1
|
Alpízar-Pedraza D, Romero-Rivero A, Perdomo-Morales R, Mantilla-García N, Pérez-Martínez C, Garay-Pérez H, Rosenau F, Ständker L, Montero-Alejo V. Improving the antimicrobial potential of the peptide CIDEM-501 through acylation: A computational approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184407. [PMID: 39788472 DOI: 10.1016/j.bbamem.2025.184407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity. This study examines the potential of using in silico tools to evaluate the interaction and selectivity of the antimicrobial peptide CIDEM-501 when acylated with decanoic acid at the N-terminus, compared to the non-acylated counterpart. Circular dichroism, microdilution, and hemolysis assays were used to determine the peptide's secondary structure, antimicrobial activity, and selectivity to validate the theoretical predictions. The acylated peptide showed a more stable interaction with the bacterial membrane by inserting the acyl chain into the membrane's hydrophobic core, which led to tighter adsorption and a greater buried surface area. Additionally, it significantly altered membrane order more than the non-acylated counterpart, suggesting superior antimicrobial potential. Finally, in vitro activity assays confirmed theoretical predictions, showing that the acylated peptide had lower Minimum Inhibitory Concentration (MIC) values than the non-acylated peptide. Neither peptide showed significant hemolytic activity at their MIC. The computational techniques used in this study displayed strong predictive capability and helped to elucidate the interaction between the peptide and the membranes.
Collapse
Affiliation(s)
- Daniel Alpízar-Pedraza
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Adrian Romero-Rivero
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Rolando Perdomo-Morales
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Niurys Mantilla-García
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Claudia Pérez-Martínez
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| | - Hilda Garay-Pérez
- Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology, Ave. 31 e/158 y 190, Playa, Habana 11600, Cuba.
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Vivian Montero-Alejo
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba.
| |
Collapse
|
2
|
Hosseini Goki N, Saberi MR, Amin M, Fazly Bazzaz BS, Khameneh B. Novel antimicrobial peptides based on Protegrin-1: In silico and in vitro assessments. Microb Pathog 2024; 196:106931. [PMID: 39288825 DOI: 10.1016/j.micpath.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The development of antibiotic resistance has caused significant health problems. Antimicrobial peptides (AMPs) are considered next-generation antibiotics. Protegrin-1 (PG-1) is a β-hairpin AMP with a membrane-binding capacity. This study used twelve PG-1 analogs with different amino acid substitutions. Coarse-grained molecular dynamics (MD) simulations were used to assess these analogs, and their physicochemical properties were computed using the Antimicrobial Peptide Database. Three AMPs, PEP-D, PEP-C, and PEP-H, were chosen and synthesized for antibacterial testing. The microbroth dilution technique and hemolytic assays evaluated the antimicrobial efficacy and cellular toxicity. The checkerboard method was used to test the combined activity of AMP and standard antibiotics. Cell membrane permeability and electron microscopy were used to evaluate the mode of action. The chemical stability of the selective AMP, PEP-D, was assessed by a validated HPLC method. PEP-D consists of 16-18 amino acid residues and has a charge of +7 and a hydrophobicity of 44 %, similar to PG-1. It can efficiently inactivate bacteria by disrupting cell membranes and significantly reducing hemolytic activity. Chemical stability studies indicated that AMP was stable at 40 °C for six months under autoclave conditions. This study could introduce the potential therapeutic application of selective AMP as an anti-infective agent.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
|
4
|
Genomewide Analysis of the Antimicrobial Peptides in Python bivittatus and Characterization of Cathelicidins with Potent Antimicrobial Activity and Low Cytotoxicity. Antimicrob Agents Chemother 2017. [PMID: 28630199 DOI: 10.1128/aac.00530-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens.
Collapse
|
5
|
Borkar MR, Pissurlenkar RRS, Coutinho EC. Mapping activity elements of protegrin antimicrobial peptides by HomoSAR. RSC Adv 2015. [DOI: 10.1039/c5ra14402g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HomoSAR has been able to shed light on the relationship between sequences of protegrin peptides and their activity on six specific micro-organisms.
