1
|
de Siqueira GMV, Srinivasan A, Chen Y, Gin JW, Petzold CJ, Lee TS, Guazzaroni ME, Eng T, Mukhopadhyay A. Alternate routes to acetate tolerance lead to varied isoprenol production from mixed carbon sources in Pseudomonas putida. Appl Environ Microbiol 2025; 91:e0212324. [PMID: 40110994 PMCID: PMC12016510 DOI: 10.1128/aem.02123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Lignocellulose is a renewable resource for the production of a diverse array of platform chemicals, including the biofuel isoprenol. Although this carbon stream provides a rich source of sugars, other organic compounds, such as acetate, can be used by microbial hosts. Here, we examined the growth and isoprenol production in a Pseudomonas putida strain pre-tolerized ("PT") background where its native isoprenol catabolism pathway is deleted, using glucose and acetate as carbon sources. We found that PT displays impaired growth in minimal medium containing acetate and often fails to grow in glucose-acetate medium. Using a mutant recovery-based approach, we generated tolerized strains that overcame these limitations, achieving fast growth and isoprenol production in the mixed carbon feed. Changes in the glucose and acetate assimilation routes, including an upregulation in PP_0154 (SpcC, succinyl-CoA:acetate CoA-transferase) and differential expression of the gluconate assimilation pathways, were key for higher isoprenol titers in the tolerized strains, whereas a different set of mechanisms were likely enabling tolerance phenotypes in media containing acetate. Among these, a coproporphyrinogen-III oxidase (HemN) was upregulated across all tolerized strains and in one isolate required for acetate tolerance. Utilizing a defined glucose and acetate mixture ratio reflective of lignocellulosic feedstocks for isoprenol production in P. putida allowed us to obtain insights into the dynamics and challenges unique to dual carbon source utilization that are obscured when studied separately. Together, this enabled the development of a P. putida bioconversion chassis able to use a more complex carbon stream to produce isoprenol.IMPORTANCEAcetate is a relatively abundant component of many lignocellulosic carbon streams and has the potential to be used together with sugars, especially in microbes with versatile catabolism such as P. putida. However, the use of mixed carbon streams necessitates additional optimization. Furthermore, the use of P. putida for the production of the biofuel target, isoprenol, requires the use of engineered strains that have additional growth and production constraints when cultivated in acetate and glucose mixtures. In this study, we generate acetate-tolerant P. putida strains that overcome these challenges and examine their ability to produce isoprenol. We show that acetate tolerance and isoprenol production, although independent phenotypes, can both be optimized in a given P. putida strain. Using proteomics and whole genome sequencing, we examine the molecular basis of both phenotypes and show that tolerance to acetate can occur via alternate routes and result in different impacts on isoprenol production.
Collapse
Affiliation(s)
- Guilherme M. V. de Siqueira
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aparajitha Srinivasan
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan Chen
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jennifer W. Gin
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher J. Petzold
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Taek Soon Lee
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thomas Eng
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
2
|
Mazzuoli MV, van Raaphorst R, Martin L, Bock F, Thierry A, Marbouty M, Waclawiková B, Stinenbosch J, Koszul R, Veening JW. HU promotes higher order chromosome organization and influences DNA replication rates in Streptococcus pneumoniae. Nucleic Acids Res 2025; 53:gkaf312. [PMID: 40263708 PMCID: PMC12014288 DOI: 10.1093/nar/gkaf312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Nucleoid-associated proteins (NAPs) are crucial for maintaining chromosomal compaction and architecture, and are actively involved in DNA replication, recombination, repair, and gene regulation. In Streptococcus pneumoniae, the role of the highly conserved NAP HU in chromosome conformation has not yet been investigated. Here, we use a multi-scale approach to explore HU's role in chromosome conformation and segregation dynamics. By combining superresolution microscopy and whole-genome-binding analysis, we describe the nucleoid as a dynamic structure where HU binds transiently across the entire nucleoid, with a preference for the origin of replication over the terminus. Reducing cellular HU levels impacts nucleoid maintenance and disrupts nucleoid scaling with cell size, similar to the distortion caused by fluoroquinolones, supporting its requirement for maintaining DNA supercoiling. Furthermore, in cells lacking HU, the replication machinery is misplaced, preventing cells from initiating and proceeding with ongoing replication. Chromosome conformation capture coupled to deep sequencing (Hi-C) revealed that HU is required to maintain cohesion between the two chromosomal arms, similar to the structural maintenance of chromosome complex. Together, we show that by promoting long-range chromosome interactions and supporting the architecture of the domain encompassing the origin, HU is essential for chromosome integrity and the intimately related processes of replication and segregation.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Renske van Raaphorst
- Department of Molecular Microbiology, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, 9747, The Netherlands
| | - Louise S Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Martial Marbouty
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Barbora Waclawiková
- Department of Molecular Microbiology, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, 9747, The Netherlands
| | - Jasper Stinenbosch
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, 75015, France
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| |
Collapse
|
3
|
Li W, Huang C, Yuan W, Xu T, Shan L, Xia W, Ren Y, Zhang Z, Chen J. Effects of the histone-like protein on biofilm formation and pathogenicity of Listeria monocytogenes. Int J Biol Macromol 2025; 304:140908. [PMID: 39938827 DOI: 10.1016/j.ijbiomac.2025.140908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Histone-like protein HU is essential for DNA recombination, repair, and transcriptional regulation in bacteria. However, the physiological roles of HU proteins in Listeria monocytogenes (LmHU) remain unexplored. Given the significant biofilm-forming ability of this foodborne pathogen and its associated cross-contamination risks, identifying novel control targets is critical. LmHU, as the sole double-stranded DNA-binding protein in L. monocytogenes, is a promising candidate. This study systematically explored its contributions to biofilm formation, motility, and the regulation of virulence factors. The results indicated that high levels of LmHU in vivo promoted cell cohesion, leading to a chain-like structure among L. monocytogenes. Additionally, LmHU could be secreted into the biofilm matrix, reinforcing the structure by interacting with extracellular polymeric substances. However, elevated LmHU levels inhibited bacterial motility, flagellar synthesis, and host invasion in Caco-2 cells. RNA-seq analysis revealed 374 differentially expressed genes in the Lmhu mutant relative to the wild-type strain, supporting these findings. Further enrichment analysis and validation experiments suggested that Lmhu overexpression impaired trehalose utilization. These results indicate that LmHU may serve as a potential target for novel disinfectants or therapies to reduce risks associated with L. monocytogenes in food safety and public health.
Collapse
Affiliation(s)
- Wenqian Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Huang
- School of Public Health, Qingdao University, Qingdao 266000, China
| | - Wanjuan Yuan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Tiangang Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lei Shan
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul MN55108, USA
| | - Wanpeng Xia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ying Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenfeng Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Chengdu 611430, China.
| |
Collapse
|
4
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Manuel Martinez Caaveiro J, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. eLife 2024; 13:RP100256. [PMID: 39660822 PMCID: PMC11634067 DOI: 10.7554/elife.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
- Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | - Armiyaw S Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
- Department of Bioengineering, University of TokyoTokyoJapan
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | | | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
5
|
Strzałka A, Mikołajczyk J, Kowalska K, Skurczyński M, Holmes NA, Jakimowicz D. The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation. Microb Cell Fact 2024; 23:275. [PMID: 39402545 PMCID: PMC11472566 DOI: 10.1186/s12934-024-02549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far. RESULTS In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production. CONCLUSIONS We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.
