1
|
Robert SM, Reeves BC, Kiziltug E, Duy PQ, Karimy JK, Mansuri MS, Marlier A, Allington G, Greenberg ABW, DeSpenza T, Singh AK, Zeng X, Mekbib KY, Kundishora AJ, Nelson-Williams C, Hao LT, Zhang J, Lam TT, Wilson R, Butler WE, Diluna ML, Feinberg P, Schafer DP, Movahedi K, Tannenbaum A, Koundal S, Chen X, Benveniste H, Limbrick DD, Schiff SJ, Carter BS, Gunel M, Simard JM, Lifton RP, Alper SL, Delpire E, Kahle KT. The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus. Cell 2023; 186:764-785.e21. [PMID: 36803604 PMCID: PMC10069664 DOI: 10.1016/j.cell.2023.01.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023]
Abstract
The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xue Zeng
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Le Thi Hao
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter EX1 2LU, UK
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rashaun Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael L Diluna
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Philip Feinberg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Medical Scientist Training Program, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kiavash Movahedi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 11794, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xinan Chen
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland, School of Medicine, Baltimore, MD 21201, USA; Department of Pathology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, the Rockefeller University, New York, NY 10065, USA
| | - Seth L Alper
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA; Department of Neurosurgery and Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Bhuiyan MIH, Young CB, Jahan I, Hasan MN, Fischer S, Meor Azlan NF, Liu M, Chattopadhyay A, Huang H, Kahle KT, Zhang J, Poloyac SM, Molyneaux BJ, Straub AC, Deng X, Gomez D, Sun D. NF-κB Signaling-Mediated Activation of WNK-SPAK-NKCC1 Cascade in Worsened Stroke Outcomes of Ang II-Hypertensive Mice. Stroke 2022; 53:1720-1734. [PMID: 35272484 PMCID: PMC9038703 DOI: 10.1161/strokeaha.121.038351] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Worsened stroke outcomes with hypertension comorbidity are insensitive to blood pressure-lowering therapies. In an experimental stroke model with comorbid hypertension, we investigated causal roles of ang II (angiotensin II)-mediated stimulation of the brain WNK (with no lysine [K] kinases)-SPAK (STE20/SPS1-related proline/alanine-rich kinase)-NKCC1 (Na-K-Cl cotransporter) complex in worsened outcomes. METHODS Saline- or ang II-infused C57BL/6J male mice underwent stroke induced by permanent occlusion of the distal branches of the middle cerebral artery. Mice were randomly assigned to receive either vehicle dimethyl sulfoxide/PBS (2 mL/kg body weight/day, IP), a novel SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide (ZT-1a' 5 mg/kg per day, IP) or a NF-κB (nuclear factor-κB) inhibitor TAT-NBD (transactivator of transcription-NEMO-binding domain' 20 mg/kg per day, IP). Activation of brain NF-κB and WNK-SPAK-NKCC1 cascade as well as ischemic stroke outcomes were examined. RESULTS Stroke triggered a 2- to 5-fold increase of WNK (isoforms 1, 2, 4), SPAK/OSR1 (oxidative stress-responsive kinase 1), and NKCC1 protein in the ang II-infused hypertensive mouse brains at 24 hours after stroke, which was associated with increased nuclear translocation of phospho-NF-κB protein in the cortical neurons (a Pearson correlation r of 0.77, P<0.005). The upregulation of WNK-SPAK-NKCC1 cascade proteins resulted from increased NF-κB recruitment on Wnk1, Wnk2, Wnk4, Spak, and Nkcc1 gene promoters and was attenuated by NF-κB inhibitor TAT-NBD. Poststroke administration of SPAK inhibitor ZT-1a significantly reduced WNK-SPAK-NKCC1 complex activation, brain lesion size, and neurological function deficits in the ang II-hypertensive mice without affecting blood pressure and cerebral blood flow. CONCLUSIONS The ang II-induced stimulation of NF-κB transcriptional activity upregulates brain WNK-SPAK-NKCC1 cascade and contributes to worsened ischemic stroke outcomes, illustrating the brain WNK-SPAK-NKCC1 complex as a therapeutic target for stroke with comorbid hypertension.
Collapse
Affiliation(s)
- Mohammad Iqbal H Bhuiyan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational, and Clinical Center, PA (M.I.H.B.' D.S.)
| | - Cullen B Young
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Israt Jahan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Md Nabiul Hasan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Sydney Fischer
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom (N.F.M.A., J.Z.)
| | - Mingjun Liu
- Medicine (M.L., D.G.), University of Pittsburgh, PA
| | - Ansuman Chattopadhyay
- Molecular Biology-Information Service, Health Sciences Library System (A.C.), University of Pittsburgh, PA
| | - Huachen Huang
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston (K.T.K.)
