1
|
Zuniga G, Katsumura S, De Mange J, Ramirez P, Atrian F, Morita M, Frost B. Pathogenic tau induces an adaptive elevation in mRNA translation rate at early stages of disease. Aging Cell 2024; 23:e14245. [PMID: 38932463 PMCID: PMC11464109 DOI: 10.1111/acel.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Alterations in the rate and accuracy of messenger RNA (mRNA) translation are associated with aging and several neurodegenerative disorders, including Alzheimer's disease and related tauopathies. We previously reported that error-containing RNA that are normally cleared via nonsense-mediated mRNA decay (NMD), a key RNA surveillance mechanism, are translated in the adult brain of a Drosophila model of tauopathy. In the current study, we find that newly-synthesized peptides and translation machinery accumulate within nuclear envelope invaginations that occur as a consequence of tau pathology, and that the rate of mRNA translation is globally elevated in early stages of disease in adult brains of Drosophila models of tauopathy. Polysome profiling from adult heads of tau transgenic Drosophila reveals the preferential translation of specific mRNA that have been previously linked to neurodegeneration. Unexpectedly, we find that panneuronal elevation of NMD further elevates the global translation rate in tau transgenic Drosophila, as does treatment with rapamycin. As NMD activation and rapamycin both suppress tau-induced neurodegeneration, their shared effect on translation suggests that elevated rates of mRNA translation are an early adaptive mechanism to limit neurodegeneration. Our work provides compelling evidence that tau-induced deficits in NMD reshape the tau translatome by increasing translation of RNA that are normally repressed in healthy cells.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Sakie Katsumura
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaOsakaJapan
| | - Jasmine De Mange
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Farzaneh Atrian
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaOsakaJapan
| | - Bess Frost
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
2
|
Kenworthy AK. What's past is prologue: FRAP keeps delivering 50 years later. Biophys J 2023; 122:3577-3586. [PMID: 37218127 PMCID: PMC10541474 DOI: 10.1016/j.bpj.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) has emerged as one of the most widely utilized techniques to quantify binding and diffusion kinetics of biomolecules in biophysics. Since its inception in the mid-1970s, FRAP has been used to address an enormous array of questions including the characteristic features of lipid rafts, how cells regulate the viscosity of their cytoplasm, and the dynamics of biomolecules inside condensates formed by liquid-liquid phase separation. In this perspective, I briefly summarize the history of the field and discuss why FRAP has proven to be so incredibly versatile and popular. Next, I provide an overview of the extensive body of knowledge that has emerged on best practices for quantitative FRAP data analysis, followed by some recent examples of biological lessons learned using this powerful approach. Finally, I touch on new directions and opportunities for biophysicists to contribute to the continued development of this still-relevant research tool.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
3
|
Lin JQ, Cioni JM. Live Imaging of RNA Transport and Translation in Xenopus Retinal Axons. Methods Mol Biol 2022; 2431:49-69. [PMID: 35412271 DOI: 10.1007/978-1-0716-1990-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In neurons, specific mRNAs are transported into axons, where their local translation supports essential cellular functions. Over the years, our knowledge of the molecular mechanisms underlying axonal mRNA translation has rapidly expanded. However, tools to study mRNA localization and translation in real time with high spatial precision were not available until recently. Here, we present a live imaging approach to examine axonal mRNA trafficking and translation simultaneously in Xenopus retinal ganglion cells (RGCs), using in vitro synthesized fluorescently labeled mRNAs coupled with a genetically encoded protein tagging system to visualize synthesizing peptides at single-molecule resolution. We further describe the process of image analysis in detail, thus providing a methodology that can be used to investigate new research questions in the field.
