1
|
Hummig W, Baggio DF, Lopes RV, dos Santos SMD, Ferreira LEN, Chichorro JG. Antinociceptive effect of ultra-low dose naltrexone in a pre-clinical model of postoperative orofacial pain. Brain Res 2023; 1798:148154. [DOI: 10.1016/j.brainres.2022.148154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
2
|
Retraction: Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS One 2022; 17:e0266626. [PMID: 35353858 PMCID: PMC8967054 DOI: 10.1371/journal.pone.0266626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Retraction: High-Affinity Naloxone Binding to Filamin A Prevents Mu Opioid Receptor–Gs Coupling Underlying Opioid Tolerance and Dependence. PLoS One 2022; 17:e0266627. [PMID: 35353861 PMCID: PMC8967022 DOI: 10.1371/journal.pone.0266627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Retraction: Naloxone’s Pentapeptide Binding Site on Filamin A Blocks Mu Opioid Receptor–Gs Coupling and CREB Activation of Acute Morphine. PLoS One 2022; 17:e0266629. [PMID: 35353864 PMCID: PMC8967007 DOI: 10.1371/journal.pone.0266629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Retraction: Prenatal Cocaine Exposure Increases Synaptic Localization of a Neuronal RasGEF, GRASP-1 via Hyperphosphorylation of AMPAR Anchoring Protein, GRIP. PLoS One 2022; 17:e0266630. [PMID: 35353867 PMCID: PMC8967041 DOI: 10.1371/journal.pone.0266630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Retraction: Prenatal Cocaine Exposure Uncouples mGluR1 from Homer1 and Gq Proteins. PLoS One 2022; 17:e0266628. [PMID: 35353866 PMCID: PMC8967003 DOI: 10.1371/journal.pone.0266628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Reported Benefits of Low-Dose Naltrexone Appear to Be Independent of the Endogenous Opioid System Involving Proopiomelanocortin Neurons and β-Endorphin. eNeuro 2021; 8:ENEURO.0087-21.2021. [PMID: 34031099 PMCID: PMC8211470 DOI: 10.1523/eneuro.0087-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
Naltrexone is an opioid receptor antagonist approved for the treatment of alcohol and opioid use disorders at doses of 50–150 mg/d. Naltrexone has also been prescribed at much lower doses (3–6 mg/d) for the off-label treatment of inflammation and pain. Currently, a compelling mechanistic explanation for the reported efficacy of low-dose naltrexone (LDN) is lacking and none of the proposed mechanisms can explain patient reports of improved mood and sense of well-being. Here, we examined the possibility that LDN might alter the activity of the endogenous opioid system involving proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) in male and female mice. Known actions of POMC neurons could account for changes in pain perception and mood. However, using electrophysiologic, imaging and peptide measurement approaches, we found no evidence for such a mechanism. LDN did not change the sensitivity of opioid receptors regulating POMC neurons, the production of the β-endorphin precursor Pomc mRNA, nor the release of β-endorphin into plasma. Spontaneous postsynaptic currents (sPSCs) onto POMC neurons were slightly decreased after LDN treatment and GCaMP fluorescent signal, a proxy for intracellular calcium levels, was slightly increased. However, LDN treatment did not appear to change POMC neuron firing rate, resting membrane potential, nor action potential threshold. Therefore, LDN appears to have only slight effects on POMC neurons that do not translate to changes in intrinsic excitability or baseline electrical activity and mechanisms beyond POMC neurons and altered opioid receptor sensitivity should continue to be explored.
Collapse
|
8
|
Wu R, Li JX. Toll-Like Receptor 4 Signaling and Drug Addiction. Front Pharmacol 2020; 11:603445. [PMID: 33424612 PMCID: PMC7793839 DOI: 10.3389/fphar.2020.603445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
The emphasis of neuronal alterations and adaptations have long been the main focus of the studies of the mechanistic underpinnings of drug addiction. Recent studies have begun to appreciate the role of innate immune system, especially toll-like receptor 4 (TLR4) signaling in drug reward-associated behaviors and physiology. Drugs like opioids, alcohol and psychostimulants activate TLR4 signaling and subsequently induce proinflammatory responses, which in turn contributes to the development of drug addiction. Inhibition of TLR4 or its downstream effectors attenuated the reinforcing effects of opioids, alcohol and psychostimulants, and this effect is also involved in the withdrawal and relapse-like behaviors of different drug classes. However, conflicting results also argue that TLR4-related immune response may play a minimal part in drug addiction. This review discussed the preclinical evidence that whether TLR4 signaling is involved in multiple drug classes action and the possible mechanisms underlying this effect. Moreover, clinical studies which examined the potential efficacy of immune-base pharmacotherapies in treating drug addiction are also discussed.
Collapse
Affiliation(s)
- Ruyan Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
9
|
Prukop T, Wernick S, Boussicault L, Ewers D, Jäger K, Adam J, Winter L, Quintes S, Linhoff L, Barrantes-Freer A, Bartl M, Czesnik D, Zschüntzsch J, Schmidt J, Primas G, Laffaire J, Rinaudo P, Brureau A, Nabirotchkin S, Schwab MH, Nave KA, Hajj R, Cohen D, Sereda MW. Synergistic PXT3003 therapy uncouples neuromuscular function from dysmyelination in male Charcot-Marie-Tooth disease type 1A (CMT1A) rats. J Neurosci Res 2020; 98:1933-1952. [PMID: 32588471 DOI: 10.1002/jnr.24679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.
Collapse
Affiliation(s)
- Thomas Prukop
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Wernick
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - David Ewers
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Karoline Jäger
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Adam
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lorenz Winter
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susanne Quintes
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Lisa Linhoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Bartl
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Czesnik
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Shift of µ-opioid Receptor Signaling in the Dorsal Reticular Nucleus Is Implicated in Morphine-induced Hyperalgesia in Male Rats. Anesthesiology 2020; 133:628-644. [PMID: 32568844 DOI: 10.1097/aln.0000000000003412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Increased descending pain facilitation accounts for opioid-induced hyperalgesia, but the underlying mechanisms remain elusive. Given the role of µ-opioid receptors in opioid-induced hyperalgesia in animals, the authors hypothesized that the dorsal reticular nucleus, a medullary pain facilitatory area, is involved in opioid-induced hyperalgesia through altered µ-opioid receptor signaling. METHODS The authors used male Wistar rats (n = 5 to 8 per group), chronically infused with morphine, to evaluate in the dorsal reticular nucleus the expressions of the µ-opioid receptor and phosphorylated cAMP response element-binding, a downstream marker of excitatory µ-opioid receptor signaling. The authors used pharmacologic and gene-mediated approaches. Nociceptive behaviors were evaluated by the von Frey and hot-plates tests. RESULTS Lidocaine fully reversed mechanical and thermal hypersensitivity induced by chronic morphine. Morphine-infusion increased µ-opioid receptor, without concomitant messenger RNA changes, and phosphorylated cAMP response element-binding levels at the dorsal reticular nucleus. µ-opioid receptor knockdown in morphine-infused animals attenuated the decrease of mechanical thresholds and heat-evoked withdrawal latencies compared with the control vector (von Frey [mean ± SD]: -17 ± 8% vs. -40 ± 9.0%; P < 0.001; hot-plate: -10 ± 5% vs. -32 ± 10%; P = 0.001). µ-opioid receptor knockdown in control animals induced the opposite (von Frey: -31 ± 8% vs. -17 ± 8%; P = 0.053; hotplate: -24 ± 6% vs. -3 ± 10%; P = 0.001). The µ-opioid receptor agonist (D-ALA2,N-ME-PHE4,GLY5-OL)-enkephalin acetate (DAMGO) decreased mechanical thresholds and did not affect heat-evoked withdrawal latencies in morphine-infused animals. In control animals, DAMGO increased both mechanical thresholds and heat-evoked withdrawal latencies. Ultra-low-dose naloxone, which prevents the excitatory signaling of the µ-opioid receptor, administered alone, attenuated mechanical and thermal hypersensitivities, and coadministered with DAMGO, restored DAMGO analgesic effects and decreased phosphorylated cAMP response element-binding levels. CONCLUSIONS Chronic morphine shifted µ-opioid receptor signaling from inhibitory to excitatory at the dorsal reticular nucleus, likely enhancing descending facilitation during opioid-induced hyperalgesia in the rat.