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom (N.F.M.A., J.Z.)
| | | | - Bradley J Molyneaux
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Adam C Straub
- Pharmacology and Chemical Biology (A.C.S), University of Pittsburgh, PA
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (A.C.S., D.G.), University of Pittsburgh, PA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China (X.D.)
| | - Delphine Gomez
- Medicine (M.L., D.G.), University of Pittsburgh, PA
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (A.C.S., D.G.), University of Pittsburgh, PA
| | - Dandan Sun
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational, and Clinical Center, PA (M.I.H.B.' D.S.)
| |
Collapse
|
3
|
Huang TY, Yang SS, Liao CL, Lin MH, Lin HH, Lin JC, Chen PJ, Shih YL, Chang WK, Hsieh TY. SPAK Deficiency Attenuates Chemotherapy-Induced Intestinal Mucositis. Front Oncol 2021; 11:733555. [PMID: 34888232 PMCID: PMC8649624 DOI: 10.3389/fonc.2021.733555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Ste20-related protein proline/alanine-rich kinase (SPAK) affects cell proliferation, differentiation, and transformation, and sodium and chloride transport in the gut. However, its role in gut injury pathogenesis is unclear. Objective We determined the role of SPAK in chemotherapy-induced intestinal mucositis using in vivo and in vitro models. Methods Using SPAK-knockout (KO) mice, we evaluated the severity of intestinal mucositis induced by 5-fluorouracil (5-FU) by assessing body weight loss, histological changes in the intestinal mucosa, length of villi in the small intestine, pro-inflammatory cytokine levels, proliferative indices, and apoptotic indices. We also evaluated changes in gut permeability and tight junction-associated protein expression. Changes in cell permeability, proliferation, and apoptosis were assessed in SPAK siRNA-transfected 5FU-treated IEC-6 cells. Results 5-FU-treated SPAK-KO mice exhibited milder intestinal mucositis, reduced pro-inflammatory cytokine expression, increased villus length, good maintenance of proliferative indices of villus cells, decreased apoptotic index of enterocytes, reduced gut permeability, and restoration of tight junction protein expression (vs. 5-FU-treated wild-type mice). Under in vitro conditions, siRNA-mediated SPAK-knockdown in IEC-6 cells decreased cell permeability and maintained homeostasis following 5-FU treatment. Conclusion SPAK deficiency attenuated chemotherapy-induced intestinal mucositis by modulating gut permeability and tight junction-associated protein expression and maintaining gut homeostasis in murine small intestinal tissues following gut injury. The expression of SPAK may influence the pathogenesis of chemotherapy-induced intestinal mucositis.
Collapse
Affiliation(s)
- Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Taiwan Association for the Study of Small Intestinal Diseases, Taoyuan, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of BioMedical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Len Liao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsuan-Hwai Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chun Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Jen Chen
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Kuo Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Abstract
Reparative inflammation is an important protective response that eliminates foreign organisms, damaged cells, and physical irritants. However, inappropriately triggered or sustained inflammation can respectively initiate, propagate, or prolong disease. Post-hemorrhagic (PHH) and post-infectious hydrocephalus (PIH) are the most common forms of hydrocephalus worldwide. They are treated using neurosurgical cerebrospinal fluid (CSF) diversion techniques with high complication and failure rates. Despite their distinct etiologies, clinical studies in human patients have shown PHH and PIH share similar CSF cytokine and immune cell profiles. Here, in light of recent work in model systems, we discuss the concept of "inflammatory hydrocephalus" to emphasize potential shared mechanisms and potential therapeutic vulnerabilities of these disorders. We propose that this change of emphasis could shift our thinking of PHH and PIH from a framework of life-long neurosurgical disorders to that of preventable conditions amenable to immunomodulation.