Collapse
Affiliation(s)
| | | | - Evans C. Coutinho
- Department of Pharmaceutical Chemistry
- Bombay College of Pharmacy
- Mumbai 400098
- India
| |
Collapse
|
6
|
Dubovskii PV, Utkin YN. Cobra cytotoxins: structural organization and antibacterial activity. Acta Naturae 2014; 6:11-8. [PMID: 25349711 PMCID: PMC4207557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Cardiotoxins (cytotoxins, CT) are β-structured proteins isolated from the venom of cobra. They consist of 59-61 amino acid residues, whose antiparallel chains form three 'fingers'. In contrast to neurotoxins with an overall similar fold, CTs are amphiphilic. The amphiphilicity is caused by positively charged lysine and arginine residues flanking the tips of the loops that consist primarily of hydrophobic amino acids. A similar distribution of amino acid residues is typical for linear (without disulfide bonds) cationic cytolytic peptides from the venoms of other snakes and insects. Many of them are now considered to be lead compounds in combatting bacterial infections and cancer. In the present review, we summarize the data on the antibacterial activity of CTs and compare it to the activity of linear peptides.
Collapse
Affiliation(s)
- P. V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - Y. N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| |
Collapse
|
7
|
Lazaridis T, He Y, Prieto L. Membrane interactions and pore formation by the antimicrobial peptide protegrin. Biophys J 2013; 104:633-42. [PMID: 23442914 DOI: 10.1016/j.bpj.2012.12.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 12/06/2012] [Accepted: 12/21/2012] [Indexed: 11/18/2022] Open
Abstract
Protegrin is an antimicrobial peptide with a β-hairpin structure stabilized by a pair of disulfide bonds. It has been extensively studied by solid-state NMR and computational methods. Here we use implicit membrane models to examine the binding of monomers on the surface and in the interior of the membrane, the energetics of dimerization, the binding to membrane pores, and the stability of different membrane barrel structures in pores. Our results challenge a number of conclusions based on previous experimental and theoretical work. The burial of monomers into the membrane interior is found to be unfavorable for any membrane thickness. Because of its imperfect amphipathicity, protegrin binds weakly, at most, on the surface of zwitterionic membranes. However, it binds more favorably onto toroidal pores. Anionic charge on the membrane facilitates the binding due to electrostatic interactions. Solid-state NMR results have suggested a parallel NCCN association of monomers in dimers and association of dimers to form octameric or decameric β-barrels. We find that this structure is not energetically plausible for binding to bilayers, because in this configuration the hydrophobic sides of two monomers point in opposite directions. In contrast, the antiparallel NCCN and especially the parallel NCNC octamers are stable and exhibit a favorable binding energy to the pore. The results of 100-ns simulations in explicit bilayers corroborate the higher stability of the parallel NCNC barrel compared with the parallel NCCN barrel. The ability to form pores in zwitterionic membranes provides a rationalization for the peptide's cytotoxicity. The discrepancies between our results and experiment are discussed, and new experiments are proposed to resolve them and to test the validity of the models.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of New York/CUNY, New York, New York, USA.
| | | | | |
Collapse
|
8
|
Bolintineanu DS, Vivcharuk V, Kaznessis YN. Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int J Mol Sci 2012; 13:11000-11011. [PMID: 23109834 PMCID: PMC3472726 DOI: 10.3390/ijms130911000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) are naturally-occurring molecules that exhibit strong antibiotic properties against numerous infectious bacterial strains. Because of their unique mechanism of action, they have been touted as a potential source for novel antibiotic drugs. We present a summary of computational investigations in our lab aimed at understanding this unique mechanism of action, in particular the development of models that provide a quantitative connection between molecular-level biophysical phenomena and relevant biological effects. Our work is focused on protegrins, a potent class of AMPs that attack bacteria by associating with the bacterial membrane and forming transmembrane pores that facilitate the unrestricted transport of ions. Using fully atomistic molecular dynamics simulations, we have computed the thermodynamics of peptide-membrane association and insertion, as well as peptide aggregation. We also present a multi-scale analysis of the ion transport properties of protegrin pores, ranging from atomistic molecular dynamics simulations to mesoscale continuum models of single-pore electrodiffusion to models of transient ion transport from bacterial cells. Overall, this work provides a quantitative mechanistic description of the mechanism of action of protegrin antimicrobial peptides across multiple length and time scales.
