes clear that lamin expression patterns are much more complicated than initially assumed: while normally proliferative cells are devoid of A-type lamin expression, many neoplastic tissues do show prominent A-type lamin expression. Conversely, cells that do not proliferate can be devoid of lamin expression. Yet, within the different types of tissues and tumors, lamins can be used to distinguish between tumor subtypes. The link between the appearance of A-type lamins in differentiation and the appearance of A-type lamins in a tumor likely relates the proliferative capacity of the tumor to its differentiation state.While lamins are targets for degradation in the apoptotic process, and accordingly are often used as markers for apoptosis, intriguing studies on an active role of lamins in the initiation or the prevention of apoptosis have been published recently and give rise to a renewed interest in the role of lamins in cancer.
Collapse
Affiliation(s)
- Jos L V Broers
- Department of Molecular Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, 616, 6200 MD, Maastricht, The Netherlands,
| | | |
Collapse
|
7
|
Davidson PM, Lammerding J. Broken nuclei--lamins, nuclear mechanics, and disease. Trends Cell Biol 2013; 24:247-56. [PMID: 24309562 DOI: 10.1016/j.tcb.2013.11.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022]
Abstract
Mutations in lamins, which are ubiquitous nuclear intermediate filaments, lead to a variety of disorders including muscular dystrophy and dilated cardiomyopathy. Lamins provide nuclear stability, help connect the nucleus to the cytoskeleton, and can modulate chromatin organization and gene expression. Nonetheless, the diverse functions of lamins remain incompletely understood. We focus here on the role of lamins on nuclear mechanics and their involvement in human diseases. Recent findings suggest that lamin mutations can decrease nuclear stability, increase nuclear fragility, and disturb mechanotransduction signaling, possibly explaining the muscle-specific defects in many laminopathies. At the same time, altered lamin expression has been reported in many cancers, where the resulting increased nuclear deformability could enhance the ability of cells to transit tight interstitial spaces, thereby promoting metastasis.
Collapse
Affiliation(s)
- Patricia M Davidson
- Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering/Weill Institute for Cell and Molecular Biology, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Rosengardten Y, McKenna T, Grochová D, Eriksson M. Stem cell depletion in Hutchinson-Gilford progeria syndrome. Aging Cell 2011; 10:1011-20. [PMID: 21902803 DOI: 10.1111/j.1474-9726.2011.00743.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS or progeria) is a very rare genetic disorder with clinical features suggestive of premature aging. Here, we show that induced expression of the most common HGPS mutation (LMNA c.1824C>T, p.G608G) results in a decreased epidermal population of adult stem cells and impaired wound healing in mice. Isolation and growth of primary keratinocytes from these mice demonstrated a reduced proliferative potential and ability to form colonies. Downregulation of the epidermal stem cell maintenance protein p63 with accompanying activation of DNA repair and premature senescence was the probable cause of this loss of adult stem cells. Additionally, upregulation of multiple genes in major inflammatory pathways indicated an activated inflammatory response. This response has also been associated with normal aging, emphasizing the importance of studying progeria to increase the understanding of the normal aging process.
Collapse
Affiliation(s)
- Ylva Rosengardten
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Karolinska University Hospital, Huddinge, Novum, Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Yang SH, Chang SY, Yin L, Tu Y, Hu Y, Yoshinaga Y, de Jong PJ, Fong LG, Young SG. An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum Mol Genet 2011; 20:3537-44. [PMID: 21659336 PMCID: PMC3159554 DOI: 10.1093/hmg/ddr266] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/24/2011] [Accepted: 06/06/2011] [Indexed: 11/14/2022] Open
Abstract
Nuclear lamins are usually classified as A-type (lamins A and C) or B-type (lamins B1 and B2). A-type lamins have been implicated in multiple genetic diseases but are not required for cell growth or development. In contrast, B-type lamins have been considered essential in eukaryotic cells, with crucial roles in DNA replication and in the formation of the mitotic spindle. Knocking down the genes for B-type lamins (LMNB1, LMNB2) in HeLa cells has been reported to cause apoptosis. In the current study, we created conditional knockout alleles for mouse Lmnb1 and Lmnb2, with the goal of testing the hypothesis that B-type lamins are crucial for the growth and viability of mammalian cells in vivo. Using the keratin 14-Cre transgene, we bred mice lacking the expression of both Lmnb1 and Lmnb2 in skin keratinocytes (Lmnb1(Δ/Δ)Lmnb2(Δ/Δ)). Lmnb1 and Lmnb2 transcripts were absent in keratinocytes of Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice, and lamin B1 and lamin B2 proteins were undetectable. But despite an absence of B-type lamins in keratinocytes, the skin and hair of Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice developed normally and were free of histological abnormalities, even in 2-year-old mice. After an intraperitoneal injection of bromodeoxyuridine (BrdU), similar numbers of BrdU-positive keratinocytes were observed in the skin of wild-type and Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) mice. Lmnb1(Δ/Δ)Lmnb2(Δ/Δ) keratinocytes did not exhibit aneuploidy, and their growth rate was normal in culture. These studies challenge the concept that B-type lamins are essential for proliferation and vitality of eukaryotic cells.
Collapse
Affiliation(s)
- Shao H. Yang
- Department of Medicine, Division of Cardiology and
| | | | - Liya Yin
- Department of Medicine, Division of Cardiology and
| | - Yiping Tu
- Department of Medicine, Division of Cardiology and
| | - Yan Hu
- Department of Medicine, Division of Cardiology and
| | - Yuko Yoshinaga
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Pieter J. de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Stephen G. Young
- Department of Medicine, Division of Cardiology and
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA and
| |
Collapse
|
10
|
Schmidt E, Eriksson M. A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone. BMC Res Notes 2011; 4:282. [PMID: 21835026 PMCID: PMC3169473 DOI: 10.1186/1756-0500-4-282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/11/2011] [Indexed: 11/25/2022] Open
Abstract
Background The tetracycline-controlled transactivator system is a powerful tool to control gene expression in vitro and to generate consistent and conditional transgenic in vivo model organisms. It has been widely used to study gene function and to explore pathological mechanisms involved in human diseases. The system permits the regulation of the expression of a target gene, both temporally and quantitatively, by the application of tetracycline or its derivative, doxycycline. In addition, it offers the possibility to restrict gene expression in a spatial fashion by utilizing tissue-specific promoters to drive the transactivator. Findings In this study, we report our problems using a reverse tetracycline-regulated transactivator (rtTA) in a transgenic mouse model system for the bone-specific expression of the Hutchinson-Gilford progeria syndrome mutation. Even though prior studies have been successful utilizing the same rtTA, expression analysis of the transactivator revealed insufficient activity for regulating the transgene expression in our system. The absence of transactivator could not be ascribed to differences in genetic background because mice in a mixed genetic background and in congenic mouse lines showed similar results. Conclusions The purpose of this study is to report our negative experience with previously functional transactivator mice, to raise caution in the use of tet-based transgenic mouse lines and to reinforce the need for controls to ensure the stable functionality of generated tetracycline-controlled transactivators over time.
Collapse
Affiliation(s)
- Eva Schmidt
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Karolinska University Hospital, Huddinge, Novum, SE-14183 Stockholm, Sweden.
| | | |
Collapse
|