Collapse
|
5
|
Hung CM, Peng CK, Yang SS, Shui HA, Huang KL. WNK4–SPAK modulates lipopolysaccharide-induced macrophage activation. Biochem Pharmacol 2020; 171:113738. [DOI: 10.1016/j.bcp.2019.113738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/26/2019] [Indexed: 01/23/2023]
|
6
|
Wang W, Xin J, Chen W, Jing L, Zhang P. Icariin alleviates hypoxia-induced damage in MC3T3-E1 cells by downregulating TALNEC2. Biotechnol Appl Biochem 2019; 67:1000-1010. [PMID: 31845407 DOI: 10.1002/bab.1874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022]
Abstract
Osteonecrosis is a harmful musculoskeletal disease. We aim to detect the effects of icariin (ICA) in MC3T3-E1 cell. MC3T3-E1 cell was pretreated with ICA and was subjected to hypoxia stimuli. The tumor-associated long noncoding RNA expressed on chromosome 2 (TALNEC2) overexpression or silencing vectors (pTALNEC2 or si-TALNEC2) was utilized for MC3T3-E1 cell transfection. Viability and apoptosis rate were individually tested by cell counting kit-8 and Annexin V-fluorescein isothiocyanate/propidium iodide kit untied with flow cytometry. The alkaline phosphatase activity (ALP) activity was tested through ALP assay. The quantitative reverse transcription PCR or Western blot was performed for elements detection at the RNA or protein level. Hypoxia treatment induced viability inhibition and CyclinD1 reduction, but elevation of p53 and p16. It also promoted apoptosis by increasing apoptotic cells, Bax, and cleaved-poly ADP-ribose polymerase but decreasing Bcl-2. Also, hypoxia stimuli restrained ALP activity, and osteopontin, osteocalcin, and Runt-related transcription factor 2 expression. Those effects caused by hypoxia stimuli were all reversed by ICA. TALNEC2 was downregulated by ICA, whose impacts were subsequently abolished by pTALNEC2. Silencing TALNEC2 displayed similar effects with ICA. But the apoptosis was not affected by si-TALNEC2. ICA blocked ste20-related proline/alanine-rich kinase/c-Jun N-terminal kinase (SPAK/JNK) but triggered phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway in MC3T3-E1 cell by suppressing TALNEC2. ICA relieved hypoxia-stimulated damage by restraining TALNEC2 through blocking SPAK/JNK and triggering PI3K/AKT/mTOR in the MC3T3-E1 cell.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jian Xin
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wenming Chen
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lizhong Jing
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Peng Zhang
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
7
|
Simpson S, Preston D, Schwerk C, Schroten H, Blazer-Yost B. Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. Am J Physiol Cell Physiol 2019; 317:C881-C893. [PMID: 31411921 PMCID: PMC6879874 DOI: 10.1152/ajpcell.00205.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 08/08/2019] [Indexed: 11/22/2022]
Abstract
The choroid plexus (CP), composed of capillaries surrounded by a barrier epithelium, is the main producer of cerebrospinal fluid (CSF). The CP epithelium regulates the transport of ions and water between the blood and the ventricles, contributing to CSF production and composition. Several studies suggest a connection between the cation channel transient receptor potential vanilloid-4 (TRPV4) and transepithelial ion movement. TRPV4 is a nonselective, calcium-permeable cation channel present in CP epithelia reported to be activated by cytokines and inflammatory mediators. Utilizing the PCP-R (porcine choroid plexus-Riems) cell line, we investigated the effects of various cytokines and inflammatory mediators on TRPV4-mediated activity. Select proinflammatory cytokines (TNF-α, IL-1β, TGF-β1) had inhibitory effects on TRPV4-stimulated transepithelial ion flux and permeability changes, whereas anti-inflammatory cytokines (IL-10, IL-4, and IL-6) had none. Quantitative mRNA analysis showed that these cytokines had no effect on TRPV4 transcription levels. Inhibition of the transcription factor NF-κB, involved in the production and regulation of several inflammatory cytokines, inhibited TRPV4-mediated activity, suggesting a link between TRPV4 and cytokine production. Contrary to published studies, the proinflammatory mediator arachidonic acid (AA) had inhibitory rather than stimulatory effects on TRPV4-mediated responses. However, inhibition of AA metabolism also caused inhibitory effects on TRPV4, suggesting a complex interaction of AA and its metabolites in the regulation of TRPV4 activity. Together these data imply that TRPV4 activity is involved in the inflammatory response; it is negatively affected by proinflammatory mediators. Furthermore, arachidonic acid metabolites, but not arachidonic acid itself, are positive regulators of TRPV4.