Collapse
Affiliation(s)
- Julie Qiaojin Lin
- Department of Clinical Neurosciences and UK Dementia Research Institute at the University of Cambridge, Cambridge, UK
| | - Jean-Michel Cioni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Flores ME, McNamara-Bordewick NK, Lovinger NL, Snow JW. Halofuginone triggers a transcriptional program centered on ribosome biogenesis and function in honey bees. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103667. [PMID: 34626768 DOI: 10.1016/j.ibmb.2021.103667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/19/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
We previously found that pharmacological inhibition of prolyl-tRNA synthetase by halofuginone has potent activity against Nosema ceranae, an important pathogen of honey bees. However, we also observed that prolyl-tRNA synthetase inhibition is toxic to bees, suggesting further work is necessary to make this a feasible therapeutic strategy. As expected, we found that pharmacological inhibition of prolyl-tRNA synthetase activity resulted in robust induction of select canonical ATF4 target genes in honey bees. However, our understanding of this and other cellular stress responses in general in honey bees is incomplete. Thus, we used RNAseq to identify novel changes in gene expression after halofuginone treatment and observed induction of genes involved in ribosome biogenesis, translation, tRNA synthesis, and ribosome-associated quality control (RQC). These results suggest that halofuginone, potentially acting through the Integrated Stress Response (ISR), promotes a transcriptional response to ribosome functional impairment in honey bees rather than the response designed to oppose amino acid limitation, which has been observed in other organisms after ISR induction. In support of this idea, we found that cycloheximide (CHX) administration also induced all tested target genes, indicating that this gene expression program could be induced by ribosome stalling in addition to tRNA synthetase inhibition. Only a subset of halofuginone-induced genes was upregulated by Unfolded Protein Response (UPR) induction, suggesting that mode of activation and cross-talk with other cellular signaling pathways significantly influence ISR function and cellular response to its activation. Future work will focus on understanding how the apparently divergent transcriptional output of the ISR in honey bees impacts the health and disease of this important pollinator species.
Collapse
Affiliation(s)
| | | | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Ortin‐Martinez A, Yan NE, Tsai ELS, Comanita L, Gurdita A, Tachibana N, Liu ZC, Lu S, Dolati P, Pokrajac NT, El‐Sehemy A, Nickerson PEB, Schuurmans C, Bremner R, Wallace VA. Photoreceptor nanotubes mediate the in vivo exchange of intracellular material. EMBO J 2021; 40:e107264. [PMID: 34494680 PMCID: PMC8591540 DOI: 10.15252/embj.2020107264] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence suggests that intracellular molecules and organelles transfer between cells during embryonic development, tissue homeostasis and disease. We and others recently showed that transplanted and host photoreceptors engage in bidirectional transfer of intracellular material in the recipient retina, a process termed material transfer (MT). We used cell transplantation, advanced tissue imaging approaches, genetic and pharmacologic interventions and primary cell culture to characterize and elucidate the mechanism of MT. We show that MT correlates with donor cell persistence and the accumulation of donor-derived proteins, mitochondria and transcripts in acceptor cells in vivo. MT requires cell contact in vitro and is associated with the formation of stable microtubule-containing protrusions, termed photoreceptor nanotubes (Ph NTs), that connect donor and host cells in vivo and in vitro. Ph NTs mediate GFP transfer between connected cells in vitro. Furthermore, interfering with Ph NT outgrowth by targeting Rho GTPase-dependent actin remodelling inhibits MT in vivo. Collectively, our observations provide evidence for horizontal exchange of intracellular material via nanotube-like connections between neurons in vivo.
Collapse
Affiliation(s)
- Arturo Ortin‐Martinez
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Nicole E Yan
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - En Leh Samuel Tsai
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Akshay Gurdita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Zhongda C Liu
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Suying Lu
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
| | - Parnian Dolati
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Neno T Pokrajac
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Ahmed El‐Sehemy
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Philip E B Nickerson
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Carol Schuurmans
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Sunnybrook Research InstituteTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Rod Bremner
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Valerie A Wallace
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| |
Collapse
|
6
|
Zhu M, Teng F, Li N, Zhang L, Zhang S, Xu F, Shao J, Sun H, Zhu H. Monomethyl branched-chain fatty acid mediates amino acid sensing upstream of mTORC1. Dev Cell 2021; 56:2692-2702.e5. [PMID: 34610328 DOI: 10.1016/j.devcel.2021.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Animals have developed various nutrient-sensing mechanisms for survival under fluctuating environmental conditions. Although extensive cell-culture-based analyses have identified diverse mediators of amino acid sensing upstream of mTOR, studies using animal models to examine intestine-initiated amino acid sensing mechanisms under specific physiological conditions are lacking. Here, we developed a Caenorhabditis elegans model to examine the impact of amino acid deficiency on development. We discovered a leucine-derived monomethyl branched-chain fatty acid and its downstream metabolite, glycosphingolipid, which critically mediates the overall amino acid sensing by intestinal and neuronal mTORC1, which in turn regulates postembryonic development at least partly by controlling protein translation and ribosomal biogenesis. Additional data suggest that a similar mechanism may operate in mammals. This study uncovers an amino-acid-sensing mechanism mediated by a lipid biosynthesis pathway.
