1
|
Sonoda T, Stephany CÉ, Kelley K, Kang D, Wu R, Uzgare MR, Fagiolini M, Greenberg ME, Chen C. Experience influences the refinement of feature selectivity in the mouse primary visual thalamus. Neuron 2025; 113:1352-1362.e4. [PMID: 40112812 DOI: 10.1016/j.neuron.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/15/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Neurons exhibit selectivity for specific features: a property essential for extracting and encoding relevant information in the environment. This feature selectivity is thought to be modifiable by experience at the level of the cortex. Here, we demonstrate that selective exposure to a feature during development can alter the population representation of that feature in the primary visual thalamus. This thalamic plasticity is not due to changes in corticothalamic inputs and is blocked in mutant mice that exhibit deficits in retinogeniculate refinement, suggesting that plasticity is a direct result of changes in feedforward connectivity. Notably, experience-dependent changes in thalamic feature selectivity also occur in adult animals, although these changes are transient, unlike in juvenile animals, where they are long lasting. These results reveal an unexpected degree of plasticity in the visual thalamus and show that salient environmental features can be encoded in thalamic circuits during a discrete developmental window.
Collapse
Affiliation(s)
- Takuma Sonoda
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Céleste-Élise Stephany
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kaleb Kelley
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Di Kang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rui Wu
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna R Uzgare
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michela Fagiolini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Ferrer C, De Marco García NV. The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices. Front Neural Circuits 2022; 16:866999. [PMID: 35463203 PMCID: PMC9021723 DOI: 10.3389/fncir.2022.866999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory information is transduced into electrical signals in the periphery by specialized sensory organs, which relay this information to the thalamus and subsequently to cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected pyramidal cells and inhibitory interneurons, distributed throughout the cortical column, form the basic processing units of sensory information underlying sensation. In the mouse, these circuits mature shortly after birth. In the first postnatal week cortical activity is characterized by highly synchronized spontaneous activity. While by the second postnatal week, spontaneous activity desynchronizes and sensory influx increases drastically upon eye opening, as well as with the onset of hearing and active whisking. This influx of sensory stimuli is fundamental for the maturation of functional properties and connectivity in neurons allocated to sensory cortices. In the subsequent developmental period, spanning the first five postnatal weeks, sensory circuits are malleable in response to sensory stimulation in the so-called critical periods. During these critical periods, which vary in timing and duration across sensory areas, perturbations in sensory experience can alter cortical connectivity, leading to long-lasting modifications in sensory processing. The recent advent of intersectional genetics, in vivo calcium imaging and single cell transcriptomics has aided the identification of circuit components in emergent networks. Multiple studies in recent years have sought a better understanding of how genetically-defined neuronal subtypes regulate circuit plasticity and maturation during development. In this review, we discuss the current literature focused on postnatal development and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1) cortices. We compare the developmental trajectory among the three sensory areas with a particular emphasis on interneuron function and the role of inhibitory circuits in cortical development and function.
Collapse
|
3
|
Hunter I, Coulson B, Zarin AA, Baines RA. The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function. Front Neural Circuits 2021; 15:684969. [PMID: 34276315 PMCID: PMC8282269 DOI: 10.3389/fncir.2021.684969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to answer important questions in neuroscience, such as: "how do neural circuits generate behaviour?," because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a "generic" model circuit, to provide insight into mammalian circuit development and function.
Collapse
Affiliation(s)
- Iain Hunter
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, The Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Tanaka S, Miyashita M, Wakabayashi N, O'Hashi K, Tani T, Ribot J. Development and Reorganization of Orientation Representation in the Cat Visual Cortex: Experience-Dependent Synaptic Rewiring in Early Life. Front Neuroinform 2020; 14:41. [PMID: 32973480 PMCID: PMC7468406 DOI: 10.3389/fninf.2020.00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
To date, numerous mathematical models have been proposed on the basis of some types of Hebbian synaptic learning to account for the activity-dependent development of orientation maps as well as neuronal orientation selectivity. These models successfully reproduced orientation map-like spatial patterns. Nevertheless, we still have questions: (1) How does synaptic rewiring occur in the visual cortex during the formation of orderly orientation maps in early life? (2) How does visual experience contribute to the maturation of orientation selectivity of visual cortical neurons and reorganize orientation maps? (3) How does the sensitive period for orientation plasticity end? In this study, we performed animal experiments and mathematical modeling to understand the mechanisms underlying synaptic rewiring for experience-dependent formation and reorganization of orientation maps. At first, we visualized orientation maps from the intrinsic signal optical imaging