Collapse
Affiliation(s)
- Stefanie Simpson
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Daniel Preston
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital, Mannheim, Germany
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital, Mannheim, Germany
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
8
|
Grauso M, Lan A, Andriamihaja M, Bouillaud F, Blachier F. Hyperosmolar environment and intestinal epithelial cells: impact on mitochondrial oxygen consumption, proliferation, and barrier function in vitro. Sci Rep 2019; 9:11360. [PMID: 31388052 PMCID: PMC6684637 DOI: 10.1038/s41598-019-47851-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to elucidate the in vitro short-term (2-h) and longer-term (24-h) effects of hyperosmolar media (500 and 680 mOsm/L) on intestinal epithelial cells using the human colonocyte Caco-2 cell line model. We found that a hyperosmolar environment slowed down cell proliferation compared to normal osmolarity (336 mOsm/L) without inducing cell detachment or necrosis. This was associated with a transient reduction of cell mitochondrial oxygen consumption, increase in proton leak, and decrease in intracellular ATP content. The barrier function of Caco-2 monolayers was also transiently affected since increased paracellular apical-to-basal permeability and modified electrolyte permeability were measured, allowing partial equilibration of the trans-epithelial osmotic difference. In addition, hyperosmotic stress induced secretion of the pro-inflammatory cytokine IL-8. By measuring expression of genes involved in energy metabolism, tight junction forming, electrolyte permeability and intracellular signaling, different response patterns to hyperosmotic stress occurred depending on its intensity and duration. These data highlight the potential impact of increased luminal osmolarity on the intestinal epithelium renewal and barrier function and point out some cellular adaptive capacities towards luminal hyperosmolar environment.
Collapse
Affiliation(s)
- Marta Grauso
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France.
| | - Annaïg Lan
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | | | - Frédéric Bouillaud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, 75014, Paris, France
| | - François Blachier
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| |
Collapse
|
9
|
Gallolu Kankanamalage S, Karra AS, Cobb MH. WNK pathways in cancer signaling networks. Cell Commun Signal 2018; 16:72. [PMID: 30390653 PMCID: PMC6215617 DOI: 10.1186/s12964-018-0287-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Background The with no lysine [K] (WNK) pathway consists of the structurally unique WNK kinases, their downstream target kinases, oxidative stress responsive (OSR)1 and SPS/Ste20-related proline-alanine-rich kinase (SPAK), and a multitude of OSR1/SPAK substrates including cation chloride cotransporters. Main body While the best known functions of the WNK pathway is regulation of ion transport across cell membranes, WNK pathway components have been implicated in numerous human diseases. The goal of our review is to draw attention to how this pathway and its components exert influence on the progression of cancer, specifically by detailing WNK signaling intersections with major cell communication networks and processes. Conclusion Here we describe how WNKs and associated proteins interact with and influence PI3K-AKT, TGF-β, and NF-κB signaling, as well as its unanticipated role in the regulation of angiogenesis.
Collapse
Affiliation(s)
- Sachith Gallolu Kankanamalage
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390-9041, USA
| | - Aroon S Karra
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390-9041, USA
| | - Melanie H Cobb
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390-9041, USA.
| |
Collapse
|
10
|
Effects of SPAK on vascular reactivity and nitric oxide production in endotoxemic mice. Eur J Pharmacol 2017; 814:248-254. [PMID: 28864211 DOI: 10.1016/j.ejphar.2017.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 11/20/2022]
Abstract
Vasoplegia impedes therapeutic interventions to restore vascular tone, leading to severe hypotension, poor tissue perfusion, and multiple organ failure in septic shock. High levels of circulating nitric oxide (NO) play a crucial role in endotoxin-induced vascular hyporeactivity. Proinflammatory cytokines have been implicated in the induction of inducible NO synthase and overproduction of NO. Anti-inflammatory therapy can diminish NO formation and improve vascular hyporeactivity in septic shock. STE20/SPS1-realted proline/alanine-rich kinase (SPAK) has been reported to activate mitogen-activated protein kinase and contribute to intestinal inflammation. Thus, we evaluated the roles of SPAK in NO production and vascular hyporeactivity in endotoxemic animals. Male wild-type and SPAK deficiency mice were intraperitoneally administered vehicle or Escherichia coli lipopolysaccharide (LPS, 50mg/kg). The changes of systolic blood pressure and plasma nitrate and nitrite levels were measured during the experimental period. Thoracic aortas were exercised to assess vascular reactivity and SPAK expression. In the present study, mice in endotoxin model showed severe hypotension and hyporeactivity to serotonin, phenylephrine (PE), and acetylcholine in the aortic rings. Phosphorylated SPAK expression in the aorta and NO levels in the plasma were also increased in animals with endotoxic shock. However, deletion of SPAK not only reduced the elevation of NO levels but also improved vascular hyporeactivity to serotonin and PE in endotoxemic mice. Taken together, SPAK could be involved in the NO overproduction and vascular hyporesponsiveness to vasoconstrictors in endotoxic shock. Thus, inhibition of SPAK could be useful in the prevention of endotoxin-induced vascular hyporeactivity.