Collapse
Affiliation(s)
- Dan S. Bolintineanu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA; E-Mails: (D.S.B.); (V.V.)
| | - Victor Vivcharuk
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA; E-Mails: (D.S.B.); (V.V.)
| | - Yiannis N. Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA; E-Mails: (D.S.B.); (V.V.)
| |
Collapse
|
9
|
Poisson–Boltzmann Implicit Solvation Models. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-444-59440-2.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Vivcharuk V, Kaznessis YN. Thermodynamic analysis of protegrin-1 insertion and permeation through a lipid bilayer. J Phys Chem B 2011; 115:14704-12. [PMID: 22044268 PMCID: PMC3461958 DOI: 10.1021/jp205153y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations are used to study the pathway for the insertion of the cationic antimicrobial peptide protegrin-1 (PG1) into mixed anionic lipid bilayers composed of palmitoyl-oleoyl-phosphatidylglycerol (POPG) and palmitoyl-oleoyl-phosphatidylethanolamine (POPE) in a 1:3 ratio (POPG/POPE). We calculate the potential of mean force (PMF) during the transfer of the peptide from the bulk aqueous phase to the transmembrane (TM) configuration using the adaptive biasing force (ABF) method. We find that the PMF has two energy minima separated by an energy barrier. One minimum corresponds to the fully transmembrane inserted state, with a free energy of -20.1 kcal/mol. The second PMF minimum, which corresponds to adsorption to the membrane surface, has a value of -2.5 kcal/mol. The PMF also shows the existence of a free energy barrier of +6.3 kcal/mol for the insertion process. Using the Kramers theory Langevin equation and the Grote-Hynes theory generalized Langevin equation, we calculated the transmission coefficient for PG1 diffusion through the potential barrier. We focus on the use of the PMF and the time correlation function of the fluctuation of the instantaneous force to calculate the rate constants for insertion/deinsertion of PG1 from the mixed POPG/POPE membrane. The influence of the activation free energy barrier on the dynamics of the insertion and permeation of peptides through the membrane are discussed.
Collapse
Affiliation(s)
- Victor Vivcharuk
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132, USA
| | | |
Collapse
|
11
|
Ikeda K, Kameda T, Harada E, Akutsu H, Fujiwara T. Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. J Phys Chem B 2011; 115:9327-36. [DOI: 10.1021/jp205290t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Keisuke Ikeda
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871 Japan
| | - Tomoshi Kameda
- Computational Biology Research Center, Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Erisa Harada
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871 Japan
| | - Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871 Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871 Japan
| |
Collapse
|
12
|
Bolintineanu DS, Kaznessis YN. Computational studies of protegrin antimicrobial peptides: a review. Peptides 2011; 32:188-201. [PMID: 20946928 PMCID: PMC3013618 DOI: 10.1016/j.peptides.2010.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
Antimicrobial peptides (AMPs) are small, naturally occurring peptides that exhibit strong antibacterial properties generally believed to be a result of selective bacterial membrane disruption. As a result, there has been significant interest in the development of therapeutic antibiotics based on AMPs; however, the poor understanding of the fundamental mechanism of action of these peptides has largely hampered such efforts. We present a summary of computational and theoretical investigations of protegrin, a particularly potent peptide that is both an excellent model for the mechanism of action of AMPs and a promising therapeutic candidate. Experimental investigations have shed light on many of the key steps in the action of protegrin: protegrin monomers are known to dimerize in various lipid environments; protegrin peptides interact strongly with lipid bilayer membranes, particularly anionic lipids; protegrins have been shown to form pores in lipid bilayers, which results in uncontrolled ion transport and may be a key factor in bacterial death. In this work, we present a comprehensive review of the computational and theoretical studies that have complemented and extended the information obtained from experimental work with protegrins, as well as a brief survey of the experimental biophysical studies that are most pertinent to such computational work. We show that a consistent, mechanistic description of the bactericidal mechanism of action of protegrins is emerging, and briefly outline areas where the current understanding is deficient. We hope that the research reviewed herein offers compelling evidence of the benefits of computational investigations of protegrins and other AMPs, as well as providing a useful guide to future work in this area.