Collapse
|
11
|
Ezz HAA, Elkala RS. Ultra-low-dose naloxone added to fentanyl and lidocaine for peribulbar anesthesia: A randomized controlled trial. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2014.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hoda Alsaid Ahmed Ezz
- Department of Anesthesiology and Surgical Intensive Care, Faculty of Medicine , Tanta University , Tanta, Egypt
| | - Rehab Said Elkala
- Department of Anesthesiology and Surgical Intensive Care, Faculty of Medicine , Tanta University , Tanta, Egypt
| |
Collapse
|
12
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
13
|
Tobin SJ, Wakefield DL, Terenius L, Vukojević V, Jovanović-Talisman T. Ethanol and Naltrexone Have Distinct Effects on the Lateral Nano-organization of Mu and Kappa Opioid Receptors in the Plasma Membrane. ACS Chem Neurosci 2019; 10:667-676. [PMID: 30418735 DOI: 10.1021/acschemneuro.8b00488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complex spatiotemporal organization of proteins and lipids in the plasma membrane is an important determinant of receptor function. Certain substances, such as ethanol, can penetrate into the hydrophobic regions of the plasma membrane. By altering protein-lipid and protein-protein interactions, these substances can modify the dynamic lateral organization and the function of plasma membrane receptors. To assess changes in plasma membrane receptor organization, we used photoactivated localization microscopy (PALM). This single molecule localization microscopy technique was employed to quantitatively characterize the effects of pharmacologically relevant concentrations of ethanol and naltrexone (an opioid receptor antagonist and medication used to treat alcohol use disorders) on the lateral nano-organization of mu and kappa opioid receptors (MOR and KOR, respectively). Ethanol affected the lateral organization of MOR and KOR similarly: It reduced the size and occupancy of opioid receptor nanodomains and increased the fraction of opioid receptors residing outside of nanodomains. In contrast, naltrexone affected MOR and KOR lateral organization differently. It significantly increased KOR surface density, nanodomain size, and the occupancy of KOR nanodomains. However, naltrexone marginally affected these parameters for MOR. Pretreatment with naltrexone largely protected against ethanol-induced changes in MOR and KOR lateral organization. Based on these data, we propose a putative mechanism of naltrexone action that operates in addition to its canonical antagonistic effect on MOR- and KOR-mediated signaling.
Collapse
Affiliation(s)
- Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Lars Terenius
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Vladana Vukojević
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17176, Sweden
| | - Tijana Jovanović-Talisman
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
14
|
Martínez-Navarro M, Maldonado R, Baños JE. Why mu-opioid agonists have less analgesic efficacy in neuropathic pain? Eur J Pain 2018; 23:435-454. [PMID: 30318675 DOI: 10.1002/ejp.1328] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/06/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
Injury to peripheral nerves often leads to abnormal pain states (hyperalgesia, allodynia and spontaneous pain), which can remain long after the injury heals. Although opioid agonists remain the gold standard for the treatment of moderate to severe pain, they show reduced efficacy against neuropathic pain. In addition to analgesia, opioid use is also associated with hyperalgesia and analgesia tolerance, whose underlying mechanisms share some commonalities with nerve injury-induced hypersensitivity. Here, we reviewed up-to-day research exploring the contribution of mu-opioid receptor (MOR) on the pathophysiology of neuropathic pain and on analgesic opioid actions under these conditions. We focused on the specific contributions of MOR populations at peripheral, spinal and supraspinal level. Moreover, evidences of neuroplastic changes that may underlie the low efficacy of MOR agonists under neuropathic pain conditions are reviewed and discussed. Sensitization processes leading to pain hypersensitivity, molecular changes in signalling pathways triggered by MOR and glial activation are some of these mechanisms elicited by both nerve injury and opioid exposure. Nerve injury-induced pain hypersensitivity might be masking the initial analgesic effects of opioid agonists, and alternatively, sustained opioid treatment to individuals already suffering from neuropathic pain could aggravate their pathophysiological state. Finally, some combined therapies that can increase opioid analgesic effectiveness in neuropathic pain treatment are highlighted. SIGNIFICANCE: This review provides evidence of the low benefit of opioid monotherapy in neuropathic pain and analyses the reasons of this reduced effectiveness. Opioid agonists along with drugs targeted to block the sensitization processes induced by MOR stimulation might result in a better management of neuropathic pain.
Collapse
Affiliation(s)
- Miriam Martínez-Navarro
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep-E Baños
- Department of Experimental and Health Sciences, Laboratory of Neuropharmacology, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
15
|
Toljan K, Vrooman B. Low-Dose Naltrexone (LDN)-Review of Therapeutic Utilization. Med Sci (Basel) 2018; 6:medsci6040082. [PMID: 30248938 PMCID: PMC6313374 DOI: 10.3390/medsci6040082] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Naltrexone and naloxone are classical opioid antagonists. In substantially lower than standard doses, they exert different pharmacodynamics. Low-dose naltrexone (LDN), considered in a daily dose of 1 to 5 mg, has been shown to reduce glial inflammatory response by modulating Toll-like receptor 4 signaling in addition to systemically upregulating endogenous opioid signaling by transient opioid-receptor blockade. Clinical reports of LDN have demonstrated possible benefits in diseases such as fibromyalgia, Crohn’s disease, multiple sclerosis, complex-regional pain syndrome, Hailey-Hailey disease, and cancer. In a dosing range at less than 1 μg per day, oral naltrexone or intravenous naloxone potentiate opioid analgesia by acting on filamin A, a scaffolding protein involved in μ-opioid receptor signaling. This dose is termed ultra low-dose naltrexone/naloxone (ULDN). It has been of use in postoperative control of analgesia by reducing the need for the total amount of opioids following surgery, as well as ameliorating certain side-effects of opioid-related treatment. A dosing range between 1 μg and 1 mg comprises very low-dose naltrexone (VLDN), which has primarily been used as an experimental adjunct treatment for boosting tolerability of opioid-weaning methadone taper. In general, all of the low-dose features regarding naltrexone and naloxone have been only recently and still scarcely scientifically evaluated. This review aims to present an overview of the current knowledge on these topics and summarize the key findings published in peer-review sources. The existing potential of LDN, VLDN, and ULDN for various areas of biomedicine has still not been thoroughly and comprehensively addressed.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Pathophysiology, University of Zagreb School of Medicine, Kispaticeva 12, 10 000 Zagreb, Croatia.
| | - Bruce Vrooman
- Section of Pain Medicine, Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH 03756, USA.