Collapse
|
11
|
Karimy JK, Duran D, Hu JK, Gavankar C, Gaillard JR, Bayri Y, Rice H, DiLuna ML, Gerzanich V, Marc Simard J, Kahle KT. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 2017; 41:E10. [PMID: 27798982 DOI: 10.3171/2016.8.focus16278] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrocephalus, despite its heterogeneous causes, is ultimately a disease of disordered CSF homeostasis that results in pathological expansion of the cerebral ventricles. Our current understanding of the pathophysiology of hydrocephalus is inadequate but evolving. Over this past century, the majority of hydrocephalus cases has been explained by functional or anatomical obstructions to bulk CSF flow. More recently, hydrodynamic models of hydrocephalus have emphasized the role of abnormal intracranial pulsations in disease pathogenesis. Here, the authors review the molecular mechanisms of CSF secretion by the choroid plexus epithelium, the most efficient and actively secreting epithelium in the human body, and provide experimental and clinical evidence for the role of increased CSF production in hydrocephalus. Although the choroid plexus epithelium might have only an indirect influence on the pathogenesis of many types of pediatric hydrocephalus, the ability to modify CSF secretion with drugs newer than acetazolamide or furosemide would be an invaluable component of future therapies to alleviate permanent shunt dependence. Investigation into the human genetics of developmental hydrocephalus and choroid plexus hyperplasia, and the molecular physiology of the ion channels and transporters responsible for CSF secretion, might yield novel targets that could be exploited for pharmacotherapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Yasar Bayri
- Department of Neurosurgery, Marmara University School of Medicine, Istanbul, Turkey; and
| | | | | | | | - J Marc Simard
- Departments of 3 Neurosurgery and.,Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristopher T Kahle
- Departments of 1 Neurosurgery and.,Pediatrics, Cellular, and Molecular Physiology and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Changes in the Luminal Environment of the Colonic Epithelial Cells and Physiopathological Consequences. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:476-486. [PMID: 28082121 DOI: 10.1016/j.ajpath.2016.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
Evidence, mostly from experimental models, has accumulated, indicating that modifications of bacterial metabolite concentrations in the large intestine luminal content, notably after changes in the dietary composition, may have important beneficial or deleterious consequences for the colonic epithelial cell metabolism and physiology in terms of mitochondrial energy metabolism, reactive oxygen species production, gene expression, DNA integrity, proliferation, and viability. Recent data suggest that for some bacterial metabolites, like hydrogen sulfide and butyrate, the extent of their oxidation in colonocytes affects their capacity to modulate gene expression in these cells. Modifications of the luminal bacterial metabolite concentrations may, in addition, affect the colonic pH and osmolarity, which are known to affect colonocyte biology per se. Although the colonic epithelium appears able to face, up to some extent, changes in its luminal environment, notably by developing a metabolic adaptive response, some of these modifications may likely affect the homeostatic process of colonic epithelium renewal and the epithelial barrier function. The contribution of major changes in the colonocyte luminal environment in pathological processes, like mucosal inflammation, preneoplasia, and neoplasia, although suggested by several studies, remains to be precisely evaluated, particularly in a long-term perspective.
Collapse
|
13
|
Bu P, Wang L, Chen KY, Srinivasan T, Murthy PKL, Tung KL, Varanko AK, Chen HJ, Ai Y, King S, Lipkin SM, Shen X. A miR-34a-Numb Feedforward Loop Triggered by Inflammation Regulates Asymmetric Stem Cell Division in Intestine and Colon Cancer. Cell Stem Cell 2016; 18:189-202. [PMID: 26849305 DOI: 10.1016/j.stem.2016.01.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 11/24/2015] [Accepted: 01/13/2016] [Indexed: 12/31/2022]
Abstract
Emerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.