Collapse
Affiliation(s)
- Dan S. Bolintineanu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis MN 55455
| | - Yiannis N. Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis MN 55455
| |
Collapse
|
13
|
Dimerization of protegrin-1 in different environments. Int J Mol Sci 2010; 11:3177-94. [PMID: 20957087 PMCID: PMC2956088 DOI: 10.3390/ijms11093177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 08/24/2010] [Accepted: 09/03/2010] [Indexed: 11/16/2022] Open
Abstract
The dimerization of the cationic β-hairpin antimicrobial peptide protegrin-1 (PG1) is investigated in three different environments: water, the surface of a lipid bilayer membrane, and the core of the membrane. PG1 is known to kill bacteria by forming oligomeric membrane pores, which permeabilize the cells. PG1 dimers are found in two distinct, parallel and antiparallel, conformations, known as important intermediate structural units of the active pore oligomers. What is not clear is the sequence of events from PG1 monomers in solution to pores inside membranes. The step we focus on in this work is the dimerization of PG1. In particular, we are interested in determining where PG1 dimerization is most favorable. We use extensive molecular dynamics simulations to determine the potential of mean force as a function of distance between two PG1 monomers in the aqueous subphase, the surface of model lipid bilayers and the interior of these bilayers. We investigate the two known distinct modes of dimerization that result in either a parallel or an antiparallel β-sheet orientation. The model bilayer membranes are composed of anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG) and palmitoyl-oleoyl-phosphatidylethanolamine (POPE) in a 1:3 ratio (POPG:POPE). We find the parallel PG1 dimer association to be more favorable than the antiparallel one in water and inside the membrane. However, we observe that the antiparallel PG1 β-sheet dimer conformation is somewhat more stable than the parallel dimer association at the surface of the membrane. We explore the role of hydrogen bonds and ionic bridges in peptide dimerization in the three environments. Detailed knowledge of how networks of ionic bridges and hydrogen bonds contribute to peptide stability is essential for the purpose of understanding the mechanism of action for membrane-active peptides as well as for designing peptides which can modulate membrane properties. The findings are suggestive of the dominant pathways leading from individual PG1 molecules in solution to functional pores in bacterial membranes.
Collapse
|
14
|
Capone R, Mustata M, Jang H, Arce FT, Nussinov R, Lal R. Antimicrobial protegrin-1 forms ion channels: molecular dynamic simulation, atomic force microscopy, and electrical conductance studies. Biophys J 2010; 98:2644-52. [PMID: 20513409 PMCID: PMC2877344 DOI: 10.1016/j.bpj.2010.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an emerging class of antibiotics for controlling health effects of antibiotic-resistant microbial strains. Protegrin-1 (PG-1) is a model antibiotic among beta-sheet AMPs. Antibiotic activity of AMPs involves cell membrane damage, yet their membrane interactions, their 3D membrane-associated structures and the mechanism underlying their ability to disrupt cell membrane are poorly understood. Using complementary approaches, including molecular dynamics simulations, atomic force microscopy (AFM) imaging, and planar lipid bilayer reconstitution, we provide computational and experimental evidence that PG-1, a beta-hairpin peptide, forms ion channels. Simulations indicate that PG-1 forms channel-like structures with loosely attached subunits when reconstituted in anionic lipid bilayers. AFM images show the presence of channel-like structures when PG-1 is reconstituted in dioleoylphosphatidylserine/palmitoyloleoyl phosphatidylethanolamine bilayers or added to preformed bilayers. Planar lipid bilayer electrical recordings show multiple single channel conductances that are consistent with the heterogeneous oligomeric channel structures seen in AFM images. PG-1 channel formation seems to be lipid-dependent: PG-1 does not easily show ion channel electrical activity in phosphatidylcholine membranes, but readily shows channel activity in membranes rich in phosphatidylethanolamine or phosphatidylserine. The combined results support a model wherein the beta-hairpin PG-1 peptide acts as an antibiotic by altering cell ionic homeostasis through ion channel formation in cell membranes.