Collapse
Affiliation(s)
- Agnieszka Strzałka
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Jakub Mikołajczyk
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Klaudia Kowalska
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Michał Skurczyński
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Neil A Holmes
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dagmara Jakimowicz
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
6
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Caaveiro JMM, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596652. [PMID: 38853871 PMCID: PMC11160694 DOI: 10.1101/2024.05.30.596652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
| | | | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | | | - Jose M. M. Caaveiro
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
8
|
Åberg A, Gideonsson P, Bhat A, Ghosh P, Arnqvist A. Molecular insights into the fine-tuning of pH-dependent ArsR-mediated regulation of the SabA adhesin in Helicobacter pylori. Nucleic Acids Res 2024; 52:5572-5595. [PMID: 38499492 PMCID: PMC11162790 DOI: 10.1093/nar/gkae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.
Collapse
Affiliation(s)
- Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Pär Gideonsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Abhayprasad Bhat
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Prachetash Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
9
|
Hernández-Martínez G, Ares MA, Rosales-Reyes R, Soria-Bustos J, Yañez-Santos JA, Cedillo ML, Girón JA, Martínez-Laguna Y, Leng F, Ibarra JA, De la Cruz MA. The nucleoid protein HU positively regulates the expression of type VI secretion systems in Enterobacter cloacae. mSphere 2024; 9:e0006024. [PMID: 38647313 PMCID: PMC11324020 DOI: 10.1128/msphere.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Enterobacter cloacae is an emerging pathogen isolated in healthcare-associated infections. A major virulence factor of this bacterium is the type VI secretion system (T6SS). The genome of E. cloacae harbors two T6SS gene clusters (T6SS-1 and T6SS-2), and the functional characterization of both systems showed that these two T6SSs are not expressed under the same conditions. Here, we report that the major histone-like protein HU positively regulates the expression of both T6SSs and, therefore, the function that each T6SS exerts in E. cloacae. Single deletions of the genes encoding the HU subunits (hupA and hupB) decreased mRNA levels of both T6SS. In contrast, the hupA hupB double mutant dramatically affected the T6SS expression, diminishing its transcription. The direct binding of HU to the promoter regions of T6SS-1 and T6SS-2 was confirmed by electrophoretic mobility shift assay. In addition, single and double mutations in the hup genes affected the ability of inter-bacterial killing, biofilm formation, adherence to epithelial cells, and intestinal colonization, but these phenotypes were restored when such mutants were trans-complemented. Our data broaden our understanding of the regulation of HU-mediated T6SS in these pathogenic bacteria. IMPORTANCE T6SS is a nanomachine that functions as a weapon of bacterial destruction crucial for successful colonization in a specific niche. Enterobacter cloacae expresses two T6SSs required for bacterial competition, adherence, biofilm formation, and intestinal colonization. Expression of T6SS genes in pathogenic bacteria is controlled by multiple regulatory systems, including two-component systems, global regulators, and nucleoid proteins. Here, we reported that the HU nucleoid protein directly activates both T6SSs in E. cloacae, affecting the T6SS-related phenotypes. Our data describe HU as a new regulator involved in the transcriptional regulation of T6SS and its impact on E. cloacae pathogenesis.
Collapse
Affiliation(s)
- Gabriela Hernández-Martínez
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. Ares
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina
Experimental de la Facultad de Medicina, Universidad Autónoma de
México, Mexico
City, Mexico
| | - Jorge Soria-Bustos
- Pathogen and
Microbiome Division, Translational Genomics Research Institute (TGen)
North, Flagstaff,
Arizona, USA
- Instituto de Ciencias
de la Salud, Universidad Autónoma del Estado de
Hidalgo, Pachuca,
Hidalgo, Mexico
| | | | - María L. Cedillo
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Jorge A. Girón
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de
Investigación en Ciencias Microbiológicas,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| | - Fenfei Leng
- Biomolecular Sciences
Institute and Department of Chemistry and Biochemistry, Florida
International University,
Miami, Florida, USA
| | - J. Antonio Ibarra
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. De la Cruz
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
- Facultad de Medicina,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| |
Collapse
|
10
|
Carr RA, Tucker T, Newman PM, Jadalla L, Jaludi K, Reid BE, Alpheaus DN, Korrapati A, Pivonka AE, Carabetta VJ. N ε-lysine acetylation of the histone-like protein HBsu influences antibiotic survival and persistence in Bacillus subtilis. Front Microbiol 2024; 15:1356733. [PMID: 38835483 PMCID: PMC11148388 DOI: 10.3389/fmicb.2024.1356733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Nε-lysine acetylation is recognized as a prevalent post-translational modification (PTM) that regulates proteins across all three domains of life. In Bacillus subtilis, the histone-like protein HBsu is acetylated at seven sites, which regulates DNA compaction and the process of sporulation. In Mycobacteria, DNA compaction is a survival strategy in response antibiotic exposure. Acetylation of the HBsu ortholog HupB decondenses the chromosome to escape this drug-induced, non-growing state, and in addition, regulates the formation of drug-tolerant subpopulations by altering gene expression. We hypothesized that the acetylation of HBsu plays similar regulatory roles. First, we measured nucleoid area by fluorescence microscopy and in agreement, we found that wild-type cells compacted their nucleoids upon kanamycin exposure, but not exposure to tetracycline. We analyzed a collection of HBsu mutants that contain lysine substitutions that mimic the acetylated (glutamine) or unacetylated (arginine) forms of the protein. Our findings indicate that some level of acetylation is required at K3 for a proper response and K75 must be deacetylated. Next, we performed time-kill assays of wild-type and mutant strains in the presence of different antibiotics and found that interfering with HBsu acetylation led to faster killing rates. Finally, we examined the persistent subpopulation and found that altering the acetylation status of HBsu led to an increase in persister cell formation. In addition, we found that most of the deacetylation-mimic mutants, which have compacted nucleoids, were delayed in resuming growth following removal of the antibiotic, suggesting that acetylation is required to escape the persistent state. Together, this data adds an additional regulatory role for HBsu acetylation and further supports the existence of a histone-like code in bacteria.
Collapse
Affiliation(s)
- Rachel A. Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Trichina Tucker
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Lama Jadalla
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, United States
| | - Kamayel Jaludi
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, United States
| | - Briana E. Reid
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Damian N. Alpheaus
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Anish Korrapati
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - April E. Pivonka
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
11
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
12
|
Gilbert BR, Luthey-Schulten Z. Replicating Chromosomes in Whole-Cell Models of Bacteria. Methods Mol Biol 2024; 2819:625-653. [PMID: 39028527 DOI: 10.1007/978-1-0716-3930-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Computational models of cells cannot be considered complete unless they include the most fundamental process of life, the replication of genetic material. In a recent study, we presented a computational framework to model systems of replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian dynamics. This approach was used to investigate changes in chromosome organization during replication and extend the applicability of an existing whole-cell model (WCM) for a genetically minimal bacterium, JCVI-syn3A, to the entire cell cycle. To achieve cell-scale chromosome structures that are realistic, we modeled the chromosome as a self-avoiding homopolymer with bending and torsional stiffnesses that capture the essential mechanical properties of dsDNA in Syn3A. Additionally, the polymer interacts with ribosomes distributed according to cryo-electron tomograms of Syn3A. The polymer model was further augmented by computational models of loop extrusion by structural maintenance of chromosomes (SMC) protein complexes and topoisomerase action, and the modeling and analysis of multi-fork replication states.