- Department of Anesthesiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03756, USA.
| |
Collapse
|
16
|
Ultralow Dose of Naloxone as an Adjuvant to Intrathecal Morphine Infusion Improves Perceived Quality of Sleep but Fails to Alter Persistent Pain: A Randomized, Double-blind, Controlled Study. Clin J Pain 2016; 31:968-75. [PMID: 25629634 PMCID: PMC4894772 DOI: 10.1097/ajp.0000000000000200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Introduction: This randomized, cross-over, double-blind, controlled study of continuous intrathecal morphine administration in patients with severe, long-term pain addresses whether the supplementation of low doses of naloxone in this setting is associated with beneficial clinical effects. Methods: All of the study subjects (n=11) provided informed consent and were recruited from a subset of patients who were already undergoing long-term treatment with continuous intrathecal morphine because of difficult-to-treat pain. The patients were (in a randomized order) also given intrathecal naloxone (40 ng/24 h or 400 ng/24 h). As control, the patients’ ordinary dose of morphine without any additions was used. The pain (Numeric Rating Scale, NRS) during activity, perceived quality of sleep, level of activity, and quality of life as well as the levels of several proinflammatory and anti-inflammatory cytokines in the blood were assessed. The prestudy pain (NRS during activity) in the study group ranged from 3 to 10. Results: A total of 64% of the subjects reported improved quality of sleep during treatment with naloxone at a dose of 40 ng per 24 hours as compared with 9% with sham treatment (P=0.024). Although not statistically significant, pain was reduced by 2 NRS steps or more during supplemental treatment with naloxone in 36% of subjects when using the 40 ng per 24 hours dose and in 18% of the subjects when using naloxone 400 ng per 24 hours dose. The corresponding percentage among patients receiving unaltered treatment was 27%. Conclusions: To conclude, the addition of an ultralow dose of intrathecal naloxone (40 ng/24 h) to intrathecal morphine infusion in patients with severe, persistent pain improved perceived quality of sleep. We were not able to show any statistically significant effects of naloxone on pain relief, level of activity, or quality of life.
Collapse
|
17
|
Hansson E, Werner T, Björklund U, Skiöldebrand E. Therapeutic innovation: Inflammatory-reactive astrocytes as targets of inflammation. IBRO Rep 2016; 1:1-9. [PMID: 30135924 PMCID: PMC6084881 DOI: 10.1016/j.ibror.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This study aimed to test pharmaceutical compounds targeting astrocytes showing inflammatory dysregulation. The primary rat brain cultures were treated with different batches of serum with or without microglia added to make the cells inflammatory-reactive. Lipopolysaccharide (LPS) and tryptase were used as inflammatory inducers. Expression levels of Toll-like receptor 4 (TLR4), Na+/K+-ATPase, and matrix metalloprotease-13 (MMP-13), as well as actin filament organization, pro-inflammatory cytokines, and intracellular Ca2+ release, were evaluated. LPS combined with tryptase upregulated TLR4 expression, whereas Na+/K+-ATPase expression was downregulated, ATP-evoked Ca2+ transients were increased, actin filaments were reorganized and ring structures instead of stress fibers were observed. Other aims of the study were to prevent astrocytes from becoming inflammatory-reactive and to restore inflammatory dysregulated cellular changes. A combination of the μ-opioid antagonist (-)-naloxone in ultra-low concentrations, the non-addictive μ-opioid agonist (-)-linalool, and the anti-epileptic agent levetiracetam was examined. The results indicated that this drug cocktail prevented the LPS- and tryptase-induced inflammatory dysregulation. The drug cocktail could also restore the LPS- and tryptase-treated cells back to a normal physiological level in terms of the analyzed parameters.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden
| | - Tony Werner
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden.,Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
A randomized controlled study of the effects of adding ultra-low dose naloxone to lidocaine for intravenous regional anesthesia. EGYPTIAN JOURNAL OF ANAESTHESIA 2016. [DOI: 10.1016/j.egja.2015.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Wang D, Zeng J, Li Q, Huang J, Couture R, Hong Y. Contribution of adrenomedullin to the switch of G protein-coupled μ-opioid receptors from Gi to Gs in the spinal dorsal horn following chronic morphine exposure in rats. Br J Pharmacol 2016; 173:1196-207. [PMID: 26750148 DOI: 10.1111/bph.13419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic exposure to morphine increases spinal adrenomedullin (AM) bioactivity resulting in the development and maintenance of morphine tolerance. This study investigated the possible involvement of AM in morphine-evoked alteration in μ-opioid receptor-coupled G proteins. EXPERIMENTAL APPROACH Agents were administered intrathecally (i.t.) in rats. Nociceptive behaviours and cumulative dose-response of morphine analgesia were assessed. Neurochemicals in the spinal dorsal horn were assayed by immunoprecipitation, Western blot analysis and ELISA. KEY RESULTS Intrathecal injection of AM (8 μg) for 9 days decreased and increased the levels of μ receptor-coupled Gi and Gs proteins respectively. Morphine stimulation (5 μg) after chronic treatment with AM also induced an increase in cAMP production in the spinal dorsal horn. Co-administration of the selective AM receptor antagonist AM22-52 inhibited chronic morphine-evoked switch of G protein-coupled μ receptor from Gi to Gs. Chronic exposure to AM increased the phosphorylation of cAMP-responsive element-binding protein (CREB) and ERK. Co-administration of the PKA inhibitor H-89 (5 μg) or MEK1 inhibitor PD98059 (1 μg) reversed the AM-induced thermal/mechanical hypersensitivity, decline in morphine analgesic potency, switch of G protein-coupled μ receptor and increase in cAMP. CONCLUSIONS AND IMPLICATIONS The present study supports the hypothesis that an increase in AM activity in the spinal dorsal horn contributes to the switch of the μ receptor-coupled G protein from Gi to Gs protein via the activation of cAMP/PKA/CREB and ERK signalling pathways in chronic morphine use.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Juan Zeng
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Qi Li
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianzhong Huang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Réjean Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Wang X, Zhang Y, Peng Y, Hutchinson MR, Rice KC, Yin H, Watkins LR. Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol 2016; 173:856-69. [PMID: 26603732 DOI: 10.1111/bph.13394] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The toll-like receptor TLR4 is involved in neuropathic pain and in drug reward and reinforcement. The opioid inactive isomers (+)-naltrexone and (+)-naloxone act as TLR4 antagonists, reversing neuropathic pain and reducing opioid and cocaine reward and reinforcement. However, how these agents modulate TLR4 signalling is not clear. Here, we have elucidated the molecular mechanism of (+)-naltrexone and (+)-naloxone on TLR4 signalling. EXPERIMENTAL APPROACH BV-2 mouse microglial cell line, primary rat microglia and primary rat peritoneal macrophages were treated with LPS and TLR4 signalling inhibitors. Effects were measured using Western blotting, luciferase reporter assays, fluorescence microscopy and ELISA KEY RESULTS: (+)-Naltrexone and (+)-naloxone were equi-potent inhibitors of the LPS-induced TLR4 downstream signalling and induction of the pro-inflammatory factors NO and TNF-α. Similarly, (+)-naltrexone or (+)-naloxone inhibited production of reactive oxygen species and increased microglial phagocytosis, induced by LPS. However, (+)-naltrexone and (+)-naloxone did not directly inhibit the increased production of IL-1β, induced by LPS. The drug interaction of (+)-naloxone and (+)-naltrexone was additive. (+)-Naltrexone or (+)-naloxone inhibited LPS-induced activation of IFN regulatory factor 3 and production of IFN-β. However, they did not inhibit TLR4 signalling via the activation of either NF-κB, p38 or JNK in these cellular models. CONCLUSIONS AND IMPLICATIONS (+)-Naltrexone and (+)-naloxone were TRIF-IFN regulatory factor 3 axis-biased TLR4 antagonists. They blocked TLR4 downstream signalling leading to NO, TNF-α and reactive oxygen species. This pattern may explain, at least in part, the in vivo therapeutic effects of (+)-naltrexone and (+)-naloxone.