Collapse
Affiliation(s)
- Ricardo Capone
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mirela Mustata
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Hyunbum Jang
- Center for Cancer Research Nanobiology Program, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland
| | - Fernando Teran Arce
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ratnesh Lal
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Kim C. An NMR Study on the Phase Change of Lipid Membranes by an Antimicrobial Peptide, Protegrin-1. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.02.372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Sayyed-Ahmad A, Khandelia H, Kaznessis YN. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles. MOLECULAR SIMULATION 2009; 35:986-997. [PMID: 21113423 PMCID: PMC2990536 DOI: 10.1080/08927020902902742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Chemical Engineering and Materials Science, and the Digital Technology Center, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, USA
| | - Himanshu Khandelia
- MEMPHYS-Center for Membrane Physics, University of Southern Denmark, Odense M 5230, Denmark
| | - Yiannis N. Kaznessis
- Department of Chemical Engineering and Materials Science, and the Digital Technology Center, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol 2009; 392:837-54. [PMID: 19576903 DOI: 10.1016/j.jmb.2009.06.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/08/2009] [Accepted: 06/27/2009] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMPs) have attracted much interest in recent years because of their potential use as new-generation antibiotics. Indolicidin (IL) is a 13-residue cationic AMP that is effective against a broad spectrum of bacteria, fungi, and even viruses. Unfortunately, its high hemolytic activity retards its clinical applications. In this study, we adopted molecular dynamics (MD) simulations as an aid toward the rational design of IL analogues exhibiting high antimicrobial activity but low hemolysis. We employed long-timescale, multi-trajectory all-atom MD simulations to investigate the interactions of the peptide IL with model membranes. The lipid bilayer formed by the zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was chosen as the model erythrocyte membrane; lipid bilayers formed from a mixture of POPC and the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol were chosen to model bacterial membranes. MD simulations with a total simulation time of up to 4 micros revealed the mechanisms of the processes of IL adsorption onto and insertion into the membranes. The packing order of these lipid bilayers presumably correlated to the membrane stability upon IL adsorption and insertion. We used the degree of local membrane thinning and the reduction in the order parameter of the acyl chains of the lipids to characterize the membrane stability. The order of the mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol/POPC lipid bilayer reduced significantly upon the adsorption of IL. On the other hand, although the order of the pure-POPC lipid bilayer was perturbed slightly during the adsorption stage, the value was reduced more dramatically upon the insertion of IL into the membrane's hydrophobic region. The results imply that enhancing IL adsorption on the microbial membrane may amplify its antimicrobial activity, while the degree of hemolysis may be reduced through inhibition of IL insertion into the hydrophobic region of the erythrocyte membrane. In addition, through simulations, we identified the amino acids that are most responsible for the adsorption onto or insertion into the two model membranes. Positive charges are critical to the peptide's adsorption, whereas the presence of hydrophobic Trp8 and Trp9 leads to its deeper insertion. Combining the hypothetical relationships between the membrane disordering and the antimicrobial and hemolytical activities with the simulated results, we designed three new IL-analogous peptides: IL-K7 (Pro7-->Lys), IL-F89 (Trp8 and Trp9-->Phe), and IL-K7F89 (Pro7-->Lys; Trp8 and Trp9-->Phe). The hemolytic activity of IL-F89 is considerably lower than that of IL, whereas the antimicrobial activity of IL-K7 is greatly enhanced. In particular, the de novo peptide IL-K7F89 exhibits higher antimicrobial activity against Escherichia coli; its hemolytic activity decreased to only 10% of that of IL. Our simulated and experimental results correlated well. This approach-coupling MD simulations with experimental design-is a useful strategy toward the rational design of AMPs for potential therapeutic use.
Collapse
|