Collapse
Affiliation(s)
- Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuxian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fan Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Shao
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Haipeng Sun
- National Humanities Center Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Center for Cardiovascular Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
7
|
Rieckher M, Markaki M, Princz A, Schumacher B, Tavernarakis N. Maintenance of Proteostasis by P Body-Mediated Regulation of eIF4E Availability during Aging in Caenorhabditis elegans. Cell Rep 2020; 25:199-211.e6. [PMID: 30282029 PMCID: PMC6180348 DOI: 10.1016/j.celrep.2018.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 11/16/2022] Open
Abstract
Aging is accompanied by a pervasive collapse of proteostasis, while reducing general protein synthesis promotes longevity across taxa. Here, we show that the eIF4E isoform IFE-2 is increasingly sequestered in mRNA processing (P) bodies during aging and upon stress in Caenorhabditis elegans. Loss of the enhancer of mRNA decapping EDC-3 causes further entrapment of IFE-2 in P bodies and lowers protein synthesis rates in somatic tissues. Animals lacking EDC-3 are long lived and stress resistant, congruent with IFE-2-deficient mutants. Notably, neuron-specific expression of EDC-3 is sufficient to reverse lifespan extension, while sequestration of IFE-2 in neuronal P bodies counteracts age-related neuronal decline. The effects of mRNA decapping deficiency on stress resistance and longevity are orchestrated by a multimodal stress response involving the transcription factor SKN-1, which mediates lifespan extension upon reduced protein synthesis. Our findings elucidate a mechanism of proteostasis control during aging through P body-mediated regulation of protein synthesis in the soma.
Collapse
Affiliation(s)
- Matthias Rieckher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece; Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, 50931 Cologne, Germany
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece
| | - Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, 50931 Cologne, Germany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Greece; Department of Basic Sciences, School of Medicine, University of Crete, Heraklion 71110, Greece.
| |
Collapse
|
8
|
Niedenberger BA, Cook K, Baena V, Serra ND, Velte EK, Agno JE, Litwa KA, Terasaki M, Hermann BP, Matzuk MM, Geyer CB. Dynamic cytoplasmic projections connect mammalian spermatogonia in vivo. Development 2018; 145:dev161323. [PMID: 29980567 PMCID: PMC6110146 DOI: 10.1242/dev.161323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/27/2018] [Indexed: 01/12/2023]
Abstract
Throughout the male reproductive lifespan, spermatogonial stem cells (SSCs) produce committed progenitors that proliferate and then remain physically connected in growing clones via short cylindrical intercellular bridges (ICBs). These ICBs, which enlarge in meiotic spermatocytes, have been demonstrated to provide a conduit for postmeiotic haploid spermatids to share sex chromosome-derived gene products. In addition to ICBs, spermatogonia exhibit multiple thin cytoplasmic projections. Here, we have explored the nature of these projections in mice and find that they are dynamic, span considerable distances from their cell body (≥25 μm), either terminate or physically connect multiple adjacent spermatogonia, and allow for sharing of macromolecules. Our results extend the current model that subsets of spermatogonia exist as isolated cells or clones, and support a model in which spermatogonia of similar developmental fates are functionally connected through a shared dynamic cytoplasm mediated by thin cytoplasmic projections.