Collapse
Affiliation(s)
- X Wang
- Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Y Zhang
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Y Peng
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - M R Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - K C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20892, USA
| | - H Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
21
|
Block L. Glial dysfunction and persistent neuropathic postsurgical pain. Scand J Pain 2016; 10:74-81. [PMID: 28361776 DOI: 10.1016/j.sjpain.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Acute pain in response to injury is an important mechanism that serves to protect living beings from harm. However, persistent pain remaining long after the injury has healed serves no useful purpose and is a disabling condition. Persistent postsurgical pain, which is pain that lasts more than 3 months after surgery, affects 10-50% of patients undergoing elective surgery. Many of these patients are affected by neuropathic pain which is characterised as a pain caused by lesion or disease in the somatosensory nervous system. When established, this type of pain is difficult to treat and new approaches for prevention and treatment are needed. A possible contributing mechanism for the transition from acute physiological pain to persistent pain involves low-grade inflammation in the central nervous system (CNS), glial dysfunction and subsequently an imbalance in the neuron-glial interaction that causes enhanced and prolonged pain transmission. AIM This topical review aims to highlight the contribution that inflammatory activated glial cell dysfunction may have for the development of persistent pain. METHOD Relevant literature was searched for in PubMed. RESULTS Immediately after an injury to a nerve ending in the periphery such as in surgery, the inflammatory cascade is activated and immunocompetent cells migrate to the site of injury. Macrophages infiltrate the injured nerve and cause an inflammatory reaction in the nerve cell. This reaction leads to microglia activation in the central nervous system and the release of pro-inflammatory cytokines that activate and alter astrocyte function. Once the astrocytes and microglia have become activated, they participate in the development, spread, and potentiation of low-grade neuroinflammation. The inflammatory activated glial cells exhibit cellular changes, and their communication to each other and to neurons is altered. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocyte dysfunction can be experimentally restored using the combined actions of a μ-opioid receptor agonist, a μ-opioid receptor antagonist, and an anti-epileptic agent. To find these agents we searched the literature for substances with possible anti-inflammatory properties that are usually used for other purposes in medicine. Inflammatory induced glial cell dysfunction is restorable in vitro by a combination of endomorphine-1, ultralow doses of naloxone and levetiracetam. Restoring inflammatory-activated glial cells, thereby restoring astrocyte-neuron interaction has the potential to affect pain transmission in neurons. CONCLUSION Surgery causes inflammation at the site of injury. Peripheral nerve injury can cause low-grade inflammation in the CNS known as neuroinflammation. Low-grade neuroinflammation can cause an imbalance in the glial-neuron interaction and communication. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocytic dysfunction can be restored in vitro by a combination of endomorphin-1, ultralow doses of naloxone and levetiracetam. This restoration is essential for the interaction between astrocytes and neurons and hence also for modulation of synaptic pain transmission. IMPLICATIONS Larger studies in clinical settings are needed before these findings can be applied in a clinical context. Potentially, by targeting inflammatory activated glial cells and not only neurons, a new arena for development of pharmacological agents for persistent pain is opened.
Collapse
Affiliation(s)
- Linda Block
- Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
22
|
Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways. Biochem J 2015; 470:155-67. [DOI: 10.1042/bj20150358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GPCRs (G-protein-coupled receptors) are members of a family of proteins which are generally regarded as the largest group of therapeutic drug targets. Ligands of GPCRs do not usually activate all cellular signalling pathways linked to a particular seven-transmembrane receptor in a uniform manner. The fundamental idea behind this concept is that each ligand has its own ability, while interacting with the receptor, to activate different signalling pathways (or a particular set of signalling pathways) and it is this concept which is known as biased signalling. The importance of biased signalling is that it may selectively activate biological responses to favour therapeutically beneficial signalling pathways and to avoid adverse effects. There are two levels of biased signalling. First, bias can arise from the ability of GPCRs to couple to a subset of the available G-protein subtypes: Gαs, Gαq/11, Gαi/o or Gα12/13. These subtypes produce the diverse effects of GPCRs by targeting different effectors. Secondly, biased GPCRs may differentially activate G-proteins or β-arrestins. β-Arrestins are ubiquitously expressed and function to terminate or inhibit classic G-protein signalling and initiate distinct β-arrestin-mediated signalling processes. The interplay of G-protein and β-arrestin signalling largely determines the cellular consequences of the administration of GPCR-targeted drugs. In the present review, we highlight the particular functionalities of biased signalling and discuss its biological effects subsequent to GPCR activation. We consider that biased signalling is potentially allowing a choice between signalling through ‘beneficial’ pathways and the avoidance of ‘harmful’ ones.
Collapse
|
23
|
In vivo veritas: (+)-Naltrexone's actions define translational importance. Trends Pharmacol Sci 2014; 35:432-3. [DOI: 10.1016/j.tips.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 12/26/2022]
|
24
|
Actin filament reorganization in astrocyte networks is a key functional step in neuroinflammation resulting in persistent pain: novel findings on network restoration. Neurochem Res 2014; 40:372-9. [PMID: 24952067 DOI: 10.1007/s11064-014-1363-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
In recent years, the importance of glial cell activation in the generation and maintenance of long-term pain has been investigated. One novel mechanism underlying long-lasting pain is injury-induced inflammation in the periphery, followed by microglial activation in the dorsal horn of the spinal cord, which results in local neuroinflammation. An increase in neuronal excitability may follow, with intense signaling along the pain tracts to the thalamus and the parietal cortex along with other cortical regions for the identification and recognition of the injury. If the local neuroinflammation develops into a pathological state, then the astrocytes become activated. Previous studies in which lipopolysaccharide (LPS) was used to induce inflammation have shown that in a dysfunctional astrocyte network, the actin cytoskeleton is reorganized from the normally occurring F-actin stress fibers into the more diffusible, disorganized, ring-form globular G-actin. In addition, Ca(2+) signaling systems are altered, Na(+)- and glutamate transporters are downregulated, and pro-inflammatory cytokines, particularly IL-1β, are released in dysfunctional astrocyte networks. In a series of experiments, we have demonstrated that these LPS-induced changes in astrocyte function can be restored by stimulation of Gi/o and inhibition of Gs with a combination of a μ-receptor agonist and ultralow concentrations of a μ-receptor antagonist and by inhibition of cytokine release, particularly IL-1β, by the antiepileptic drug levetiracetam. These findings could be of clinical significance and indicate a novel treatment for long-term pain.
Collapse
|
25
|
Nanoscale effects of ethanol and naltrexone on protein organization in the plasma membrane studied by photoactivated localization microscopy (PALM). PLoS One 2014; 9:e87225. [PMID: 24503624 PMCID: PMC3913589 DOI: 10.1371/journal.pone.0087225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 12/20/2013] [Indexed: 12/04/2022] Open
Abstract
Background Ethanol affects the signaling of several important neurotransmitter and neuromodulator systems in the CNS. It has been recently proposed that ethanol alters the dynamic lateral organization of proteins and lipids in the plasma membrane, thereby affecting surface receptor-mediated cellular signaling. Our aims are to establish whether pharmacologically relevant levels of ethanol can affect the lateral organization of plasma membrane and cytoskeletal proteins at the nanoscopic level, and investigate the relevance of such perturbations for mu-opioid receptor (MOP) function. Methodology/Principal Findings We used Photoactivated Localization Microscopy with pair-correlation analysis (pcPALM), a quantitative fluorescence imaging technique with high spatial resolution (15–25 nm) and single-molecule sensitivity, to study ethanol effects on protein organization in the plasma membrane. We observed that short (20 min) exposure to 20 and 40 mM ethanol alters protein organization in the plasma membrane of cells that harbor endogenous MOPs, causing a rearrangement of the lipid raft marker glycosylphosphatidylinositol (GPI). These effects could be largely occluded by pretreating the cells with the MOP antagonist naltrexone (200 nM for 3 hours). In addition, ethanol induced pronounced actin polymerization, leading to its partial co-localization with GPI. Conclusions/Significance Pharmacologically relevant levels of ethanol alter the lateral organization of GPI-linked proteins and induce actin cytoskeleton reorganization. Pretreatment with the MOP antagonist naltrexone is protective against ethanol action and significantly reduces the extent to which ethanol remodels the lateral organization of lipid-rafts-associated proteins in the plasma membrane. Super-resolution pcPALM reveals details of ethanol action at the nanoscale level, giving new mechanistic insight on the cellular and molecular mechanisms of its action.