Collapse
Affiliation(s)
- Pengcheng Bu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Lihua Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kai-Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tara Srinivasan
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Kuei-Ling Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Yiwei Ai
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sarah King
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Steven M Lipkin
- Departments of Medicine, Genetic Medicine, and Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Xiling Shen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
14
|
Lin TJ, Yang SS, Hua KF, Tsai YL, Lin SH, Ka SM. SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-κB/MAPKs signaling pathway. Free Radic Biol Med 2016; 99:214-224. [PMID: 27519267 DOI: 10.1016/j.freeradbiomed.2016.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 01/13/2023]
Abstract
Sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) can stimulate production of proinflammatory cytokines and interact with inflammation-related molecules. However, it has yet to be determined whether SPAK plays a pathophysiological role in the complicated pathological mechanisms of IgA nephropathy (IgAN), which is mainly characterized by mesangial cell (MC) proliferation and is the most common form of glomerulonephritis. In the present study, we examined the pathophysiological role of SPAK in IgAN using a mouse model and cell models. Our results clearly showed that (1) SPAK deficiency prevents the development of IgAN and inhibits production of immune/inflammatory mediators and T cell activation and proliferation; and (2) when primed with IgA immune complexes (IgA IC), both peritoneal macrophages and primary MCs from SPAK knockout mice show markedly reduced production of proinflammatory cytokines and inhibition of NF-κB/MAPKs activation. We proposed that activation of SPAK and the NF-κB/MAPKs signaling pathway in MCs, macrophages and T cells of the glomerulus may be a mechanism underlying the pathogenesis of IgAN. The activation of SPAK in renal tubuloepithelial cells either directly by IgA IC or an indirect action of the activated MCs or infiltrating mononuclear leukocytes seen in the kidney may further aggravate the disease process of IgAN. Our results suggest that SPAK is a potential therapeutic target for the glomerular disorder.
Collapse
Affiliation(s)
- Tsai-Jung Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sung-Sen Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of BioMedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Yu-Ling Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
15
|
López-Posadas R, Becker C, Günther C, Tenzer S, Amann K, Billmeier U, Atreya R, Fiorino G, Vetrano S, Danese S, Ekici AB, Wirtz S, Thonn V, Watson AJM, Brakebusch C, Bergö M, Neurath MF, Atreya I. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation. J Clin Invest 2016; 126:611-26. [PMID: 26752649 DOI: 10.1172/jci80997] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
Although defects in intestinal barrier function are a key pathogenic factor in patients with inflammatory bowel diseases (IBDs), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we addressed this issue by characterizing the transcriptome of IECs from IBD patients using a genome-wide approach. We observed disease-specific alterations in IECs with markedly impaired Rho-A signaling in active IBD patients. Localization of epithelial Rho-A was shifted to the cytosol in IBDs, and inflammation was associated with suppressed Rho-A activation due to reduced expression of the Rho-A prenylation enzyme geranylgeranyltransferase-I (GGTase-I). Functionally, we found that mice with conditional loss of Rhoa or the gene encoding GGTase-I, Pggt1b, in IECs exhibit spontaneous chronic intestinal inflammation with accumulation of granulocytes and CD4+ T cells. This phenotype was associated with cytoskeleton rearrangement and aberrant cell shedding, ultimately leading to loss of epithelial integrity and subsequent inflammation. These findings uncover deficient prenylation of Rho-A as a key player in the pathogenesis of IBDs. As therapeutic triggering of Rho-A signaling suppressed intestinal inflammation in mice with GGTase-I-deficient IECs, our findings suggest new avenues for treatment of epithelial injury and mucosal inflammation in IBD patients.
Collapse
|
16
|
Fezai M, Elvira B, Warsi J, Ben-Attia M, Hosseinzadeh Z, Lang F. Up-Regulation of Intestinal Phosphate Transporter NaPi-IIb (SLC34A2) by the Kinases SPAK and OSR1. Kidney Blood Press Res 2015; 40:555-64. [PMID: 26506223 DOI: 10.1159/000368531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1), kinases controlled by WNK (with-no-K[Lys] kinase), are powerful regulators of cellular ion transport and blood pressure. Observations in gene-targeted mice disclosed an impact of SPAK/OSR1 on phosphate metabolism. The present study thus tested whether SPAK and/or OSR1 contributes to the regulation of the intestinal Na(+)-coupled phosphate co-transporter NaPi-IIb (SLC34A2). METHODS cRNA encoding NaPi-IIb was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1 or catalytically inactive (D164A)OSR1. The phosphate (1 mM)-induced inward current (I(Pi)) was taken as measure of phosphate transport. RESULTS I(Pi) was observed in NaPi-IIb expressing oocytes but not in water injected oocytes, and was significantly increased by co-expression of SPAK, (T233E)SPAK, OSR1, (T185E)OSR1 or SPAK+OSR1, but not by co-expression of (T233A)SPAK, (D212A)SPAK, (T185A)OSR1, or (D164A)OSR1. SPAK and OSR1 both increased the maximal transport rate of the carrier. CONCLUSIONS SPAK and OSR1 are powerful stimulators of the intestinal Na+-coupled phosphate co-transporter NaPi-IIb.