Collapse
Affiliation(s)
- Bryan A Niedenberger
- Department of Anatomy and Cell Biology at East Carolina University, Greenville, NC 27834, USA
| | - Kenneth Cook
- Department of Anatomy and Cell Biology at East Carolina University, Greenville, NC 27834, USA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Nicholas D Serra
- Department of Anatomy and Cell Biology at East Carolina University, Greenville, NC 27834, USA
| | - Ellen K Velte
- Department of Anatomy and Cell Biology at East Carolina University, Greenville, NC 27834, USA
| | - Julio E Agno
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karen A Litwa
- Department of Anatomy and Cell Biology at East Carolina University, Greenville, NC 27834, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Martin M Matzuk
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology at East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute at East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
9
|
Dalton HM, Curran SP. Hypodermal responses to protein synthesis inhibition induce systemic developmental arrest and AMPK-dependent survival in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007520. [PMID: 30020921 PMCID: PMC6066256 DOI: 10.1371/journal.pgen.1007520] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/30/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
Across organisms, manipulation of biosynthetic capacity arrests development early in life, but can increase health- and lifespan post-developmentally. Here we demonstrate that this developmental arrest is not sickness but rather a regulated survival program responding to reduced cellular performance. We inhibited protein synthesis by reducing ribosome biogenesis (rps-11/RPS11 RNAi), translation initiation (ifg-1/EIF3G mutation and egl-45/EIF3A RNAi), or ribosome progression (cycloheximide treatment), all of which result in a specific arrest at larval stage 2 of C. elegans development. This quiescent state can last for weeks—beyond the normal C. elegans adult lifespan—and is reversible, as animals can resume reproduction and live a normal lifespan once released from the source of protein synthesis inhibition. The arrest state affords resistance to thermal, oxidative, and heavy metal stress exposure. In addition to cell-autonomous responses, reducing biosynthetic capacity only in the hypodermis was sufficient to drive organism-level developmental arrest and stress resistance phenotypes. Among the cell non-autonomous responses to protein synthesis inhibition is reduced pharyngeal pumping that is dependent upon AMPK-mediated signaling. The reduced pharyngeal pumping in response to protein synthesis inhibition is recapitulated by exposure to microbes that generate protein synthesis-inhibiting xenobiotics, which may mechanistically reduce ingestion of pathogen and toxin. These data define the existence of a transient arrest-survival state in response to protein synthesis inhibition and provide an evolutionary foundation for the conserved enhancement of healthy aging observed in post-developmental animals with reduced biosynthetic capacity. Protein synthesis is an essential cellular process, but post-developmental reduction of protein synthesis across multiple species leads to improved health- and lifespan. To better understand the physiological responses to impaired protein synthesis, we characterize a novel developmental arrest state that occurs when reducing protein synthesis during C. elegans development. Arrested animals have multiple survival-promoting phenotypes that are all dependent on the cellular energy sensor, AMP kinase. This survival response acts through the hypodermis and causes a reduction in pharyngeal pumping, indicating that the animal is responding to a perceived external threat, even in adults. Furthermore, exposing animals to pathogens, or xenobiotics they produce, can recapitulate these phenotypes, providing a potential evolutionary explanation for how a beneficial response in adults could evolve through the inhibition of an essential biological process such as protein synthesis.
Collapse
Affiliation(s)
- Hans M. Dalton
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
- Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Butuči M, Williams AB, Wong MM, Kramer B, Michael WM. Zygotic Genome Activation Triggers Chromosome Damage and Checkpoint Signaling in C. elegans Primordial Germ Cells. Dev Cell 2015; 34:85-95. [PMID: 26073019 DOI: 10.1016/j.devcel.2015.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 03/17/2015] [Accepted: 04/24/2015] [Indexed: 01/05/2023]
Abstract
Recent findings have identified highly transcribed genes as a source of genome instability; however, the degree to which large-scale shifts in transcriptional activity cause DNA damage was not known. One example of a large-scale shift in transcriptional activity occurs during development, when maternal regulators are destroyed and zygotic genome activation (ZGA) occurs. Here, we show that ZGA triggers widespread chromosome damage in the primordial germ cells of the nematode C. elegans. We show that ZGA-induced DNA damage activates a checkpoint response, the damage is repaired by factors required for inter-sister homologous recombination, and topoisomerase II plays a role in generating the damage. These findings identify ZGA as a source of intrinsic genome instability in the germline and suggest that genome destabilization may be a general consequence of extreme shifts in cellular transcriptional load.