Collapse
|
26
|
Barnett V, Twycross R, Mihalyo M, Wilcock A. Opioid antagonists. J Pain Symptom Manage 2014; 47:341-52. [PMID: 24512968 DOI: 10.1016/j.jpainsymman.2013.12.223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 11/10/2013] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Mary Mihalyo
- Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
27
|
Yang CP, Cherng CH, Wu CT, Huang HY, Tao PL, Lee SO, Wong CS. Intrathecal ultra-low dose naloxone enhances the antihyperalgesic effects of morphine and attenuates tumor necrosis factor-α and tumor necrosis factor-α receptor 1 expression in the dorsal horn of rats with partial sciatic nerve transection. Anesth Analg 2014; 117:1493-502. [PMID: 24257399 DOI: 10.1213/ane.0000000000000020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Glutamate homeostasis and microglia activation play an important role in the development and maintenance of neuropathic pain. We designed this investigation to examine whether ultra-low dose naloxone administered alone or in combination with morphine could alter the concentration of the excitatory amino acids (EAAs) glutamate and aspartate, as well as the expression of tumor necrosis factor-α (TNF-α) and its receptors (TNFR1 and TNFR2) in the spinal cord dorsal horn of rats with partial sciatic nerve transection (PST). METHODS Male Wistar rats underwent intrathecal catheter implantation for drug delivery and were divided in 7 groups: sham-operated + saline (sham), PST + saline (S), PST + 15 ng naloxone (n), PST + 15 µg naloxone (N), PST + 10 µg morphine (M), PST + 15 ng naloxone + 10 µg morphine (Mn), PST + 15 µg naloxone + 10 µg morphine (MN). Thermal withdrawal latency and mechanical withdrawal threshold, TNF-α and TNFR expression in the spinal cord and dorsal root ganglia, and EAAs glutamate and aspartate concentration in cerebrospinal fluid dialysates were measured. RESULTS Ten days after PST, rats developed hyperalgesia (P < 0.0001) and allodynia (P < 0.0001), and increased TNF-α (P < 0.0001) and TNFR1 expression (P = 0.0009) were measured in the ipsilateral spinal cord dorsal horn. The antihyperalgesic and antiallodynic effects of morphine (10 μg) were abolished by high-dose naloxone (15 μg; P = 0.0031) but enhanced by ultra-low dose naloxone (15 ng; P = 0.0015), and this was associated with a reduction of TNF-α (P < 0.0001) and TNFR1 (P = 0.0009) expression in the spinal cord dorsal horn and EAAs concentration (glutamate: P = 0.0001; aspartate: P = 0.004) in cerebrospinal fluid dialysate. Analysis of variance (ANOVA) or Student t test with Bonferroni correction were used for statistical analysis. CONCLUSIONS Ultra-low dose naloxone enhances the antihyperalgesia and antiallodynia effects of morphine in PST rats, possibly by reducing TNF-α and TNFR1 expression, and EAAs concentrations in the spinal dorsal horn. Ultra-low dose naloxone may be a useful adjuvant for increasing the analgesic effect of morphine in neuropathic pain conditions.
Collapse
Affiliation(s)
- Chih-Ping Yang
- From the *Division of Anesthesiology, Armed Forces Taoyuan General Hospital, Taoyuan; †Tri-Service General Hospital, ‡Department of Anesthesiology, and §Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei; ‖Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Miaoli County; and ¶Department of Anesthesiology, Cathy General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
28
|
Chou KY, Tsai RY, Tsai WY, Wu CT, Yeh CC, Cherng CH, Wong CS. Ultra-low dose (+)-naloxone restores the thermal threshold of morphine tolerant rats. J Formos Med Assoc 2013; 112:795-800. [DOI: 10.1016/j.jfma.2013.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022] Open
|
29
|
Block L, Björklund U, Westerlund A, Jörneberg P, Biber B, Hansson E. A new concept affecting restoration of inflammation-reactive astrocytes. Neuroscience 2013; 250:536-45. [DOI: 10.1016/j.neuroscience.2013.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 01/30/2023]
|
30
|
Wang D, Chen T, Zhou X, Couture R, Hong Y. Activation of Mas oncogene-related gene (Mrg) C receptors enhances morphine-induced analgesia through modulation of coupling of μ-opioid receptor to Gi-protein in rat spinal dorsal horn. Neuroscience 2013; 253:455-64. [PMID: 24042038 DOI: 10.1016/j.neuroscience.2013.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 12/21/2022]
Abstract
Mas oncogene-related gene (Mrg) G protein-coupled receptors are exclusively expressed in small-sized neurons in trigeminal and dorsal root ganglia (DRG) in mammals. The present study investigated the effect of MrgC receptor activation on morphine analgesic potency and addressed its possible mechanisms. Intrathecal (i.t.) administration of the specific MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22, 3 nmol) increased morphine-induced analgesia and shifted the morphine dose-response curve to the left in rats. Acute morphine (5 μg) reduced the coupling of μ-opioid receptors (MORs) to Gi-, but not Gs-, protein in the spinal dorsal horn. The i.t. BAM8-22 (3 nmol) prevented this change of G-protein repertoire while the inactive MrgC receptor agonist BAM8-18 (3 nmol, i.t.) failed to do so. A double labeling study showed the co-localization of MrgC and MORs in DRG neurons. The i.t. BAM8-22 also increased the coupling of MORs to Gi-protein and recruited Gi-protein from cytoplasm to the cell membrane in the spinal dorsal horn. Application of BAM8-22 (10nM) in the cultured ganglion explants for 30 min increased Gi-protein mRNA, but not Gs-protein mRNA. The present study demonstrated that acute administration of morphine inhibited the repertoire of MOR/Gi-protein coupling in the spinal dorsal horn in vivo. The findings highlight a novel mechanism by which the activation of MrgC receptors can modulate the coupling of MORs with Gi-protein to enhance morphine-induced analgesia. Hence, adjunct treatment of MrgC agonist BAM8-22 may be of therapeutic value to relieve pain.
Collapse
Affiliation(s)
- D Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Stulić M, Jantsch MF. Spatio-temporal profiling of Filamin A RNA-editing reveals ADAR preferences and high editing levels outside neuronal tissues. RNA Biol 2013; 10:1611-7. [PMID: 24025532 PMCID: PMC3866242 DOI: 10.4161/rna.26216] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA editing by ADARs can change the coding potential of protein-coding mRNAs. So far, this type of RNA editing has mainly been shown to affect RNAs expressed in the nervous system with much lower editing levels being observed in other tissues. The actin crosslinking proteins filamin α and filamin β are widely expressed in most tissues. The mRNAs encoding either protein are edited at the same position leading to a conserved Q to R exchange in both proteins. Using bar-coded next generation sequencing, we show that editing of filamin α is most abundant in the gastrointestinal tract and only to a lesser extent in the nervous system. Using knockout mice, we show that ADARB1 (ADAR2) is responsible for the majority of FLNA editing, while ADAR1 can edit filamin α mRNA in some tissues quite efficiently. Interestingly, editing levels of filamin α and β do not follow the same trend across tissues, suggesting a substrate-specific regulation of editing.