Collapse
Affiliation(s)
- Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- NSF Science and Technology Center for Quantitative Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Spidlova P, Sokolova E, Pavlik P. Bacteriophage SPO1 protein Gp46 suppresses functions of HU protein in Francisella tularensis. Front Microbiol 2023; 14:1330109. [PMID: 38156016 PMCID: PMC10753183 DOI: 10.3389/fmicb.2023.1330109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The nucleoid-associated protein HU is a common bacterial transcription factor, whose role in pathogenesis and virulence has been described in many bacteria. Our recent studies showed that the HU protein is an indispensable virulence factor in the human pathogenic bacterium Francisella tularensis, a causative agent of tularemia disease, and that this protein can be a key target in tularemia treatment or vaccine development. Here, we show that Francisella HU protein is inhibited by Gp46, a protein of Bacillus subtilis bacteriophage SPO1. We predicted that Gp46 could occupy the F. tularensis HU protein DNA binding site, and subsequently confirmed the ability of Gp46 to abolish the DNA-binding capacity of HU protein. Next, we showed that the growth of Francisella wild-type strain expressing Gp46 in trans corresponded to that of a deletion mutant strain lacking the HU protein. Similarly, the efficiency of intracellular proliferation in mouse macrophages resembled that of the deletion mutant strain, but not that of the wild-type strain. These results, in combination with findings from a recent study on Gp46, enabled us to confirm that Gp46 could be a universal inhibitor of HU proteins among bacterial species.
Collapse
Affiliation(s)
- Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Eliska Sokolova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
- Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Pavla Pavlik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
14
|
Rashid FZM, Crémazy FGE, Hofmann A, Forrest D, Grainger DC, Heermann DW, Dame RT. The environmentally-regulated interplay between local three-dimensional chromatin organisation and transcription of proVWX in E. coli. Nat Commun 2023; 14:7478. [PMID: 37978176 PMCID: PMC10656529 DOI: 10.1038/s41467-023-43322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Nucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking. Here, we use RT-qPCR and 3C-qPCR to study the transcriptional and architectural profiles of the H-NS (histone-like nucleoid structuring protein)-regulated, osmoresponsive proVWX operon of Escherichia coli at different osmolarities and provide in vivo evidence for transcription regulation by NAP-mediated chromosome re-modelling in bacteria. By consolidating our in vivo investigations with earlier in vitro and in silico studies that provide mechanistic details of how H-NS re-models DNA in response to osmolarity, we report that activation of proVWX in response to a hyperosmotic shock involves the destabilization of H-NS-mediated bridges anchored between the proVWX downstream and upstream regulatory elements (DRE and URE), and between the DRE and ygaY that lies immediately downstream of proVWX. The re-establishment of these bridges upon adaptation to hyperosmolarity represses the operon. Our results also reveal additional structural features associated with changes in proVWX transcript levels such as the decompaction of local chromatin upstream of the operon, highlighting that further complexity underlies the regulation of this model operon. H-NS and H-NS-like proteins are wide-spread amongst bacteria, suggesting that chromosome re-modelling may be a typical feature of transcriptional control in bacteria.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands
- Laboratoire Infection et Inflammation, INSERM, UVSQ, Université Paris-Saclay, Versailles, 78180, France
| | - Andreas Hofmann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - David Forrest
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - David C Grainger
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Dieter W Heermann
- Statistical Physics and Theoretical Biophysics, Heidelberg University, Heidelberg, D-69120, Germany
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, 2333CC, The Netherlands.
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, 2333CC, The Netherlands.
| |
Collapse
|
15
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
16
|
Wegrzyn K, Oliwa M, Nowacka M, Zabrocka E, Bury K, Purzycki P, Czaplewska P, Pipka J, Giraldo R, Konieczny I. Rep protein accommodates together dsDNA and ssDNA which enables a loop-back mechanism to plasmid DNA replication initiation. Nucleic Acids Res 2023; 51:10551-10567. [PMID: 37713613 PMCID: PMC10602881 DOI: 10.1093/nar/gkad740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand β1, helices α1 and α2 and in the WH2 domain in loops preceding strands β1' and β2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Monika Oliwa
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marzena Nowacka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Justyna Pipka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
17
|
Bravo A, Moreno-Blanco A, Espinosa M. One Earth: The Equilibrium between the Human and the Bacterial Worlds. Int J Mol Sci 2023; 24:15047. [PMID: 37894729 PMCID: PMC10606248 DOI: 10.3390/ijms242015047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Misuse and abuse of antibiotics on humans, cattle, and crops have led to the selection of multi-resistant pathogenic bacteria, the most feared 'superbugs'. Infections caused by superbugs are progressively difficult to treat, with a subsequent increase in lethality: the toll on human lives is predicted to reach 10 million by 2050. Here we review three concepts linked to the growing resistance to antibiotics, namely (i) the Resistome, which refers to the collection of bacterial genes that confer resistance to antibiotics, (ii) the Mobilome, which includes all the mobile genetic elements that participate in the spreading of antibiotic resistance among bacteria by horizontal gene transfer processes, and (iii) the Nichome, which refers to the set of genes that are expressed when bacteria try to colonize new niches. We also discuss the strategies that can be used to tackle bacterial infections and propose an entente cordiale with the bacterial world so that instead of war and destruction of the 'fierce enemy' we can achieve a peaceful coexistence (the One Earth concept) between the human and the bacterial worlds. This, in turn, will contribute to microbial biodiversity, which is crucial in a globally changing climate due to anthropogenic activities.
Collapse
Affiliation(s)
- Alicia Bravo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
18
|
Verma SC, Harned A, Narayan K, Adhya S. Non-specific and specific DNA binding modes of bacterial histone, HU, separately regulate distinct physiological processes through different mechanisms. Mol Microbiol 2023; 119:439-455. [PMID: 36708073 PMCID: PMC10120378 DOI: 10.1111/mmi.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
The histone-like protein HU plays a diverse role in bacterial physiology from the maintenance of chromosome structure to the regulation of gene transcription. HU binds DNA in a sequence-non-specific manner via two distinct binding modes: (i) random binding to any DNA through ionic bonds between surface-exposed lysine residues (K3, K18, and K83) and phosphate backbone (non-specific); (ii) preferential binding to contorted DNA of given structures containing a pair of kinks (structure-specific) through conserved proline residues (P63) that induce and/or stabilize the kinks. First, we show here that the P63-mediated structure-specific binding also requires the three lysine residues, which are needed for a non-specific binding. Second, we demonstrate that substituting P63 to alanine in HU had no impact on non-specific binding but caused differential transcription of diverse genes previously shown to be regulated by HU, such as those associated with the organonitrogen compound biosynthetic process, galactose metabolism, ribosome biogenesis, and cell adhesion. The structure-specific binding also helps create DNA supercoiling, which, in turn, may influence directly or indirectly the transcription of other genes. Our previous and current studies show that non-specific and structure-specific HU binding appear to have separate functions- nucleoid architecture and transcription regulation- which may be true in other DNA-binding proteins.
Collapse
Affiliation(s)
- Subhash C Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Adam Harned
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Alves LDF, Bortolucci J, Reginato V, Guazzaroni ME, Mussatto SI. Improving Saccharomyces cerevisiae acid and oxidative stress resistance using a prokaryotic gene identified by functional metagenomics. Heliyon 2023; 9:e14838. [PMID: 37077683 PMCID: PMC10106912 DOI: 10.1016/j.heliyon.2023.e14838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/21/2023] Open
Abstract
Innovations in obtaining products from lignocellulosic biomass have been largely based on the improvement of microorganisms and enzymes capable of degrading these materials. To complete the whole process, microorganisms must be able to ferment the resulting sugars and tolerate high concentrations of product, osmotic pressure, ion toxicity, temperature, toxic compounds from lignocellulose pretreatment, low pH, and oxidative stress. In this work, we engineered laboratory and industrial Saccharomyces cerevisiae strains by combining a gene (hu) recovered from a metagenomic approach with different native and synthetic promoters to obtain improved acid and oxidative stress resistance. Laboratorial strains harboring hu gene under the control of the synthetic stress responsive PCCW14v5 showed increased survival rates after 2 h exposure to pH 1.5. The hu gene was also able to significantly enhance the tolerance of the industrial strain to high concentrations of H2O2 when combined with PTEF1, PYGP1 or PYGP1v7 after 3 h exposure.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- Department of Biology, Faculdade de Filosofia, University of São Paulo, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 14040-901, São Paulo, Brazil
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-900, São Paulo, Brazil
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Jonatã Bortolucci
- Department of Biology, Faculdade de Filosofia, University of São Paulo, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Valeria Reginato
- Department of Biology, Faculdade de Filosofia, University of São Paulo, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, University of São Paulo, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Solange I. Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
- Corresponding author.