Collapse
Affiliation(s)
- Melina Butuči
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ashley B Williams
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew M Wong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Kramer
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
11
|
A customized light sheet microscope to measure spatio-temporal protein dynamics in small model organisms. PLoS One 2015; 10:e0127869. [PMID: 26000610 PMCID: PMC4441442 DOI: 10.1371/journal.pone.0127869] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
We describe a customizable and cost-effective light sheet microscopy (LSM) platform for rapid three-dimensional imaging of protein dynamics in small model organisms. The system is designed for high acquisition speeds and enables extended time-lapse in vivo experiments when using fluorescently labeled specimens. We demonstrate the capability of the setup to monitor gene expression and protein localization during ageing and upon starvation stress in longitudinal studies in individual or small groups of adult Caenorhabditis elegans nematodes. The system is equipped to readily perform fluorescence recovery after photobleaching (FRAP), which allows monitoring protein recovery and distribution under low photobleaching conditions. Our imaging platform is designed to easily switch between light sheet microscopy and optical projection tomography (OPT) modalities. The setup permits monitoring of spatio-temporal expression and localization of ageing biomarkers of subcellular size and can be conveniently adapted to image a wide range of small model organisms and tissue samples.
Collapse
|
12
|
Sequestration of the abrin A chain to the nucleus by BASP1 increases the resistance of cells to abrin toxicity. Biochem J 2014; 458:375-85. [PMID: 24350992 DOI: 10.1042/bj20131110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abrin, a type II ribosome-inactivating protein, comprises A and B subunits wherein the A subunit harbours toxin activity and the B subunit has a galactose-specific lectin activity. The entry of the protein inside the cell is through the binding of the B chain to cell surface glycoproteins followed by receptor-mediated endocytosis and retrograde transport. A previous study from our laboratory showed that different cell lines exhibited differences of as great as ~200-fold in abrin toxicity, prompting the present study to compare the trafficking of the toxin within cells. Observations made in this regard revealed that the abrin A chain, after being released into the cytosol, is sequestered into the nucleus through interaction with a cellular protein of ~25 kDa, BASP1 (brain acid-soluble protein 1). The nuclear localization of the A chain is seen predominantly in cells that are less sensitive to abrin toxicity and dependent on the levels of BASP1 in cells. The sequestration by BASP1 renders cells increasingly resistant to the inhibition of protein synthesis by abrin and the nucleus act as a sink to overcome cellular stress induced by the toxin.
Collapse
|
13
|
Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron 2014; 80:1421-37. [PMID: 24360545 DOI: 10.1016/j.neuron.2013.10.050] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 01/22/2023]
Abstract
A primary determinant of the strength of neurotransmission is the number of AMPA-type glutamate receptors (AMPARs) at synapses. However, we still lack a mechanistic understanding of how the number of synaptic AMPARs is regulated. Here, we show that UNC-116, the C. elegans homolog of vertebrate kinesin-1 heavy chain (KIF5), modifies synaptic strength by mediating the rapid delivery, removal, and redistribution of synaptic AMPARs. Furthermore, by studying the real-time transport of C. elegans AMPAR subunits in vivo, we demonstrate that although homomeric GLR-1 AMPARs can diffuse to and accumulate at synapses in unc-116 mutants, glutamate-gated currents are diminished because heteromeric GLR-1/GLR-2 receptors do not reach synapses in the absence of UNC-116/KIF5-mediated transport. Our data support a model in which ongoing motor-driven delivery and removal of AMPARs controls not only the number but also the composition of synaptic AMPARs, and thus the strength of synaptic transmission.
Collapse
|
14
|
Scott B, Sun CL, Mao X, Yu C, Vohra BPS, Milbrandt J, Crowder CM. Role of oxygen consumption in hypoxia protection by translation factor depletion. J Exp Biol 2013; 216:2283-92. [PMID: 23531825 PMCID: PMC3667128 DOI: 10.1242/jeb.082263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/06/2013] [Indexed: 01/07/2023]
Abstract
The reduction of protein synthesis has been associated with resistance to hypoxic cell death. Which components of the translation machinery control hypoxic sensitivity and the precise mechanism has not been systematically investigated, although a reduction in oxygen consumption has been widely assumed to be the mechanism. Using genetic reagents in Caenorhabditis elegans, we examined the effect on organismal survival after hypoxia of knockdown of 10 factors functioning at the three principal steps in translation. Reduction-of-function of all 10 translation factors significantly increased hypoxic survival to varying degrees, not fully accounted for by the level of translational suppression. Measurement of oxygen consumption showed that strong hypoxia resistance was possible without a significant decrease in oxygen consumption. Hypoxic sensitivity had no correlation with lifespan or reactive oxygen species sensitivity, two phenotypes associated with reduced translation. Resistance to tunicamycin, which produces misfolded protein toxicity, was the only phenotype that significantly correlated with hypoxic sensitivity. Translation factor knockdown was also hypoxia protective for mouse primary neurons. These data show that translation factor knockdown is hypoxia protective in both C. elegans and mouse neurons and that oxygen consumption does not necessarily determine survival; rather, mitigation of misfolded protein toxicity is more strongly associated with hypoxic protection.