Collapse
Affiliation(s)
- Maja Stulić
- Department of Chromosome Biology; Max F. Perutz Laboratories; University of Vienna; A-1030 Vienna, Austria
| | - Michael F Jantsch
- Department of Chromosome Biology; Max F. Perutz Laboratories; University of Vienna; A-1030 Vienna, Austria
| |
Collapse
|
32
|
Abstract
INTRODUCTION Opioid receptor antagonists are well known for their ability to attenuate or reverse the effects of opioid agonists. This property has made them useful in mitigating opioid side effects, overdose and abuse. Paradoxically, opioid antagonists have been reported to produce analgesia or enhance analgesia of opioid agonists. The authors review the current state of the clinical use of opioid antagonists as analgesics. AREAS COVERED Published clinical trials, case reports and other sources were reviewed to determine the effectiveness and safety of opioid antagonists for use in relieving pain. The results are summarized. Postulated mechanisms for how opioid antagonists might exert an analgesic effect are also briefly summarized. EXPERT OPINION Since the comprehensive review by Leavitt in 2009, few new studies on the use of opioid antagonists for pain have been published. The few clinical trials generally consist of small populations. However, there does appear to be a trend of effectiveness of low doses (higher doses antagonize opioid agonist effects). How opioid antagonists can elicit an analgesic effect is still unclear, but a number of possibilities have been suggested. Although the data do not yet support recommendation of widespread application of this off-label use of opioid antagonists, further study appears worthwhile.
Collapse
|
33
|
Aguado D, Abreu M, Benito J, Garcia-Fernandez J, Gómez de Segura IA. Effects of Naloxone on Opioid-induced Hyperalgesia and Tolerance to Remifentanil under Sevoflurane Anesthesia in Rats. Anesthesiology 2013; 118:1160-9. [DOI: 10.1097/aln.0b013e3182887526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background:
Opioid antagonists at ultra-low doses have been used with opioid agonists to prevent or limit opioid tolerance. The aim of this study was to evaluate whether an ultra-low dose of naloxone combined with remifentanil could block opioid-induced hyperalgesia and tolerance under sevoflurane anesthesia in rats.
Methods:
Male adult Wistar rats were allocated into one of four treatment groups (n = 7), receiving remifentanil (4 µg·kg−1·min−1) combined with naloxone (0.17 ng·kg−1·min−1), remifentanil alone, naloxone alone, or saline. Animals were evaluated for mechanical nociceptive thresholds (von Frey) and subsequently anesthetized with sevoflurane to determine the baseline minimum alveolar concentration (MAC). Next, treatments were administered, and the MAC was redetermined twice during the infusion. The experiment was performed three times on nonconsecutive days (0, 2, and 4). Hyperalgesia was considered to be a decrease in mechanical thresholds, whereas opioid tolerance was considered to be a decrease in sevoflurane MAC reduction by remifentanil.
Results:
Remifentanil produced a significant decrease in mechanical thresholds compared with baseline values at days 2 and 4 (mean ± SD, 30.7 ± 5.5, 22.1 ± 6.4, and 20.7 ± 3.7g at days 0, 2, and 4, respectively) and an increase in MAC baseline values (2.5 ± 0.3, 3.0 ± 0.3, and 3.1 ± 0.3 vol% at days 0, 2, and 4, respectively). Both effects were blocked by naloxone coadministration. However, both remifentanil-treated groups (with or without naloxone) developed opioid tolerance determined by their decrease in MAC reduction.
Conclusions:
An ultra-low dose of naloxone blocked remifentanil-induced hyperalgesia but did not change opioid tolerance under inhalant anesthesia. Moreover, the MAC increase associated with hyperalgesia was also blocked by naloxone.
Collapse
Affiliation(s)
| | - Mariana Abreu
- Research Assistant, Department of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Javier Benito
- Research Assistant, Comparative Pain Research Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Javier Garcia-Fernandez
- Chairman, Department of Anesthesiology and Intensive Care, Puerta de Hierro University Hospital, Madrid, Spain
| | - Ignacio A. Gómez de Segura
- Professor, Department of Animal Medicine and Surgery, Veterinary Faculty, University Complutense, Madrid, Spain
| |
Collapse
|
34
|
Chaijale NN, Aloyo VJ, Simansky KJ. The stereoisomer (+)-naloxone potentiates G-protein coupling and feeding associated with stimulation of mu opioid receptors in the parabrachial nucleus. J Psychopharmacol 2013; 27:302-11. [PMID: 23348755 DOI: 10.1177/0269881112472561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Classically, opioids produce their effects by activating Gi-proteins that inhibit adenylate cyclase activity. Previous studies proposed that mu-opioid receptors can also stimulate adenylate cyclase due to an initial transient coupling to Gs-proteins. Treatment with ultra-low doses of the nonselective opioid antagonist (-)-naloxone or its inactive enantiomer (+)-naloxone blocks this excitatory effect and enhances Gi-coupling. Previously we reported that infusion of the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Glycinol5]-Enkephalin (DAMGO) into the mu-opioid receptor expressing lateral parabrachial nucleus increases feeding. Pretreatment with (-)-naloxone blocks this effect. We used this parabrachial circuit as a model to assess cellular actions of ultra-low doses of (-)-naloxone and (+)-naloxone in modifying the effects of DAMGO. Our results showed that an ultra-low concentration of (-)-naloxone (0.001 nM) and several concentrations of (+)-naloxone (0.01-10 nM) enhanced DAMGO-stimulated guanosine-5'-0-(γ-thio)-triphosphate incorporation in parabrachial sections in vitro. Further, we analyzed the relevance of these effects in vivo. In the present study, we show that (+)-naloxone can potentiate DAMGO-induced feeding at doses at which (-)-naloxone was an antagonist. These results implicated (+)-naloxone as a novel tool for studying mu-opioid receptor functions and suggest that (+)-naloxone may have therapeutic value to enhance clinical actions of opiate drugs.
Collapse
Affiliation(s)
- Nayla N Chaijale
- Drexel University College of Medicine, Department of Pharmacology and Physiology, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
35
|
Yue J, Huhn S, Shen Z. Complex roles of filamin-A mediated cytoskeleton network in cancer progression. Cell Biosci 2013; 3:7. [PMID: 23388158 PMCID: PMC3573937 DOI: 10.1186/2045-3701-3-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 01/08/2023] Open
Abstract
Filamin-A (FLNA), also called actin-binding protein 280 (ABP-280), was originally identified as a non-muscle actin binding protein, which organizes filamentous actin into orthogonal networks and stress fibers. Filamin-A also anchors various transmembrane proteins to the actin cytoskeleton and provides a scaffold for a wide range of cytoplasmic and nuclear signaling proteins. Intriguingly, several studies have revealed that filamin-A associates with multiple non-cytoskeletal proteins of diverse function and is involved in several unrelated pathways. Mutations and aberrant expression of filamin-A have been reported in human genetic diseases and several types of cancer. In this review, we discuss the implications of filamin-A in cancer progression, including metastasis and DNA damage response.
Collapse
Affiliation(s)
- Jingyin Yue
- Department of Radiation Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
| | | | | |
Collapse
|
36
|
Wang Q, Zhou H, Gao H, Chen SH, Chu CH, Wilson B, Hong JS. Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91phox subunit of NADPH oxidase. J Neuroinflammation 2012; 9:32. [PMID: 22340895 PMCID: PMC3305409 DOI: 10.1186/1742-2094-9-32] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/16/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Both (-) and (+)-naloxone attenuate inflammation-mediated neurodegeneration by inhibition of microglial activation through superoxide reduction in an opioid receptor-independent manner. Multiple lines of evidence have documented a pivotal role of overactivated NADPH oxidase (NOX2) in inflammation-mediated neurodegeneration. We hypothesized that NOX2 might be a novel action site of naloxone to mediate its anti-inflammatory actions. METHODS Inhibition of NOX-2-derived superoxide by (-) and (+)-naloxone was measured in lipopolysaccharide (LPS)-treated midbrain neuron-glia cultures and phorbol myristate acetate (PMA)-stimulated neutrophil membranes by measuring the superoxide dismutase (SOD)-inhibitable reduction of tetrazolium salt (WST-1) or ferricytochrome c. Further, various ligand (3H-naloxone) binding assays were performed in wild type and gp91phox-/- neutrophils and transfected COS-7 and HEK293 cells. The translocation of cytosolic subunit p47phox to plasma membrane was assessed by western blot. RESULTS Both (-) and (+)-naloxone equally inhibited LPS- and PMA-induced superoxide production with an IC50 of 1.96 and 2.52 μM, respectively. Competitive binding of 3H-naloxone with cold (-) and (+)-naloxone in microglia showed equal potency with an IC50 of 2.73 and 1.57 μM, respectively. 3H-Naloxone binding was elevated in COS-7 and HEK293 cells transfected with gp91phox; in contrast, reduced 3H-naloxone binding was found in neutrophils deficient in gp91phox or in the presence of a NOX2 inhibitor. The specificity and an increase in binding capacity of 3H-naloxone were further demonstrated by 1) an immunoprecipitation study using gp91phox antibody, and 2) activation of NOX2 by PMA. Finally, western blot studies showed that naloxone suppressed translocation of the cytosolic subunit p47phox to the membrane, leading to NOX2 inactivation. CONCLUSIONS Strong evidence is provided indicating that NOX2 is a non-opioid novel binding site for naloxone, which is critical in mediating its inhibitory effect on microglia overactivation and superoxide production.