| |
Collapse
|
20
|
Gupta A, Joshi A, Arora K, Mukhopadhyay S, Guptasarma P. The bacterial nucleoid-associated proteins, HU, and Dps, condense DNA into context-dependent biphasic or multiphasic complex coacervates. J Biol Chem 2023; 299:104637. [PMID: 36963493 PMCID: PMC10141540 DOI: 10.1016/j.jbc.2023.104637] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
The bacterial chromosome, known as its nucleoid, is an amorphous assemblage of globular nucleoprotein domains. It exists in a state of phase separation from the cell's cytoplasm, as an irregularly-shaped, membrane-less, intracellular compartment. This state (the nature of which remains largely unknown) is maintained through bacterial generations ad infinitum. Here, we show that HU, and Dps, two of the most abundant nucleoid-associated proteins (NAPs) of Escherichia coli, undergo spontaneous complex coacervation with different forms of DNA/RNA, both individually and in each other's presence, to cause accretion and compaction of DNA/RNA into liquid-liquid phase separated (LLPS) condensates in vitro. Upon mixing with nucleic acids, HU-A and HU-B form (a) bi-phasic heterotypic mixed condensates in which HU-B helps to lower the Csat of HU-A; and also (b) multi-phasic heterotypic condensates, with Dps, in which de-mixed domains display different contents of HU and Dps. We believe that these modes of complex coacervation that are seen in vitro can serve as models for the in vivo relationships amongst NAPs in nucleoids, involving local and global variations in the relative abundances of the different NAPs, especially in de-mixed sub-domains that are characterized by differing grades of phase separation. Our results clearly demonstrate some quantitative, and some qualitative, differences in the coacervating abilities of different NAPs with DNA, potentially explaining (i) why E. coli has two isoforms of HU, and (ii) why changes in the abundances of HU and Dps facilitate the lag, logarithmic and stationary phases of E. coli growth.
Collapse
Affiliation(s)
- Archit Gupta
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| | - Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanika Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Chemical Sciences; Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
21
|
Hou J, Dai J, Chen Z, Wang Y, Cao J, Hu J, Ye S, Hua Y, Zhao Y. Phosphorylation Regulation of a Histone-like HU Protein from Deinococcus radiodurans. Protein Pept Lett 2022; 29:891-899. [PMID: 35986527 PMCID: PMC9900698 DOI: 10.2174/0929866529666220819121911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Histone-like proteins are small molecular weight DNA-binding proteins that are widely distributed in prokaryotes. These proteins have multiple functions in cellular structures and processes, including the morphological stability of the nucleoid, DNA compactness, DNA replication, and DNA repair. Deinococcus radiodurans, an extremophilic microorganism, has extraordinary DNA repair capability and encodes an essential histone-like protein, DrHU. OBJECTIVE We aim to investigate the phosphorylation regulation role of a histone-like HU protein from Deinococcus radiodurans. METHODS LC-MS/MS analysis was used to determine the phosphorylation site of endogenous DrHU. The predicted structure of DrHU-DNA was obtained from homology modeling (Swissmodel) using Staphylococcus aureus HU-DNA structure (PDB ID: 4QJU) as the starting model. Two types of mutant proteins T37E and T37A were generated to explore their DNA binding affinity. Complemented-knockout strategy was used to generate the ΔDrHU/pk-T37A and ΔDrHU/pk-T37E strains for growth curves and phenotypical analyses. RESULTS AND DISCUSSION The phosphorylation site Thr37, which is present in most bacterial HU proteins, is located at the putative protein-DNA interaction interface of DrHU. Compared to the wild-type protein, one in which this threonine is replaced by glutamate to mimic a permanent state of phosphorylation (T37E) showed enhanced double-stranded DNA binding but a weakened protective effect against hydroxyl radical cleavage. Complementation of T37E in a DrHU-knockout strain caused growth defects and sensitized the cells to UV radiation and oxidative stress. CONCLUSIONS Phosphorylation modulates the DNA-binding capabilities of the histone-like HU protein from D. radiodurans, which contributes to the environmental adaptation of this organism.
Collapse
Affiliation(s)
- Jinfeng Hou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jingli Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Zijing Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yudong Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jiajia Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jing Hu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Shumai Ye
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China,Address correspondence to this author at the MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China; E-mail:
| |
Collapse
|
22
|
Pavlik P, Spidlova P. Arginine 58 is indispensable for proper function of the Francisella tularensis subsp. holarctica FSC200 HU protein, and its substitution alters virulence and mediates immunity against wild-type strain. Virulence 2022; 13:1790-1809. [PMID: 36226562 PMCID: PMC9578482 DOI: 10.1080/21505594.2022.2132729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HU protein, a member of the nucleoid-associated group of proteins, is an important transcription factor in bacteria, including in the dangerous human pathogen Francisella tularensis. Generally, HU protein acts as a DNA sequence non-specific binding protein and it is responsible for winding of the DNA chain that leads to the separation of transcription units. Here, we identified potential HU protein binding sites using the ChIP-seq method and two possible binding motifs in F. tularensis subsp. holarctica FSC200 depending upon growth conditions. We also confirmed that FSC200 HU protein is able to introduce negative supercoiling of DNA in the presence of topoisomerase I. Next, we showed interaction of the HU protein with a DNA region upstream of the pigR gene and inside the clpB gene, suggesting possible regulation of PigR and ClpB expression. Moreover, we showed that arginine 58 and partially arginine 61 are important for HU protein’s DNA binding capacity, negative supercoiling induction by HU, and the length and winding of FSC200 chromosomal DNA. Finally, in order to verify biological function of the HU protein, we demonstrated that mutations in arginine 58, arginine 61, and serine 74 of the HU protein decrease virulence of FSC200 both in vitro and in vivo and that immunization using these mutant strains is able to protect as many as 100% of mice against wild-type challenge. Taken together, our findings deepen knowledge about the role of the HU protein in tularaemia pathogenesis and suggest that HU protein should be addressed in the context of tularaemia vaccine development.
Collapse
Affiliation(s)
- Pavla Pavlik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska, Czech Republic
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska, Czech Republic
| |
Collapse
|
23
|
Stojkova P, Spidlova P. Bacterial nucleoid-associated protein HU as an extracellular player in host-pathogen interaction. Front Cell Infect Microbiol 2022; 12:999737. [PMID: 36081771 PMCID: PMC9445418 DOI: 10.3389/fcimb.2022.999737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
HU protein is a member of nucleoid-associated proteins (NAPs) and is an important regulator of bacterial virulence, pathogenesis and survival. NAPs are mainly DNA structuring proteins that influence several molecular processes by binding the DNA. HU´s indispensable role in DNA-related processes in bacteria was described. HU protein is a necessary bacterial transcription factor and is considered to be a virulence determinant as well. Less is known about its direct role in host-pathogen interactions. The latest studies suggest that HU protein may be secreted outside bacteria and be a part of the extracellular matrix. Moreover, HU protein can be internalized in a host cell after bacterial infection. Its role in the host cell is not well described and further studies are extremely needed. Existing results suggest the involvement of HU protein in host cell immune response modulation in bacterial favor, which can help pathogens resist host defense mechanisms. A better understanding of the HU protein’s role in the host cell will help to effective treatment development.