in area 17 of kittens reared under single-orientation exposure through cylindrical-lens-fitted goggles. The experiments revealed that the degree of expansion of cortical domains representing the experienced orientation depends on the age at which the single-orientation exposure starts. As a result, we obtained the sensitive period profile for orientation plasticity. Next, we refined our previously proposed mathematical model for the activity-dependent self-organization of thalamo-cortical inputs on the assumption that rewiring is caused by the competitive interactions among transient synaptic contacts on the same dendritic spine. Although various kinds of molecules have been reported to be involved in such interactions, we attempt to build a mathematical model to describe synaptic rewiring focusing on brain-derived neurotrophic factor (BDNF) and its related molecules. Performing computer simulations based on the refined model, we successfully reproduced orientation maps reorganized in kittens reared under single-orientation exposure as well as normal visual experience. We also reproduced the experimentally obtained sensitive period profile for orientation plasticity. The excellent agreement between experimental observations and theoretical reproductions suggests that the BDNF-induced competitive interaction among synaptic contacts from different axons on the same spine is an important factor for the experience-dependent formation and reorganization of orientation selectivity and orientation maps.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Chofu, Japan
| | - Masanobu Miyashita
- Department of Control and Computer Engineering, National Institute of Technology, Numazu College, Numazu, Japan
| | - Nodoka Wakabayashi
- Power Plant Engineering, Engineering & Maintenance Center, All Nippon Airways Co., Ltd., Tokyo, Japan
| | - Kazunori O'Hashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Toshiki Tani
- Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Center for Brain Science, Wako, Japan
| | - Jérôme Ribot
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
| |
Collapse
|
5
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
6
|
Sysoeva OV, Davletshina MA, Orekhova EV, Galuta IA, Stroganova TA. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD). Front Neurosci 2016; 9:512. [PMID: 26834540 PMCID: PMC4720792 DOI: 10.3389/fnins.2015.00512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the "oblique effect." Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7-15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity.
Collapse
Affiliation(s)
- Olga V. Sysoeva
- Autism Research Laboratory, Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and EducationMoscow, Russia
| | | | | | | | | |
Collapse
|
7
|
Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. J Neurosci 2013; 33:15747-66. [PMID: 24089483 DOI: 10.1523/jneurosci.1037-13.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of orientation maps in ferret and cat primary visual cortex (V1) has been shown to be stable, in that the earliest measurable maps are similar in form to the eventual adult map, robust, in that similar maps develop in both dark rearing and in a variety of normal visual environments, and yet adaptive, in that the final map pattern reflects the statistics of the specific visual environment. How can these three properties be reconciled? Using mechanistic models of the development of neural connectivity in V1, we show for the first time that realistic stable, robust, and adaptive map development can be achieved by including two low-level mechanisms originally motivated from single-neuron results. Specifically, contrast-gain control in the retinal ganglion cells and the lateral geniculate nucleus reduces variation in the presynaptic drive due to differences in input patterns, while homeostatic plasticity of V1 neuron excitability reduces the postsynaptic variability in firing rates. Together these two mechanisms, thought to be applicable across sensory systems in general, lead to biological maps that develop stably and robustly, yet adapt to the visual environment. The modeling results suggest that topographic map stability is a natural outcome of low-level processes of adaptation and normalization. The resulting model is more realistic, simpler, and far more robust, and is thus a good starting point for future studies of cortical map development.
Collapse
|
8
|
Abstract
It remains controversial whether and how spatial frequency (SF) is represented tangentially in cat visual cortex. Several models were proposed, but there is no consensus. Worse still, some data indicate that the SF organization previously revealed by optical imaging techniques simply reflects non-stimulus-specific responses. Instead, stimulus-specific responses arise from the homogeneous distribution of geniculo-cortical afferents representing X and Y pathways. To clarify this, we developed a new imaging method allowing rapid stimulation with a wide range of SFs covering more than 6 octaves with only 0.2 octave resolution. A benefit of this method is to avoid error of high-pass filtering methods which systematically under-represent dominant selectivity features near pinwheel centers. We show unequivocally that SF is organized into maps in cat area 17 (A17) and area 18 (A18). The SF organization in each area displays a global anteroposterior SF gradient and local patches. Its layout is constrained to that of the orientation map, and it is suggested that both maps share a common functional architecture. A17 and A18 are bound at the transition zone by another SF gradient involving the geniculo-cortical and the callosal pathways. A model based on principal component analysis shows that SF maps integrate three different SF-dependent channels. Two of these reflect the segregated excitatory input from X and Y geniculate cells to A17 and A18. The third one conveys a specific combination of excitatory and suppressive inputs to the visual cortex. In a manner coherent with anatomical and electrophysiological data, it is interpreted as originating from a subtype of Y geniculate cells.