Collapse
Affiliation(s)
- Myriam Fezai
- Department of Physiology I, University of Tx00FC;bingen, Tx00FC;bingen, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Zhang Y, Viennois E, Xiao B, Baker MT, Yang S, Okoro I, Yan Y. Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1617-28. [PMID: 23499375 DOI: 10.1016/j.ajpath.2013.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 01/08/2023]
Abstract
Inflammatory bowel diseases are characterized by epithelial barrier disruption and alterations in immune regulation. Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but the underlying mechanisms need to be defined. Herein, SPAK knockout (KO) C57BL/6 mice exhibited significant increases in intestinal transepithelial resistance, a marked decrease in paracellular permeability to fluorescence isothiocyanate-dextran, and altered apical side tight junction sodium ion selectivity, compared with wild-type mice. Furthermore, the expression of junction protein, claudin-2, decreased. In contrast, expressions of occludin, E-cadherin, β-catenin, and claudin-5 increased significantly, whereas no obvious change of claudin-1, claudin-4, zonula occludens protein 1, and zonula occludens protein 2 expressions was observed. In murine models of colitis induced by dextran sulfate sodium and trinitrobenzene sulfuric acid, KO mice were more tolerant than wild-type mice, as demonstrated by colonoscopy features, histological characteristics, and myeloperoxidase activities. Consistent with these findings, KO mice showed increased IL-10 levels and decreased proinflammatory cytokine secretion, ameliorated bacterial translocation on treatment with dextran sulfate sodium, and regulation of with no lysine (WNK) kinase activity. Together, these features may reduce epithelial permeability. In conclusion, SPAK deficiency increases intestinal innate immune homeostasis, which is important for control or attenuation of pathological responses in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Gagnon KB, Delpire E. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 2013; 92:1577-617. [PMID: 23073627 DOI: 10.1152/physrev.00009.2012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI subfamily of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant, and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2520, USA
| | | |
Collapse
|
19
|
Yan Y, Laroui H, Ingersoll SA, Ayyadurai S, Charania M, Yang S, Dalmasso G, Obertone TS, Nguyen H, Sitaraman SV, Merlin D. Overexpression of Ste20-related proline/alanine-rich kinase exacerbates experimental colitis in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1496-505. [PMID: 21705622 PMCID: PMC3140558 DOI: 10.4049/jimmunol.1002910] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease, mainly Crohn's disease and ulcerative colitis, are characterized by epithelial barrier disruption and altered immune regulation. Colonic Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but its underlying mechanisms need to be defined. Both SPAK-transfected Caco2-BBE cells and villin-SPAK transgenic (TG) FVB/6 mice exhibited loss of intestinal barrier function. Further studies demonstrated that SPAK significantly increased paracellular intestinal permeability to FITC-dextran. In vivo studies using the mouse models of colitis induced by dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid showed that TG FVB/6 mice were more susceptible to DSS and trinitrobenzene sulfonic acid treatment than wild-type FVB/6 mice, as demonstrated by clinical and histological characteristics and enzymatic activities. Consistent with this notion, we found that SPAK increased intestinal epithelial permeability, which likely facilitated the production of inflammatory cytokines in vitro and in vivo, aggravated bacterial translocation in TG mice under DSS treatment, and consequently established a context favorable for the triggering of intestinal inflammation cascades. In conclusion, overexpression of SPAK inhibits maintenance of intestinal mucosal innate immune homeostasis, which makes regulation of SPAK important to attenuate pathological responses in inflammatory bowel disease.
Collapse
Affiliation(s)
- Yutao Yan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cardone J, Al-Shouli S, Kemper C. A novel role for CD46 in wound repair. Front Immunol 2011; 2:28. [PMID: 22566818 PMCID: PMC3342392 DOI: 10.3389/fimmu.2011.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/22/2011] [Indexed: 11/13/2022] Open
Abstract
The intestinal epithelium not only provides a vital physical barrier between the host and environment but is also required for uptake of nutrients and the induction of tolerance against commensals. Deregulation of any of these functions leads to several disease states including chronic infection, inflammatory bowel disease, and cancer. Here, we describe a novel role for the complement regulator CD46 in the regulation of intestinal epithelial cell (IEC) barrier function. We found that CD46 directly interacts in IECs with the cytoplasmic kinase SPAK and with transmembrane E-cadherin, both proteins necessary for epithelial cell junction and barrier formation. Further, CD46 activation on Caco-2 cells induced rapid and significant decrease in transepithelial resistance with concomitant increase in paracellular permeability. Importantly, though CD46 activation of IEC layers allowed for increased transgression of pathogenic E. coli, it also increased epithelial cell proliferation and accelerated wound repair. These data suggest a previously unappreciated role for CD46 in the maintenance of epithelial cell barrier integrity as well as barrier repair. However, this role for CD46 as “gate keeper” of the epithelium could also provide reason as to why so many pathogens bind to CD46 as such event would facilitate infection.