Collapse
|
24
|
HU Knew? Bacillus subtilis HBsu Is Required for DNA Replication Initiation. J Bacteriol 2022; 204:e0015122. [PMID: 35862733 PMCID: PMC9380533 DOI: 10.1128/jb.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The prokaryotic nucleoid-associated protein (NAP) HU is both highly conserved and ubiquitous. Deletion of HU causes pleiotropic phenotypes, making it difficult to uncover the critical functions of HU within a bacterial cell. In their recent work, Karaboja and Wang (J Bacteriol 204:e00119-22, 2022, https://doi.org/10.1128/JB.00119-22) show that one essential function of Bacillus subtilis HU (HBsu) is to drive the DnaA-dependent initiation of DNA replication at the chromosome origin. We discuss the possible roles of HBsu in replication initiation and other essential cellular functions.
Collapse
|
25
|
Choudhary E, Sharma R, Pal P, Agarwal N. Deciphering the Proteomic Landscape of Mycobacterium tuberculosis in Response to Acid and Oxidative Stresses. ACS OMEGA 2022; 7:26749-26766. [PMID: 35936415 PMCID: PMC9352160 DOI: 10.1021/acsomega.2c03092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The fundamental to the pathogenicity of Mycobacterium tuberculosis (Mtb) is the modulation in the control mechanisms that play a role in sensing and counteracting the microbicidal milieu encompassing various cellular stresses inside the human host. To understand such changes, we measured the cellular proteome of Mtb subjected to different stresses using a quantitative proteomics approach. We identified defined sets of Mtb proteins that are modulated in response to acid and a sublethal dose of diamide and H2O2 treatments. Notably, proteins involved in metabolic, catalytic, and binding functions are primarily affected under these stresses. Moreover, our analysis led to the observations that during acidic stress Mtb enters into energy-saving mode simultaneously modulating the acid tolerance system, whereas under diamide and H2O2 stresses, there were prominent changes in the biosynthesis and homeostasis pathways, primarily modifying the resistance mechanism in diamide-treated bacteria while causing metabolic arrest in H2O2-treated bacilli. Overall, we delineated the adaptive mechanisms that Mtb may utilize under physiological stresses and possible overlap between the responses to these stress conditions. In addition to offering important protein signatures that can be exploited for future mechanistic studies, our study highlights the importance of proteomics in understanding complex adjustments made by the human pathogen during infection.
Collapse
Affiliation(s)
- Eira Choudhary
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Symbiosis
School of Biomedical Sciences, Symbiosis
International (Deemed University), Pune412115, Maharashtra, India
| | - Rishabh Sharma
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| | - Pramila Pal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
- Jawaharlal
Nehru University, New
Mehrauli Road, New Delhi110067, India
| | - Nisheeth Agarwal
- Laboratory
of Mycobacterial Genetics, Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad121001, Haryana, India
| |
Collapse
|
26
|
Relationship between the Chromosome Structural Dynamics and Gene Expression—A Chicken and Egg Dilemma? Microorganisms 2022; 10:microorganisms10050846. [PMID: 35630292 PMCID: PMC9144111 DOI: 10.3390/microorganisms10050846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Prokaryotic transcription was extensively studied over the last half-century. A great deal of data has been accumulated regarding the control of gene expression by transcription factors regulating their target genes by binding at specific DNA sites. However, there is a significant gap between the mechanistic description of transcriptional control obtained from in vitro biochemical studies and the complexity of transcriptional regulation in the context of the living cell. Indeed, recent studies provide ample evidence for additional levels of complexity pertaining to the regulation of transcription in vivo, such as, for example, the role of the subcellular localization and spatial organization of different molecular components involved in the transcriptional control and, especially, the role of chromosome configurational dynamics. The question as to how the chromosome is dynamically reorganized under the changing environmental conditions and how this reorganization is related to gene expression is still far from being clear. In this article, we focus on the relationships between the chromosome structural dynamics and modulation of gene expression during bacterial adaptation. We argue that spatial organization of the bacterial chromosome is of central importance in the adaptation of gene expression to changing environmental conditions and vice versa, that gene expression affects chromosome dynamics.
Collapse
|
27
|
Blake LI, Cann MJ. Carbon Dioxide and the Carbamate Post-Translational Modification. Front Mol Biosci 2022; 9:825706. [PMID: 35300111 PMCID: PMC8920986 DOI: 10.3389/fmolb.2022.825706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Carbon dioxide is essential for life. It is at the beginning of every life process as a substrate of photosynthesis. It is at the end of every life process as the product of post-mortem decay. Therefore, it is not surprising that this gas regulates such diverse processes as cellular chemical reactions, transport, maintenance of the cellular environment, and behaviour. Carbon dioxide is a strategically important research target relevant to crop responses to environmental change, insect vector-borne disease and public health. However, we know little of carbon dioxide’s direct interactions with the cell. The carbamate post-translational modification, mediated by the nucleophilic attack by carbon dioxide on N-terminal α-amino groups or the lysine ɛ-amino groups, is one mechanism by which carbon dioxide might alter protein function to form part of a sensing and signalling mechanism. We detail known protein carbamates, including the history of their discovery. Further, we describe recent studies on new techniques to isolate this problematic post-translational modification.
Collapse
|
28
|
Bacteriophage protein Gp46 is a cross-species inhibitor of nucleoid-associated HU proteins. Proc Natl Acad Sci U S A 2022; 119:2116278119. [PMID: 35193978 PMCID: PMC8892312 DOI: 10.1073/pnas.2116278119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Histone-like protein from Escherichia coli strain U93 (HU) protein is the most abundant nucleoid-associated protein in bacteria, which plays a fundamental role in chromosomal compaction and organization. It is essential for most bacteria as well as Apicomplexans, thus an important target for the development of antimicrobial and antimalaria drugs. We report Gp46 as a phage protein HU inhibitor. It inhibits HU of Bacillus subtilis by occupying its DNA binding site, thus preventing chromosome segregation during cell division. As key residues for the interaction are highly conserved, Gp46 interacts with HUs of a broad range of pathogens, including many pathogenic bacteria and Apicomplexan parasites like Plasmodium falciparum. Thus, this cross-species property could benefit antibiotic and antimalaria drug development that targets HU. The architectural protein histone-like protein from Escherichia coli strain U93 (HU) is the most abundant bacterial DNA binding protein and highly conserved among bacteria and Apicomplexan parasites. It not only binds to double-stranded DNA (dsDNA) to maintain DNA stability but also, interacts with RNAs to regulate transcription and translation. Importantly, HU is essential to cell viability for many bacteria; hence, it is an important antibiotic target. Here, we report that Gp46 from bacteriophage SPO1 of Bacillus subtilis is an HU inhibitor whose expression prevents nucleoid segregation and causes filamentous morphology and growth defects in bacteria. We determined the solution structure of Gp46 and revealed a striking negatively charged surface. An NMR-derived structural model for the Gp46–HU complex shows that Gp46 occupies the DNA binding motif of the HU and therefore, occludes DNA binding, revealing a distinct strategy for HU inhibition. We identified the key residues responsible for the interaction that are conserved among HUs of bacteria and Apicomplexans, including clinically significant Mycobacterium tuberculosis, Acinetobacter baumannii, and Plasmodium falciparum, and confirm that Gp46 can also interact with these HUs. Our findings provide detailed insight into a mode of HU inhibition that provides a useful foundation for the development of antibacteria and antimalaria drugs.
