1
|
Barrington C, Finn R, Hadjur S. Cohesin biology meets the loop extrusion model. Chromosome Res 2017; 25:51-60. [PMID: 28210885 PMCID: PMC5346154 DOI: 10.1007/s10577-017-9550-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 12/05/2022]
Abstract
Extensive research has revealed that cohesin acts as a topological device, trapping chromosomal DNA within a large tripartite ring. In so doing, cohesin contributes to the formation of compact and organized genomes. How exactly the cohesin subunits interact, how it opens, closes, and translocates on chromatin, and how it actually tethers DNA strands together are still being elucidated. A comprehensive understanding of these questions will shed light on how cohesin performs its many functions, including its recently proposed role as a chromatid loop extruder. Here, we discuss this possibility in light of our understanding of the molecular properties of cohesin complexes.
Collapse
Affiliation(s)
- Christopher Barrington
- Research Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Ronald Finn
- Research Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Li Z, Zhang P, Yan A, Guo Z, Ban Y, Li J, Chen S, Yang H, He Y, Li J, Guo Y, Zhang W, Hajiramezanali E, An H, Fajardo D, Harbour JW, Ruan Y, Nimer SD, Yu P, Chen X, Xu M, Yang FC. ASXL1 interacts with the cohesin complex to maintain chromatid separation and gene expression for normal hematopoiesis. SCIENCE ADVANCES 2017; 3:e1601602. [PMID: 28116354 PMCID: PMC5249256 DOI: 10.1126/sciadv.1601602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/30/2016] [Indexed: 05/26/2023]
Abstract
ASXL1 is frequently mutated in a spectrum of myeloid malignancies with poor prognosis. Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice; however, the underlying molecular mechanisms remain unclear. We report that ASXL1 interacts with the cohesin complex, which has been shown to guide sister chromatid segregation and regulate gene expression. Loss of Asxl1 impairs the cohesin function, as reflected by an impaired telophase chromatid disjunction in hematopoietic cells. Chromatin immunoprecipitation followed by DNA sequencing data revealed that ASXL1, RAD21, and SMC1A share 93% of genomic binding sites at promoter regions in Lin-cKit+ (LK) cells. We have shown that loss of Asxl1 reduces the genome binding of RAD21 and SMC1A and alters the expression of ASXL1/cohesin target genes in LK cells. Our study underscores the ASXL1-cohesin interaction as a novel means to maintain normal sister chromatid separation and regulate gene expression in hematopoietic cells.
Collapse
Affiliation(s)
- Zhaomin Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aimin Yan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhengyu Guo
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jin Li
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yongzheng He
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianping Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wen Zhang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ehsan Hajiramezanali
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Huangda An
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Darlene Fajardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J. William Harbour
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Kulemzina I, Ang K, Zhao X, Teh JT, Verma V, Suranthran S, Chavda AP, Huber RG, Eisenhaber B, Eisenhaber F, Yan J, Ivanov D. A Reversible Association between Smc Coiled Coils Is Regulated by Lysine Acetylation and Is Required for Cohesin Association with the DNA. Mol Cell 2016; 63:1044-54. [PMID: 27618487 DOI: 10.1016/j.molcel.2016.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 03/07/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022]
Abstract
Cohesin is a ring-shaped protein complex that is capable of embracing DNA. Most of the ring circumference is comprised of the anti-parallel intramolecular coiled coils of the Smc1 and Smc3 proteins, which connect globular head and hinge domains. Smc coiled coil arms contain multiple acetylated and ubiquitylated lysines. To investigate the role of these modifications, we substituted lysines for arginines to mimic the unmodified state and uncovered genetic interaction between the Smc arms. Using scanning force microscopy, we show that wild-type Smc arms associate with each other when the complex is not on DNA. Deacetylation of the Smc1/Smc3 dimers promotes arms' dissociation. Smc arginine mutants display loose packing of the Smc arms and, although they dimerize at the hinges, fail to connect the heads and associate with the DNA. Our findings highlight the importance of a "collapsed ring," or "rod," conformation of cohesin for its loading on the chromosomes.