Collapse
Affiliation(s)
- Qingshan Wang
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Potentiation of buprenorphine antinociception with ultra-low dose naltrexone in healthy subjects. Eur J Pain 2012; 15:293-8. [DOI: 10.1016/j.ejpain.2010.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 06/24/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022]
|
38
|
Seyedabadi M, Ostad SN, Albert PR, Dehpour AR, Rahimian R, Ghazi-Khansari M, Ghahremani MH. Ser/ Thr residues at α3/β5 loop of Gαs are important in morphine-induced adenylyl cyclase sensitization but not mitogen-activated protein kinase phosphorylation. FEBS J 2012; 279:650-60. [PMID: 22177524 DOI: 10.1111/j.1742-4658.2011.08459.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signaling switch of β2-adrenergic and μ(1) -opioid receptors from stimulatory G-protein (G(αs) ) to inhibitory G-protein (G(αi) ) (and vice versa) influences adenylyl cyclase (AC) and extracellular-regulated kinase (ERK)1/2 activation. Post-translational modifications, including dephosphorylation of G(αs) , enhance opioid receptor coupling to G(αs) . In the present study, we substituted the Ser/Thr residues of G(αs) at the α3/β5 and α4/β6 loops aiming to study the role of G(αs) lacking Ser/Thr phosphorylation with respect to AC sensitization and mitogen-activated protein kinase activation. Isoproterenol increased the cAMP concentration (EC(50) = 22.8 ± 3.4 μm) in G(αs) -transfected S49 cyc- cells but not in nontransfected cells. However, there was no significant difference between the G(αs) -wild-type (wt) and mutants. Morphine (10 μm) inhibited AC activity more efficiently in cyc- compared to G(αs) -wt introduced cells (P < 0.05); however, we did not find a notable difference between G(αs) -wt and mutants. Interestingly, G(αs) -wt transfected cells showed more sensitization with respect to AC after chronic morphine compared to nontransfected cells (101 ± 12% versus 34 ± 6%; P < 0.001); μ1-opioid receptor interacted with G(αs) , and both co-immunoprecipitated after chronic morphine exposure. Furthermore, mutation of T270A and S272A (P < 0.01), as well as T270A, S272A and S261A (P < 0.05), in α3/β5, resulted in a higher level of AC supersensitization. ERK1/2 phosphorylation was rapidly induced by isoproterenol (by 9.5 ± 2.4-fold) and morphine (22 ± 2.2-fold) in G(αs) -transfected cells; mutations of α3/β5 and α4/β6 did not affect the pattern or extent of mitogen-activated protein kinase activation. The findings of the present study show that G(αs) interacts with the μ1-opioid receptor, and the Ser/Thr mutation to Ala at the α3/β5 loop of G(αs) enhances morphine-induced AC sensitization. In addition, G(αs) was required for the rapid phosphorylation of ERK1/2 by isoproterenol but not morphine.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran
| | | | | | | | | | | | | |
Collapse
|
39
|
Block L, Forshammar J, Westerlund A, Björklund U, Lundborg C, Biber B, Hansson E. Naloxone in ultralow concentration restores endomorphin-1-evoked Ca²⁺ signaling in lipopolysaccharide pretreated astrocytes. Neuroscience 2012; 205:1-9. [PMID: 22245502 DOI: 10.1016/j.neuroscience.2011.12.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/28/2011] [Indexed: 12/19/2022]
Abstract
Long-term pain is a disabling condition that affects thousands of people. Pain may be sustained for a long time even after the physiological trigger has resolved. Possible mechanisms for this phenomenon include low-grade inflammation in the CNS. Astrocytes respond to inflammatory stimuli and may play an important role as modulators of the inflammatory response in the nervous system. This study aimed first to assess how astrocytes in a primary culture behave when exposed to the endogenous μ-opioid receptor agonist endomorphin-1 (EM-1), in a concentration-dependent manner, concerning intracellular Ca²⁺ responses. EM-1 stimulated the μ-opioid receptor from 10⁻¹⁵ M up to 10⁻⁴ M with increasing intensity, usually reflected as one peak at low concentrations and two peaks at higher concentrations. Naloxone, pertussis toxin (PTX), or the μ-opioid receptor antagonists CTOP did not totally block the EM-1-evoked Ca²⁺ responses. However, a combination of ultralow concentration naloxone (10⁻¹² M) and PTX (100 ng/ml) totally blocked the EM-1-evoked Ca²⁺ responses. This suggests that ultralow (picomolar) concentrations of naloxone should block the μ-opioid receptor coupled G(s) protein, and that PTX should block the μ-opioid receptor coupled G(i/o) protein. The second aim was to investigate exposure of astrocytes with the inflammatory agent lipopolysaccharide (LPS). After 4 h of LPS incubation, the EM-1-evoked Ca²⁺ transients were attenuated, and after 24 h of LPS incubation, the EM-1-evoked Ca²⁺ transients were oscillated. To restore the EM-1-evoked Ca²⁺ transients, naloxone was assessed as a proposed anti-inflammatory substance. In ultralow picomolar concentration, naloxone demonstrated the ability to restore the Ca²⁺ transients.
Collapse
Affiliation(s)
- L Block
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, SE 41345 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Yang CP, Cherng CH, Wu CT, Huang HY, Tao PL, Wong CS. Intrathecal Ultra-Low Dose Naloxone Enhances the Antinociceptive Effect of Morphine by Enhancing the Reuptake of Excitatory Amino Acids from the Synaptic Cleft in the Spinal Cord of Partial Sciatic Nerve–Transected Rats. Anesth Analg 2011; 113:1490-500. [DOI: 10.1213/ane.0b013e31822d39c1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Codd EE, Mabus JR, Murray BS, Zhang SP, Flores CM. Dynamic Mass Redistribution as a Means to Measure and Differentiate Signaling via Opioid and Cannabinoid Receptors. Assay Drug Dev Technol 2011; 9:362-72. [DOI: 10.1089/adt.2010.0347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ellen E. Codd
- Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania
| | - John R. Mabus
- Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania
| | - Brian S. Murray
- Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania
| | - Sui-Po Zhang
- Johnson & Johnson Pharmaceutical Research & Development, Spring House, Pennsylvania
| | | |
Collapse
|
43
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
44
|
Abstract
Our laboratory embarked on research to discover proteins the interaction of which with the mu opioid receptor (MOPr) is required for its function and regulation. We performed yeast two-hybrid screens, using the carboxy tail of the human MOPr as bait and a human brain library. This yielded a number of proteins that seemed to bind to the MOPr C-tail. The one we chose to study in detail was filamin A (FLNA). Evidence was obtained that there was indeed protein-protein binding between the C-tail of MOPr and FLNA. A human melanoma cell line (M2) lacking the gene for FLNA and a control cell line (A7) which differed from M2 only in having been transfected with the gene for FLNA and expressing the FLNA protein were made available to us. We transfected these cell lines with the gene for MOPr and used them in our studies. The absence of FLNA strongly reduced MOPr downregulation as well as desensitization of adenylyl cyclase inhibition and G protein activation. A recent finding, published here for the first time, is that FLNA is required for the activation by mu opioid agonists of the MAP kinase p38. Deletion studies indicated that the MOPr binding site on FLNA is in the 24th repeat, close to its C-terminal. It was further found that FLNA lacking the N-terminal actin binding domain is as capable as full length FLNA to restore cells to control status, suggesting that actin binding is not required. A surprising finding was that upregulation of MOPr by morphine and some agonist analogs occurs in M2 cells lacking FLNA, whereas normal receptor downregulation takes place in A7 cells.