Collapse
Affiliation(s)
- Barbara Scott
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Chun-Ling Sun
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xianrong Mao
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Cong Yu
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bhupinder P. S. Vohra
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| | - C. Michael Crowder
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
15
|
Lee ECH, Strange K. GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling. Am J Physiol Cell Physiol 2012; 303:C1269-77. [PMID: 23076791 DOI: 10.1152/ajpcell.00294.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased gpdh-1 transcription is required for accumulation of the organic osmolyte glycerol and survival of Caenorhabditis elegans during hypertonic stress. Our previous work has shown that regulators of gpdh-1 (rgpd) gene knockdown constitutively activates gpdh-1 expression. Fifty-five rgpd genes play essential roles in translation suggesting that inhibition of protein synthesis is an important signal for regulating osmoprotective gene transcription. We demonstrate here that translation is reduced dramatically by hypertonic stress or knockdown of rgpd genes encoding aminoacyl-tRNA synthetases and eukaryotic translation initiation factors (eIFs). Toxin-induced inhibition of translation also activates gpdh-1 expression. Hypertonicity-induced translation inhibition is mediated by general control nonderepressible (GCN)-2 kinase signaling and eIF-2α phosphoryation. Loss of gcn-1 or gcn-2 function prevents eIF-2α phosphorylation, completely blocks reductions in translation, and inhibits gpdh-1 transcription. gpdh-1 expression is regulated by the highly conserved with-no-lysine kinase (WNK) and Ste20 kinases WNK-1 and GCK-3, which function in the GCN-2 signaling pathway downstream from eIF-2α phosphorylation. Our previous work has shown that hypertonic stress causes rapid and dramatic protein damage in C. elegans and that inhibition of translation reduces this damage. The current studies demonstrate that reduced translation also serves as an essential signal for activation of WNK-1/GCK-3 kinase signaling and subsequent transcription of gpdh-1 and possibly other osmoprotective genes.
Collapse
Affiliation(s)
- Elaine Choung-Hee Lee
- Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | | |
Collapse
|
16
|
Hötzer B, Medintz IL, Hildebrandt N. Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2297-326. [PMID: 22678833 DOI: 10.1002/smll.201200109] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/22/2012] [Indexed: 05/26/2023]
Abstract
Nanobiotechnology is one of the fastest growing and broadest-ranged interdisciplinary subfields of the nanosciences. Countless hybrid bio-inorganic composites are currently being pursued for various uses, including sensors for medical and diagnostic applications, light- and energy-harvesting devices, along with multifunctional architectures for electronics and advanced drug-delivery. Although many disparate biological and nanoscale materials will ultimately be utilized as the functional building blocks to create these devices, a common element found among a large proportion is that they exert or interact with light. Clearly continuing development will rely heavily on incorporating many different types of fluorophores into these composite materials. This review covers the growing utility of different classes of fluorophores in nanobiotechnology, from both a photophysical and a chemical perspective. For each major structural or functional class of fluorescent probe, several representative applications are provided, and the necessary technological background for acquiring the desired nano-bioanalytical information are presented.
Collapse
Affiliation(s)
- Benjamin Hötzer
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
17
|
Jensen M, Hoerndli FJ, Brockie PJ, Wang R, Johnson E, Maxfield D, Francis MM, Madsen DM, Maricq AV. Wnt signaling regulates acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell 2012; 149:173-87. [PMID: 22464329 DOI: 10.1016/j.cell.2011.12.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/08/2011] [Accepted: 12/30/2011] [Indexed: 12/20/2022]
Abstract
The adult nervous system is plastic, allowing us to learn, remember, and forget. Experience-dependent plasticity occurs at synapses--the specialized points of contact between neurons where signaling occurs. However, the mechanisms that regulate the strength of synaptic signaling are not well understood. Here, we define a Wnt-signaling pathway that modifies synaptic strength in the adult nervous system by regulating the translocation of one class of acetylcholine receptors (AChRs) to synapses. In Caenorhabditis elegans, we show that mutations in CWN-2 (Wnt ligand), LIN-17 (Frizzled), CAM-1 (Ror receptor tyrosine kinase), or the downstream effector DSH-1 (disheveled) result in similar subsynaptic accumulations of ACR-16/α7 AChRs, a consequent reduction in synaptic current, and predictable behavioral defects. Photoconversion experiments revealed defective translocation of ACR-16/α7 to synapses in Wnt-signaling mutants. Using optogenetic nerve stimulation, we demonstrate activity-dependent synaptic plasticity and its dependence on ACR-16/α7 translocation mediated by Wnt signaling via LIN-17/CAM-1 heteromeric receptors.