Collapse
|
29
|
Barlow VL, Tsai YH. Acetylation at Lysine 86 of Escherichia coli HUβ Modulates the DNA-Binding Capability of the Protein. Front Microbiol 2022; 12:809030. [PMID: 35185833 PMCID: PMC8854993 DOI: 10.3389/fmicb.2021.809030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
DNA-binding protein HU is highly conserved in bacteria and has been implicated in a range of cellular processes and phenotypes. Like eukaryotic histones, HU is subjected to post-translational modifications. Specifically, acetylation of several lysine residues have been reported in both homologs of Escherichia coli HU. Here, we investigated the effect of acetylation at Lys67 and Lys86, located in the DNA binding-loop and interface of E. coli HUβ, respectively. Using the technique of genetic code expansion, homogeneous HUβ(K67ac) and HUβ(K86ac) protein units were obtained. Acetylation at Lys86 seemed to have negligible effects on protein secondary structure and thermal stability. Nevertheless, we found that this site-specific acetylation can regulate DNA binding by the HU homodimer but not the heterodimer. Intriguingly, while Lys86 acetylation reduced the interaction of the HU homodimer with short double-stranded DNA containing a 2-nucleotide gap or nick, it enhanced the interaction with longer DNA fragments and had minimal effect on a short, fully complementary DNA fragment. These results demonstrate the complexity of post-translational modifications in functional regulation, as well as indicating the role of lysine acetylation in tuning bacterial gene transcription and epigenetic regulation.
Collapse
Affiliation(s)
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Yu-Hsuan Tsai,
| |
Collapse
|
30
|
Three Microbial Musketeers of the Seas: Shewanella baltica, Aliivibrio fischeri and Vibrio harveyi, and Their Adaptation to Different Salinity Probed by a Proteomic Approach. Int J Mol Sci 2022; 23:ijms23020619. [PMID: 35054801 PMCID: PMC8775919 DOI: 10.3390/ijms23020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.
Collapse
|
31
|
Time-restricted feeding induces Lactobacillus- and Akkermansia-specific functional changes in the rat fecal microbiota. NPJ Biofilms Microbiomes 2021; 7:85. [PMID: 34862421 PMCID: PMC8642412 DOI: 10.1038/s41522-021-00256-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to deepening our knowledge about the key relationship between diet, GM, and health.
Collapse
|
32
|
Pal P, Modi M, Ravichandran S, Yennamalli RM, Priyadarshini R. DNA-Binding Properties of YbaB, a Putative Nucleoid-Associated Protein From Caulobacter crescentus. Front Microbiol 2021; 12:733344. [PMID: 34777284 PMCID: PMC8581549 DOI: 10.3389/fmicb.2021.733344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Nucleoid-associated proteins (NAPs) or histone-like proteins (HLPs) are DNA-binding proteins present in bacteria that play an important role in nucleoid architecture and gene regulation. NAPs affect bacterial nucleoid organization via DNA bending, bridging, or forming aggregates. EbfC is a nucleoid-associated protein identified first in Borrelia burgdorferi, belonging to YbaB/EbfC family of NAPs capable of binding and altering DNA conformation. YbaB, an ortholog of EbfC found in Escherichia coli and Haemophilus influenzae, also acts as a transcriptional regulator. YbaB has a novel tweezer-like structure and binds DNA as homodimers. The homologs of YbaB are found in almost all bacterial species, suggesting a conserved function, yet the physiological role of YbaB protein in many bacteria is not well understood. In this study, we characterized the YbaB/EbfC family DNA-binding protein in Caulobacter crescentus. C. crescentus has one YbaB/EbfC family gene annotated in the genome (YbaBCc) and it shares 41% sequence identity with YbaB/EbfC family NAPs. Computational modeling revealed tweezer-like structure of YbaBCc, a characteristic of YbaB/EbfC family of NAPs. N-terminal–CFP tagged YbaBCc localized with the nucleoid and is able to compact DNA. Unlike B. burgdorferi EbfC protein, YbaBCc protein is a non-specific DNA-binding protein in C. crescentus. Moreover, YbaBCc shields DNA against enzymatic degradation. Collectively, our findings reveal that YbaBCc is a small histone-like protein and may play a role in bacterial chromosome structuring and gene regulation in C. crescentus.
Collapse
Affiliation(s)
- Parul Pal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Shashank Ravichandran
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| |
Collapse
|
33
|
Lin SN, Dame RT, Wuite GJL. Direct visualization of the effect of DNA structure and ionic conditions on HU-DNA interactions. Sci Rep 2021; 11:18492. [PMID: 34531428 PMCID: PMC8446073 DOI: 10.1038/s41598-021-97763-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Architectural DNA–binding proteins are involved in many important DNA transactions by virtue of their ability to change DNA conformation. Histone-like protein from E. coli strain U93, HU, is one of the most studied bacterial architectural DNA–binding proteins. Nevertheless, there is still a limited understanding of how the interactions between HU and DNA are affected by ionic conditions and the structure of DNA. Here, using optical tweezers in combination with fluorescent confocal imaging, we investigated how ionic conditions affect the interaction between HU and DNA. We directly visualized the binding and the diffusion of fluorescently labelled HU dimers on DNA. HU binds with high affinity and exhibits low mobility on the DNA in the absence of Mg2+; it moves 30-times faster and stays shorter on the DNA with 8 mM Mg2+ in solution. Additionally, we investigated the effect of DNA tension on HU–DNA complexes. On the one hand, our studies show that binding of HU enhances DNA helix stability. On the other hand, we note that the binding affinity of HU for DNA in the presence of Mg2+ increases at tensions above 50 pN, which we attribute to force-induced structural changes in the DNA. The observation that HU diffuses faster along DNA in presence of Mg2+ compared to without Mg2+ suggests that the free energy barrier for rotational diffusion along DNA is reduced, which can be interpreted in terms of reduced electrostatic interaction between HU and DNA, possibly coinciding with reduced DNA bending.
Collapse
Affiliation(s)
- Szu-Ning Lin
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands. .,Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Anand C, Santoshi M, Singh PR, Nagaraja V. Rv0802c is an acyltransferase that succinylates and acetylates Mycobacterium tuberculosis nucleoid-associated protein HU. MICROBIOLOGY-SGM 2021; 167. [PMID: 34224344 DOI: 10.1099/mic.0.001058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Among the nucleoid-associated proteins (NAPs), HU is the most conserved in eubacteria, engaged in overall chromosome organization and regulation of gene expression. Unlike other bacteria, HU from Mycobacterium tuberculosis (MtHU), has a long carboxyl terminal domain enriched in basic amino acids, resembling eukaryotic histone N-terminal tails. As with histones, MtHU undergoes post-translational modifications and we have previously identified interacting kinases, methyltransferases, an acetyltransferase and a deacetylase. Here we show that Rv0802c interacts and succinylates MtHU. Although categorized as a succinyltransferase, we show that this GNAT superfamily member can catalyse both succinylation and acetylation of MtHU with comparable kinetic parameters. Like acetylation of MtHU, succinylation of MtHU caused reduced interaction of the NAP with DNA, determined by electrophoretic mobility shift assay and surface plasmon resonance. However, in vivo expression of Rv0802c did not significantly alter the nucleoid architecture. Although such succinylation of NAPs is rare, these modifications of the archetypal NAP may provide avenues to the organism to compensate for the underrepresentation of NAPs in its genome to control the dynamics of nucleoid architecture and cellular functions.