Collapse
Affiliation(s)
- John Cardone
- MRC Centre for Transplantation, King's College London, Guy's Hospital London, UK
| | | | | |
Collapse
|
21
|
Cybulsky AV, Takano T, Papillon J, Guillemette J, Herzenberg AM, Kennedy CRJ. Podocyte injury and albuminuria in mice with podocyte-specific overexpression of the Ste20-like kinase, SLK. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2290-9. [PMID: 20889563 DOI: 10.2353/ajpath.2010.100263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SLK expression and activity are increased during kidney development and recovery from renal ischemia-reperfusion injury. In cultured cells, SLK promotes F-actin destabilization as well as apoptosis, partially via the p38 kinase pathway. To better understand the effects of SLK in vivo, a transgenic mouse model was developed where SLK was expressed in a podocyte-specific manner using the mouse nephrin promoter. Offspring of four founder mice carried the SLK transgene. Among male transgenic mice, 66% developed albuminuria at approximately 3 months of age, and the albuminuric mice originated from three of four founders. Overall, the male transgenic mice demonstrated about fivefold greater urinary albumin/creatinine compared with male non-transgenic mice. Transgenic and non-transgenic female mice did not develop albuminuria, suggesting that females were less susceptible to glomerular filtration barrier damage than their male counterparts. In transgenic mice, electron microscopy revealed striking podocyte injury, including poorly formed or effaced foot processes, and edematous and vacuolated cell bodies. By immunoblotting, nephrin expression was decreased in glomeruli of the albuminuric transgenic mice. Activation-specific phosphorylation of p38 was increased in transgenic mice compared with non-transgenic animals. Glomeruli of SLK transgenic mice showed around 30% fewer podocytes, and a reduction in F-actin compared with control glomeruli. Thus, podocyte SLK overexpression in vivo results in injury and podocyte loss, consistent with the effects of SLK in cultured cells.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, McGill University, Division of Nephrology, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | | | | | |
Collapse
|
22
|
Kolachala VL, Wang L, Obertone TS, Prasad M, Yan Y, Dalmasso G, Gewirtz AT, Merlin D, Sitaraman SV. Adenosine 2B receptor expression is post-transcriptionally regulated by microRNA. J Biol Chem 2010; 285:18184-90. [PMID: 20388705 DOI: 10.1074/jbc.m109.066555] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have reported that epithelial adenosine 2B receptor (A(2B)AR) mRNA and protein are up-regulated in colitis, which we demonstrated to be regulated by tumor necrosis factor alpha (TNF-alpha). Here, we examined the mechanism that governs A(2B)AR expression during colitis. A 1.4-kb sequence of the A(2B)AR promoter was cloned into the pFRL7 luciferase vector. Anti-microRNA (miRNA) was custom-synthesized based on specific miRNA binding sites. The binding of miRNA to the 3'-untranslated region (UTR) of A(2B)AR mRNA was examined by cloning this 3'-UTR downstream of the luciferase gene in pMIR-REPORT. In T84 cells, TNF-alpha induced a 35-fold increase in A(2B)AR mRNA but did not increase promoter activity in luciferase assays. By nuclear run-on assay, no increase in A(2B)AR mRNA following TNF-alpha treatment was observed. Four putative miRNA target sites (miR27a, miR27b, miR128a, miR128b) in the 3'-UTR of the A(2B)AR mRNA were identified in T84 cells and mouse colon. Pretreatment of cells with TNF-alpha reduced the levels of miR27b and miR128a by 60%. Over expression of pre-miR27b and pre-miR128a reduced A(2B)AR levels by >60%. Blockade of miR27b increased A(2B)AR mRNA levels by 6-fold in vitro. miR27b levels declined significantly in colitis-affected tissue in mice in the presence of increased A(2B)AR mRNA. Collectively, these data demonstrate that TNF-alpha-induced A(2B)AR expression in colonic epithelial cells is post-transcriptionally regulated by miR27b and miR128a and show that miR27b influences A(2B)AR expression in murine colitis.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|