Collapse
Affiliation(s)
- Michael Jensen
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Burkewitz K, Choe KP, Lee ECH, Deonarine A, Strange K. Characterization of the proteostasis roles of glycerol accumulation, protein degradation and protein synthesis during osmotic stress in C. elegans. PLoS One 2012; 7:e34153. [PMID: 22470531 PMCID: PMC3314593 DOI: 10.1371/journal.pone.0034153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/23/2012] [Indexed: 11/18/2022] Open
Abstract
Exposure of C. elegans to hypertonic stress-induced water loss causes rapid and widespread cellular protein damage. Survival in hypertonic environments depends critically on the ability of worm cells to detect and degrade misfolded and aggregated proteins. Acclimation of C. elegans to mild hypertonic stress suppresses protein damage and increases survival under more extreme hypertonic conditions. Suppression of protein damage in acclimated worms could be due to 1) accumulation of the chemical chaperone glycerol, 2) upregulation of protein degradation activity, and/or 3) increases in molecular chaperoning capacity of the cell. Glycerol and other chemical chaperones are widely thought to protect proteins from hypertonicity-induced damage. However, protein damage is unaffected by gene mutations that inhibit glycerol accumulation or that cause dramatic constitutive elevation of glycerol levels. Pharmacological or RNAi inhibition of proteasome and lyosome function and measurements of cellular protein degradation activity demonstrated that upregulation of protein degradation mechanisms plays no role in acclimation. Thus, changes in molecular chaperone capacity must be responsible for suppressing protein damage in acclimated worms. Transcriptional changes in chaperone expression have not been detected in C. elegans exposed to hypertonic stress. However, acclimation to mild hypertonicity inhibits protein synthesis 50–70%, which is expected to increase chaperone availability for coping with damage to existing proteins. Consistent with this idea, we found that RNAi silencing of essential translational components or acute exposure to cycloheximide results in a 50–80% suppression of hypertonicity-induced aggregation of polyglutamine-YFP (Q35::YFP). Dietary changes that increase protein production also increase Q35::YFP aggregation 70–180%. Our results demonstrate directly for the first time that inhibition of protein translation protects extant proteins from damage brought about by an environmental stressor, demonstrate important differences in aging- versus stress-induced protein damage, and challenge the widely held view that chemical chaperones are accumulated during hypertonic stress to protect protein structure/function.
Collapse
Affiliation(s)
- Kristopher Burkewitz
- Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | | | | | | | | |
Collapse
|
19
|
Bora N, Gadadhar S, Karande AA. Signaling different pathways of cell death: Abrin induced programmed necrosis in U266B1 cells. Int J Biochem Cell Biol 2010; 42:1993-2003. [PMID: 20800693 DOI: 10.1016/j.biocel.2010.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 12/11/2022]
Abstract
Abrin is a type II ribosome-inactivating protein comprising of two subunits, A and B. Of the two, the A-subunit harbours the RNA-N-glycosidase activity and the B subunit is a galactose specific lectin that enables the entry of the protein inside the cell. Abrin inhibits protein synthesis and has been reported to induce apoptosis in several cell types. Based on these observations abrin is considered to have potential for the construction of immunotoxin in cell targeted therapy. Preliminary data from our laboratory however showed that although abrin inhibited the protein synthesis in all cell types, the mode of cell death varied. The aim of the present study was therefore to understand different death pathways induced by abrin in different cells. We used the human B cell line, U266B1 and compared it with the earlier studied T cell line Jurkat, for abrin-mediated inhibition of protein translation as well as cell death. While abrin triggered programmed apoptosis in Jurkat cells in a caspase-dependent manner, it induced programmed necrosis in U266B1 cells in a caspase-independent manner, even when there was reactive oxygen species production and loss of mitochondrial membrane potential. The data revealed that abrin-mediated necrosis involves lysosomal membrane permeabilization and release of cathepsins from the lysosomes. Importantly, the choice of abrin-mediated death pathway in the cells appears to depend on which of the two events occurs first: lysosomal membrane permeabilization or loss of mitochondrial membrane potential that decides cell death by necrosis or apoptosis.