Collapse
Affiliation(s)
- Chinmay Anand
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Meghna Santoshi
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prakruti R Singh
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India
| |
Collapse
|
37
|
Linthwaite VL, Cann MJ. A methodology for carbamate post-translational modification discovery and its application in Escherichia coli. Interface Focus 2021; 11:20200028. [PMID: 33633830 DOI: 10.1098/rsfs.2020.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 11/12/2022] Open
Abstract
Carbon dioxide can influence cell phenotypes through the modulation of signalling pathways. CO2 regulates cellular processes as diverse as metabolism, cellular homeostasis, chemosensing and pathogenesis. This diversity of regulated processes suggests a broadly conserved mechanism for CO2 interactions with diverse cellular targets. CO2 is generally unreactive but can interact with neutral amines on protein under normal intracellular conditions to form a carbamate post-translational modification (PTM). We have previously demonstrated the presence of this PTM in a subset of protein produced by the model plant species Arabidopsis thaliana. Here, we describe a detailed methodology for identifying new carbamate PTMs in an extracted soluble proteome under biologically relevant conditions. We apply this methodology to the soluble proteome of the model prokaryote Escherichia coli and identify new carbamate PTMs. The application of this methodology, therefore, supports the hypothesis that the carbamate PTM is both more widespread in biology than previously suspected and may represent a broadly relevant mechanism for CO2-protein interactions.
Collapse
Affiliation(s)
| | - Martin J Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
38
|
Vezina B, Al-Harbi H, Ramay HR, Soust M, Moore RJ, Olchowy TWJ, Alawneh JI. Sequence characterisation and novel insights into bovine mastitis-associated Streptococcus uberis in dairy herds. Sci Rep 2021; 11:3046. [PMID: 33542314 PMCID: PMC7862697 DOI: 10.1038/s41598-021-82357-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Streptococcus uberis is one of the most frequent mastitis-causing pathogens isolated from dairy cows. Further understanding of S. uberis genetics may help elucidate the disease pathogenesis. We compared the genomes of S. uberis isolates cultured from dairy cows located in distinctly different geographic regions of Australia. All isolates had novel multi locus sequence types (MLST) indicating a highly diverse population of S. uberis. Global clonal complexes (GCC) were more conserved. GCC ST86 and GCC ST143 represented 30% of the total isolates (n = 27) and were clustered within different geographic regions. Core genome phylogeny revealed low phylogenetic clustering by region, isolation source, and MLST. Identification of putative sortase (srtA) substrates and generation of a custom putative virulence factor database revealed genes which may explain the affinity of S. uberis for mammary tissue, evasion of antimicrobial efforts and disease pathogenesis. Of 27 isolates, four contained antibiotic resistance genes including an antimicrobial resistance cluster containing mel/mef(A), mrsE, vatD, lnuD, and transposon-mediated lnuC was also identified. These are novel genes for S. uberis, which suggests interspecies lateral gene transfer. The presence of resistance genes across the two geographic regions tested within one country supports the need for a careful, tailored, implementation and monitoring of antimicrobial stewardship.
Collapse
Affiliation(s)
- Ben Vezina
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.,Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Hulayyil Al-Harbi
- The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD, 4573, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, 3083, Australia
| | - Timothy W J Olchowy
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.,Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T3R 1J3, Canada
| | - John I Alawneh
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia. .,The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.
| |
Collapse
|
39
|
Escherichia coli Genomic Diversity within Extraintestinal Acute Infections Argues for Adaptive Evolution at Play. mSphere 2021; 6:6/1/e01176-20. [PMID: 33408235 PMCID: PMC7845604 DOI: 10.1128/msphere.01176-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Little is known about the dynamics of adaptation in acute bacterial infections. By sequencing multiple isolates from monoclonal extraintestinal Escherichia coli infections in several patients, we were able to uncover traces of selection taking place at short time scales compared to chronic infection. Adaptive processes in chronic bacterial infections are well described, but much less is known about the processes at play during acute infections. Here, by sequencing seven randomly selected isolates per patient, we analyzed Escherichia coli populations from three acute extraintestinal infections in adults (meningitis, pyelonephritis, and peritonitis), in which a high-mutation-rate isolate or mutator isolate was found. The isolates of single patients displayed between a few dozen and more than 200 independent mutations, with up to half being specific to the mutator isolate. Multiple signs of positive selection were evidenced: a high ratio of nonsynonymous to synonymous mutations (Ka/Ks ratio) and strong mutational convergence within and between patients, some of them at loci well known for their adaptive potential, such as rpoS, rbsR, fimH, and fliC. For all patients, the mutator isolate was likely due to a large deletion of a methyl-directed mismatch repair gene, and in two instances, the deletion extended to genes involved in some genetic convergence, suggesting potential coselection. Intrinsic extraintestinal virulence assessed in a mouse model of sepsis showed variable patterns of virulence ranging from non-mouse killer to mouse killer for the isolates from single patients. However, genomic signature and gene inactivation experiments did not establish a link between a single gene and the capacity to kill mice, highlighting the complex and multifactorial nature of the virulence. Altogether, these data indicate that E. coli isolates are adapting under strong selective pressure when colonizing an extraintestinal site. IMPORTANCE Little is known about the dynamics of adaptation in acute bacterial infections. By sequencing multiple isolates from monoclonal extraintestinal Escherichia coli infections in several patients, we were able to uncover traces of selection taking place at short time scales compared to chronic infection. High genomic diversity was observed in the patient isolates, with an excess of nonsynonymous mutations, and the comparison within and between different infections showed patterns of convergence at the gene level, both constituting strong signs of adaptation. The genes targeted were coding mostly for proteins involved in global regulation, metabolism, and adhesion/motility. Moreover, virulence assessed in a mouse model of sepsis was variable among the isolates of single patients, but this difference was left unexplained at the molecular level. This work gives us clues about the E. coli lifestyle transition between commensalism and pathogenicity.
Collapse
|
40
|
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors. Microorganisms 2020; 8:microorganisms8101622. [PMID: 33096715 PMCID: PMC7588896 DOI: 10.3390/microorganisms8101622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
Collapse
|
41
|
Abstract
Acetylation was initially discovered as a post-translational modification (PTM) on the unstructured, highly basic N-terminal tails of eukaryotic histones in the 1960s. Histone acetylation constitutes part of the "histone code", which regulates chromosome compaction and various DNA processes such as gene expression, recombination, and DNA replication. In bacteria, nucleoid-associated proteins (NAPs) are responsible these functions in that they organize and compact the chromosome and regulate some DNA processes. The highly conserved DNABII family of proteins are considered functional homologues of eukaryotic histones despite having no sequence or structural conservation. Within the past decade, a growing interest in Nε-lysine acetylation led to the discovery that hundreds of bacterial proteins are acetylated with diverse cellular functions, in direct contrast to the original thought that this was a rare phenomenon. Similarly, other previously undiscovered bacterial PTMs, like serine, threonine, and tyrosine phosphorylation, have also been characterized. In this review, the various PTMs that were discovered among DNABII family proteins, specifically histone-like protein (HU) orthologues, from large-scale proteomic studies are discussed. The functional significance of these modifications and the enzymes involved are also addressed. The discovery of novel PTMs on these proteins begs this question: is there a histone-like code in bacteria?
Collapse
Affiliation(s)
- Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
42
|
Structure-based inhibitors targeting the alpha-helical domain of the Spiroplasma melliferum histone-like HU protein. Sci Rep 2020; 10:15128. [PMID: 32934267 PMCID: PMC7493962 DOI: 10.1038/s41598-020-72113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
Here we report bisphenol derivatives of fluorene (BDFs) as a new type of chemical probes targeting a histone-like HU protein, a global regulator of bacterial nucleoids, via its dimerization interface perturbation. BDFs were identified by virtual screening and molecular docking that targeted the core of DNA-binding β-saddle-like domain of the HU protein from Spiroplasma melliferum. However, NMR spectroscopy, complemented with molecular dynamics and site-directed mutagenesis, indicated that the actual site of the inhibitors’ intervention consists of residues from the α-helical domain of one monomer and the side portion of the DNA-binding domain of another monomer. BDFs inhibited DNA-binding properties of HU proteins from mycoplasmas S. melliferum, Mycoplasma gallicepticum and Escherichia coli with half-maximum inhibitory concentrations in the range between 5 and 10 µM. In addition, BDFs demonstrated antimicrobial activity against mycoplasma species, but not against E. coli, which is consistent with the compensatory role of other nucleoid-associated proteins in the higher bacteria. Further evaluation of antimicrobial effects of BDFs against various bacteria and viruses will reveal their pharmacological potential, and the allosteric inhibition mode reported here, which avoids direct competition for the binding site with DNA, should be considered in the development of small molecule inhibitors of nucleoid-associated proteins as well as other types of DNA-binding multimeric proteins.