Collapse
MESH Headings
- Acetylation
- Amino Acid Substitution
- Animals
- Arginine/metabolism
- Baculoviridae/genetics
- Baculoviridae/metabolism
- Cell Cycle Proteins/chemistry
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromatids/chemistry
- Chromatids/metabolism
- Chromatids/ultrastructure
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/metabolism
- Chromosomes, Fungal/ultrastructure
- Cloning, Molecular
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- Gene Expression
- Gene Expression Regulation, Fungal
- Lysine/metabolism
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Protein Processing, Post-Translational
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sf9 Cells
- Signal Transduction
- Spodoptera
- Cohesins
Collapse
Affiliation(s)
- Irina Kulemzina
- Bioinformatics Institute, A(∗)STAR, Singapore 138671, Singapore; Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen 72076, Germany
| | - Keven Ang
- Bioinformatics Institute, A(∗)STAR, Singapore 138671, Singapore
| | - Xiaodan Zhao
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jun-Thing Teh
- Bioinformatics Institute, A(∗)STAR, Singapore 138671, Singapore
| | - Vikash Verma
- Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen 72076, Germany
| | | | - Alap P Chavda
- Bioinformatics Institute, A(∗)STAR, Singapore 138671, Singapore
| | - Roland G Huber
- Bioinformatics Institute, A(∗)STAR, Singapore 138671, Singapore
| | | | - Frank Eisenhaber
- Bioinformatics Institute, A(∗)STAR, Singapore 138671, Singapore; School of Computer Engineering, Nanyang Technological University, Singapore 637553, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117597, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Physics, National University of Singapore, Singapore 117551, Singapore; Center for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Dmitri Ivanov
- Bioinformatics Institute, A(∗)STAR, Singapore 138671, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen 72076, Germany; Department of Physics, National University of Singapore, Singapore 117551, Singapore.
| |
Collapse
|
6
|
Hons MT, Huis in ‘t Veld PJ, Kaesler J, Rombaut P, Schleiffer A, Herzog F, Stark H, Peters JM. Topology and structure of an engineered human cohesin complex bound to Pds5B. Nat Commun 2016; 7:12523. [PMID: 27549742 PMCID: PMC4996973 DOI: 10.1038/ncomms12523] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
The cohesin subunits Smc1, Smc3 and Scc1 form large tripartite rings which mediate sister chromatid cohesion and chromatin structure. These are thought to entrap DNA with the help of the associated proteins SA1/2 and Pds5A/B. Structural information is available for parts of cohesin, but analyses of entire cohesin complexes are limited by their flexibility. Here we generated a more rigid 'bonsai' cohesin by truncating the coiled coils of Smc1 and Smc3 and used single-particle electron microscopy, chemical crosslinking-mass spectrometry and in silico modelling to generate three-dimensional models of cohesin bound to Pds5B. The HEAT-repeat protein Pds5B forms a curved structure around the nucleotide-binding domains of Smc1 and Smc3 and bridges the Smc3-Scc1 and SA1-Scc1 interfaces. These results indicate that Pds5B forms an integral part of the cohesin ring by contacting all other cohesin subunits, a property that may reflect the complex role of Pds5 proteins in controlling cohesin-DNA interactions.
Collapse
Affiliation(s)
- Michael T. Hons
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | | | - Jan Kaesler
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Pascaline Rombaut
- Department of Biochemistry, Gene Center, Ludwig-Maximilian University, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse 7, Vienna 1030, Austria
| | - Franz Herzog
- Department of Biochemistry, Gene Center, Ludwig-Maximilian University, Feodor-Lynen-Strasse 25, Munich 81377, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Dr Bohr-Gasse 7, Vienna 1030, Austria
| |
Collapse
|
7
|
Pié J, Gil-Rodríguez MC, Ciero M, López-Viñas E, Ribate MP, Arnedo M, Deardorff MA, Puisac B, Legarreta J, de Karam JC, Rubio E, Bueno I, Baldellou A, Calvo MT, Casals N, Olivares JL, Losada A, Hegardt FG, Krantz ID, Gómez-Puertas P, Ramos FJ. Mutations and variants in the cohesion factor genes NIPBL, SMC1A, and SMC3 in a cohort of 30 unrelated patients with Cornelia de Lange syndrome. Am J Med Genet A 2010; 152A:924-9. [PMID: 20358602 DOI: 10.1002/ajmg.a.33348] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cornelia de Lange syndrome (CdLS) manifests facial dysmorphic features, growth and cognitive impairment, and limb malformations. Mutations in three genes (NIPBL, SMC1A, and SMC3) of the cohesin complex and its regulators have been found in affected patients. Here, we present clinical and molecular characterization of 30 unrelated patients with CdLS. Eleven patients had mutations in NIPBL (37%) and three patients had mutations in SMC1A (10%), giving an overall rate of mutations of 47%. Several patients shared the same mutation in NIPBL (p.R827GfsX2) but had variable phenotypes, indicating the influence of modifiers in CdLS. Patients with NIPBL mutations had a more severe phenotype than those with mutations in SMC1A or those without identified mutations. However, a high incidence of palate defects was noted in patients with SMC1A mutations. In addition, we observed a similar phenotype in both male and female patients with SMC1A mutations. Finally, we report the first patient with an SMC1A mutation and the Sandifer complex.
Collapse
Affiliation(s)
- Juan Pié
- Laboratory of Clinical Genetics and Functional Genomics, Department of Pharmacology, Medical School, University of Zaragoza, Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|