Collapse
Affiliation(s)
- Namrata Bora
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
20
|
Abstract
The ability to quantify or visualize newly synthesized proteins has important uses in cell biology. For example, a researcher may wish to quantify basal or inducible rates of translation of a specific gene of interest, or detect subcellular locations of newly synthesized copies of a protein in order to study the role of new protein synthesis in the growth of specialized cellular structures. In this unit, the TimeSTAMP method for labeling of newly synthesized copies of a protein of interest is described. In the TimeSTAMP method, the experimenter expresses a protein of interest as a fusion with a cis-acting protease and an epitope tag, both of which are removed by default protease activity. Addition of a specific protease inhibitor then allows preservation of the tag on subsequently synthesized proteins. Finally, the tag is detected by immunological methods.
Collapse
Affiliation(s)
- Michael Z Lin
- Department of Pediatrics and Programs in Gene Therapy and Molecular Imaging, Stanford University, Stanford, California, USA.
| | | |
Collapse
|
21
|
Lee HJ, Kim YS, Sato Y, Cho YJ. RCAN1-4 knockdown attenuates cell growth through the inhibition of Ras signaling. FEBS Lett 2009; 583:2557-64. [PMID: 19619541 DOI: 10.1016/j.febslet.2009.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/12/2009] [Accepted: 07/11/2009] [Indexed: 10/20/2022]
Abstract
Forced changes in the expression of regulator of calcineurin 1 (RCAN1) affects cell growth. This has been linked to the suppression of calcineurin-nuclear factor of activated T cells signaling by RCAN1. Here, we describe a novel role of RCAN1 isoform 4 in proper expression of Ras protein and its signaling. RCAN1 isoform 4 knockdown attenuated growth factor-induced extracellular signal-regulated kinase activation and cell growth; reduced Ras levels and its translation rate; and led to a reduction of eukaryotic initiation factor 4E in the initiation complex and a slight repression of global protein synthesis. Experiments utilizing activity-modified mutants of calcineurin A demonstrated that these effects were calcineurin-independent. Our findings reveal a previously unknown role of RCAN1-4 in protein synthesis, which may be relevant to cell growth.
Collapse
Affiliation(s)
- Hong Joon Lee
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
22
|
Chen C, Tuck S, Byström AS. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 2009; 5:e1000561. [PMID: 19593383 PMCID: PMC2702823 DOI: 10.1371/journal.pgen.1000561] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 06/12/2009] [Indexed: 11/18/2022] Open
Abstract
Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5′methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development. The efficiency of protein synthesis can be modulated by alterations of various components of the translation machinery. In translation, transfer RNAs act as adapter molecules that decode mRNA into protein and thereby play a central role in gene expression. In the tRNA maturation process, a subset of the normal nucleosides undergoes modifications. Modified nucleosides in the tRNA anticodon region are important for efficient translation. We found that, in the worm C. elegans, components of the Elongator complex are required for the formation of a certain set of tRNA modifications in the anticodon region. We observed a reduced efficiency of translation as well as a lower production of neurotransmitters in Elongator mutant worms. Elongator is conserved in eukaryotes, and mutations in a subunit of human Elongator cause a severe neurodegenerative disease, familial dysautonomia (FD). It is unclear in humans whether Elongator acts on the translational level through tRNA modification to regulate neuronal processes. Our observations in C. elegans, together with the role of yeast Elongator in translation, show that the function of Elongator in tRNA modification is conserved. Inactivation of Elongator may cause neuronal defects by affecting translation.
Collapse
Affiliation(s)
- Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Simon Tuck
- Umeå Centre of Molecular Medicine, Umeå University, Umeå, Sweden
- * E-mail: (ST); (ASB)
| | - Anders S. Byström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail: (ST); (ASB)
| |
Collapse
|