Collapse
|
43
|
Turner AK, Eckert SE, Turner DJ, Yasir M, Webber MA, Charles IG, Parkhill J, Wain J. A whole-genome screen identifies Salmonella enterica serovar Typhi genes involved in fluoroquinolone susceptibility. J Antimicrob Chemother 2020; 75:2516-2525. [PMID: 32514543 PMCID: PMC7443733 DOI: 10.1093/jac/dkaa204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES A whole-genome screen at sub-gene resolution was performed to identify candidate loci that contribute to enhanced or diminished ciprofloxacin susceptibility in Salmonella enterica serovar Typhi. METHODS A pool of over 1 million transposon insertion mutants of an S. Typhi Ty2 derivative were grown in a sub-MIC concentration of ciprofloxacin, or without ciprofloxacin. Transposon-directed insertion site sequencing (TraDIS) identified relative differences between the mutants that grew following the ciprofloxacin treatment compared with the untreated mutant pool, thereby indicating which mutations contribute to gain or loss of ciprofloxacin susceptibility. RESULTS Approximately 88% of the S. Typhi strain's 4895 annotated genes were assayed, and at least 116 were identified as contributing to gain or loss of ciprofloxacin susceptibility. Many of the identified genes are known to influence susceptibility to ciprofloxacin, thereby providing method validation. Genes were identified that were not known previously to be involved in susceptibility, and some of these had no previously known phenotype. Susceptibility to ciprofloxacin was enhanced by insertion mutations in genes coding for efflux, other surface-associated functions, DNA repair and expression regulation, including phoP, barA and marA. Insertion mutations that diminished susceptibility were predominantly in genes coding for surface polysaccharide biosynthesis and regulatory genes, including slyA, emrR, envZ and cpxR. CONCLUSIONS A genomics approach has identified novel contributors to gain or loss of ciprofloxacin susceptibility in S. Typhi, expanding our understanding of the impact of fluoroquinolones on bacteria and of mechanisms that may contribute to resistance. The data also demonstrate the power of the TraDIS technology for antibacterial research.
Collapse
Affiliation(s)
- A Keith Turner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sabine E Eckert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Daniel J Turner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park OX4 4DQ, UK
| | - Muhammud Yasir
- Quadram Institute, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Mark A Webber
- Quadram Institute, Norwich Research Park, Colney, Norwich NR4 7UA, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute, Norwich Research Park, Colney, Norwich NR4 7UA, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - John Wain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
44
|
de Siqueira GMV, Silva-Rocha R, Guazzaroni ME. Turning the Screw: Engineering Extreme pH Resistance in Escherichia coli through Combinatorial Synthetic Operons. ACS Synth Biol 2020; 9:1254-1262. [PMID: 32438805 DOI: 10.1021/acssynbio.0c00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adoption of microorganisms as platforms for sustainable biobased production requires host cells to be able to withstand harsh conditions, usually very distant from those in which these organisms are naturally adapted to thrive. However, novel survival mechanisms unearthed by the study of microbiomes from extreme habitats may be exploited to enhance microbial robustness under the strict conditions needed for different industrial appplications. In this work, synthetic biology approaches were used to engineer enhanced acidic resistance in Escherichia coli through the characterization of a collection of unique operons composed of combinatorial assemblies of three novel genes from an extreme environment and three synthetic ribosome binding sites. The results here presented illustrate the efficacy of combining different metagenomic genes for resistance in synthetic operons, as expression of these gene clusters increased hundred-fold the survival percentage of cells exposed to an acidic shock in minimal media at pH 1.9 under aerobic conditions.
Collapse
Affiliation(s)
- Guilherme M. V. de Siqueira
- Departamento de Bioquı́mica, Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Ribeirão Preto, SP 14049-900, Brasil
| | - Rafael Silva-Rocha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Ribeirão Preto, SP 14049-900, Brasil
| | - María-Eugenia Guazzaroni
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP-USP), Ribeirão Preto, SP 14040-901, Brasil
| |
Collapse
|
45
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
46
|
Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat Rev Genet 2019; 21:227-242. [DOI: 10.1038/s41576-019-0185-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
|
47
|
Kamashev DE, Rakitina TV, Matyushkina DS, Evsyutina DV, Vanyushkina AA, Agapova YK, Anisimova VE, Drobyshev AL, Butenko IO, Pobeguts OV, Fisunov GY. Proteome of HU-Lacking E. coli Studied by Means of 2D Gel Electrophoresis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Kukolj C, Pedrosa FO, de Souza GA, Sumner LW, Lei Z, Sumner B, do Amaral FP, Juexin W, Trupti J, Huergo LF, Monteiro RA, Valdameri G, Stacey G, de Souza EM. Proteomic and Metabolomic Analysis of Azospirillum brasilense ntrC Mutant under High and Low Nitrogen Conditions. J Proteome Res 2019; 19:92-105. [DOI: 10.1021/acs.jproteome.9b00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Caroline Kukolj
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | - Fábio O. Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | | | - Lloyd W. Sumner
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | - Barbara Sumner
- Department of Biochemistry, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
- MU Metabolomics Center, University of Missouri, Bond Life Sciences Center, 1201 Rollins Street, Columbia, Missouri 65211, United States
| | | | | | | | - Luciano F. Huergo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
- Setor Litoral, UFPR, Matinhos, Paraná 80060-000, Brazil
| | - Rose Adele Monteiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
- Departamento de Análises Clínicas, UFPR, Curitiba, Paraná 80060-000, Brazil
| | | | - Emanuel M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, UFPR, P.O. Box 19046, 81531980 Curitiba, Paraná, Brazil
| |
Collapse
|
49
|
Luo X, Liu J. Transcriptome Analysis of Acid-Responsive Genes and Pathways Involved in Polyamine Regulation in Iron Walnut. Genes (Basel) 2019; 10:E605. [PMID: 31405132 PMCID: PMC6723594 DOI: 10.3390/genes10080605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
We reported changes in the co-regulated mRNA expression in iron walnut (Juglans sigillata) in response to soil pH treatments and identified mRNAs specific to acidic soil conditions. Phenotypic and physiological analyses revealed that iron walnut growth was greater for the pH 4-5 and pH 5-6 treatments than for the pH 3-4 and pH 6-7 treatments. A total of 2768 differentially expressed genes were detected and categorized into 12 clusters by Short Time-series Expression Miner (STEM). The 994 low-expression genes in cluster III and 255 high-expression genes in cluster X were classified as acid-responsive genes on the basis of the relationships between phenotype, physiology, and STEM clustering, and the two gene clusters were analyzed by a maximum likelihood (ML) evolutionary tree with the greatest log likelihood values. No prominent sub-clusters occurred in cluster III, but three occurred in cluster X. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that acid-responsive genes were related primarily to arginine biosynthesis and the arginine/proline metabolism pathway, implying that polyamine accumulation may enhance iron walnut acid stress tolerance. Overall, our results revealed 1249 potentially acid-responsive genes in iron walnut, indicating that its response to acid stress involves different pathways and activated genes.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211 in Wenjiang District, Chengdu 611130, China.
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Huimin Road 211 in Wenjiang District, Chengdu 611130, China
| |
Collapse
|
50
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|