Collapse
|
45
|
Tompkins DA, Lanier RK, Harrison JA, Strain EC, Bigelow GE. Human abuse liability assessment of oxycodone combined with ultra-low-dose naltrexone. Psychopharmacology (Berl) 2010; 210:471-80. [PMID: 20386884 PMCID: PMC2878387 DOI: 10.1007/s00213-010-1838-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/20/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE Prescription opioid abuse has risen dramatically in the United States as clinicians have increased opioid prescribing for alleviation of both acute and chronic pain. Opioid analgesics with decreased risk for abuse are needed. OBJECTIVE Preclinical and clinical studies have shown that opioids combined with ultra-low-dose naltrexone (NTX) may have increased analgesic potency and have suggested reduced abuse or dependence liability. This study addressed whether addition of ultra-low-dose naltrexone might decrease the abuse liability of oxycodone (OXY) in humans. MATERIALS AND METHODS This double-blind, placebo-controlled study systematically examined the subjective and physiological effects of combining oral OXY and ultra-low NTX doses in 14 experienced opioid abusers. Seven acute drug conditions given at least 5 days apart were compared in a within-subject crossover design: placebo, OXY 20 mg, OXY 40 mg, plus each of the active OXY doses combined with 0.0001 and 0.001 mg NTX. RESULTS The methods were sensitive to detecting opioid effects on abuse liability indices, with significant differences between all OXY conditions and placebo as well as between 20 and 40 mg OXY doses on positive subjective ratings (e.g., "I feel a good drug effect" or "I like the drug"), on observer- and participant-rated opioid agonist effects, and on a drug-versus-money value rating. There were no significant differences or evident trends associated with the addition of either NTX dose on any abuse liability indices. CONCLUSIONS The addition of ultra-low-dose NTX to OXY did not decrease abuse liability of acutely administered OXY in experienced opioid abusers.
Collapse
Affiliation(s)
- David Andrew Tompkins
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ryan K. Lanier
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph A. Harrison
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric C. Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George E. Bigelow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Lin SL, Tsai RY, Shen CH, Lin FH, Wang JJ, Hsin ST, Wong CS. Co-administration of ultra-low dose naloxone attenuates morphine tolerance in rats via attenuation of NMDA receptor neurotransmission and suppression of neuroinflammation in the spinal cords. Pharmacol Biochem Behav 2010; 96:236-45. [PMID: 20478329 DOI: 10.1016/j.pbb.2010.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 04/10/2010] [Accepted: 05/10/2010] [Indexed: 01/02/2023]
Abstract
Although mechanisms underlying ultra-low dose naloxone-induced analgesia have been proposed, possible interactions with glutamatergic transmission and glial cell activation have not been addressed. In the present study, we examined the effect of ultra-low dose naloxone on spinal glutamatergic transmission and glial cell activity in rats chronically infused with morphine. In male Wistar rats, intrathecal morphine infusion (15microg/h) for 5days induced (1) antinociceptive tolerance, (2) downregulation of glutamate transporters (GTs) GLT-1, GLAST, and EAAC1, (3) increasing of NMDA receptor (NMDAR) NR1 subunit expression and phosphorylation, (4) upregulation of protein kinase C gamma (PKCgamma) expression, and (5) glial cell activation. On day 5, morphine challenge (15microg/10microl) caused a significant increase in the concentration of the excitatory amino acids (EAAs) aspartate and glutamate in the spinal CSF dialysates of morphine-tolerant rats. Intrathecal co-infusion of ultra-low dose naloxone (15pg/h) with morphine attenuated tolerance development, reversed GTs expression, inhibited the NMDAR NR1 subunit expression and phosphorylation, and PKCgamma expression, inhibited glial cell activation, and suppressed the morphine-evoked EAAs release. These effects may result in preservation of the antinociceptive effect of acute morphine challenge in chronic morphine-infused rats. Ultra-low dose naloxone infusion alone did not produce an antinociceptive effect. These findings demonstrated that attenuation of glutamatergic transmission and neuroinflammation by ultra-low dose naloxone co-infusion preserves the lasting antinociceptive effect of morphine in rats chronically infused with morphine.
Collapse
Affiliation(s)
- Shinn-Long Lin
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Tsai RY, Tai YH, Tzeng JI, Cherng CH, Yeh CC, Wong CS. Ultra-low dose naloxone restores the antinociceptive effect of morphine in pertussis toxin-treated rats by reversing the coupling of mu-opioid receptors from Gs-protein to coupling to Gi-protein. Neuroscience 2009; 164:435-43. [PMID: 19682558 DOI: 10.1016/j.neuroscience.2009.08.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/30/2009] [Accepted: 08/01/2009] [Indexed: 02/03/2023]
Abstract
Pertussis toxin (PTX) treatment results in ADP-ribosylation of Gi-protein and thus in disruption of mu-opioid receptor signal transduction and loss of the antinociceptive effect of morphine. We have previously demonstrated that pretreatment with ultra-low dose naloxone preserves the antinociceptive effect of morphine in PTX-treated rats. The present study further examined the effect of ultra-low dose naloxone on mu-opioid receptor signaling in PTX-treated rats and the underlying mechanism. Male Wistar rats implanted with an intrathecal catheter received an intrathecal injection of saline or PTX (1 microg in 5 microl of saline), then, 4 days later, were pretreated by intrathecal injection with either saline or ultra-low dose naloxone (15 ng in 5 microl of saline), followed, 30 min later, by saline or morphine (10 microg in 5 microl of saline). Four days after PTX injection, thermal hyperalgesia was observed, together with increased coupling of excitatory Gs-protein to mu-opioid receptors in the spinal cord. Ultra-low dose naloxone pretreatment preserved the antinociceptive effect of morphine, and this effect was completely blocked by the mu-opioid receptor antagonist CTOP, but not by the kappa-opioid receptor antagonist nor-BNI or the delta-opioid receptor antagonist naltrindole. Moreover, a co-immunoprecipitation study showed that ultra-low dose naloxone restored mu-opioid receptor/Gi-protein coupling and inhibited the PTX-induced mu-opioid receptor/Gs-protein coupling. In addition to the anti-neuroinflammatory effect and glutamate transporter modulation previously observed in PTX-treated rats, the re-establishment of mu-opioid receptor Gi/Go-protein coupling is involved in the restoration of the antinociceptive effect of morphine by ultra-low dose naloxone pretreatment by normalizing the balance between the excitatory and inhibitory signaling pathways. These results show that ultra-low dose naloxone preserves the antinociceptive effect of morphine, suppresses spinal neuroinflammation, and reduces PTX-elevated excitatory Gs-coupled opioid receptors in PTX-treated rats. We suggest that ultra-low dose naloxone might be clinically valuable in pain management.
Collapse
Affiliation(s)
- R-Y Tsai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|