Collapse
|
9
|
Hunt JJ, Dayan P, Goodhill GJ. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input. PLoS Comput Biol 2013; 9:e1003005. [PMID: 23675290 PMCID: PMC3649976 DOI: 10.1371/journal.pcbi.1003005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 02/10/2013] [Indexed: 11/24/2022] Open
Abstract
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. The responses of neurons in the primary visual cortex (V1), a region of the brain involved in encoding visual input, are modified by the visual experience of the animal during development. For example, most neurons in animals reared viewing stripes of a particular orientation only respond to the orientation that the animal experienced. The responses of V1 cells in normal animals are similar to responses that simple optimisation algorithms can learn when trained on images. However, whether the similarity between these algorithms and V1 responses is merely coincidental has been unclear. Here, we used the results of a number of experiments where animals were reared with modified visual experience to test the explanatory power of three related optimisation algorithms. We did this by filtering the images for the algorithms in ways that mimicked the visual experience of the animals. This allowed us to show that the changes in V1 responses in experiment were consistent with the algorithms. This is evidence that the precepts of the algorithms, notably sparsity, can be used to understand the development of V1 responses. Further, we used our model to propose a novel rearing condition which we expect to have a dramatic effect on development.
Collapse
Affiliation(s)
- Jonathan J. Hunt
- Queensland Brain Institute, University of Queensland, St Lucia, Australia
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Geoffrey J. Goodhill
- Queensland Brain Institute, University of Queensland, St Lucia, Australia
- School of Mathematics and Physics, University of Queensland, St Lucia, Australia
- * E-mail:
| |
Collapse
|
10
|
Bachatene L, Bharmauria V, Cattan S, Molotchnikoff S. Fluoxetine and serotonin facilitate attractive-adaptation-induced orientation plasticity in adult cat visual cortex. Eur J Neurosci 2013; 38:2065-77. [DOI: 10.1111/ejn.12206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Lyes Bachatene
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | - Vishal Bharmauria
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | - Sarah Cattan
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | | |
Collapse
|
11
|
Experience-dependent switch in sign and mechanisms for plasticity in layer 4 of primary visual cortex. J Neurosci 2012; 32:10562-73. [PMID: 22855806 DOI: 10.1523/jneurosci.0622-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits are extensively refined by sensory experience during postnatal development. How the maturation of recurrent cortical synapses may contribute to events regulating the postnatal refinement of neocortical microcircuits remains controversial. Here we show that, in the main input layer of rat primary visual cortex, layer 4 (L4), recurrent excitatory synapses are endowed with multiple, developmentally regulated mechanisms for induction and expression of excitatory synaptic plasticity. Maturation of L4 synapses and visual experience lead to a sharp switch in sign and mechanisms for plasticity at recurrent excitatory synapses in L4 at the onset of the critical period for visual cortical plasticity. The state of maturation of excitatory pyramidal neurons allows neurons to engage different mechanisms for plasticity in response to the same induction paradigm. Experience is determinant for the maturation of L4 synapses, as well as for the transition between forms of plasticity and the mechanisms they may engage. These results indicate a tight correlation between the effects of sensory drive and maturation on cortical neurons and provide a new set of cellular mechanisms engaged in the postnatal refinement of cortical circuits.
Collapse
|
12
|
Yoshida T, Ozawa K, Tanaka S. Sensitivity profile for orientation selectivity in the visual cortex of goggle-reared mice. PLoS One 2012; 7:e40630. [PMID: 22792390 PMCID: PMC3391291 DOI: 10.1371/journal.pone.0040630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/11/2012] [Indexed: 11/25/2022] Open
Abstract
It has been widely accepted that ocular dominance in the responses of visual cortical neurons can change depending on visual experience in a postnatal period. However, experience-dependent plasticity for orientation selectivity, which is another important response property of visual cortical neurons, is not yet fully understood. To address this issue, using intrinsic signal imaging and two-photon calcium imaging we attempted to observe the alteration of orientation selectivity in the visual cortex of juvenile and adult mice reared with head-mounted goggles, through which animals can experience only the vertical orientation. After one week of goggle rearing, the density of neurons optimally responding to the exposed orientation increased, while that responding to unexposed orientations decreased. These changes can be interpreted as a reallocation of preferred orientations among visually responsive neurons. Our obtained sensitivity profile for orientation selectivity showed a marked peak at 5 weeks and sustained elevation at 12 weeks and later. These features indicate the existence of a critical period between 4 and 7 weeks and residual orientation plasticity in adult mice. The presence of a dip in the sensitivity profile at 10 weeks suggests that different mechanisms are involved in orientation plasticity in childhood and adulthood.
Collapse
Affiliation(s)
| | | | - Shigeru Tanaka
- Laboratory for Visual Neurocomputing, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
13
|
Tani T, Ribot J, O'Hashi K, Tanaka S. Parallel development of orientation maps and spatial frequency selectivity in cat visual cortex. Eur J Neurosci 2012; 35:44-55. [PMID: 22211742 DOI: 10.1111/j.1460-9568.2011.07954.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an early stage of the postnatal development of cats, orientation maps mature and spatial frequency selectivity is consolidated. To investigate the time course of orientation map maturation associated with the consolidation of spatial frequency selectivity, we performed optical imaging of intrinsic signals in areas 17 and 18 of cats under the stimulation of drifting square-wave gratings with different orientations and spatial frequencies. First, orientation maps for lower spatial frequencies emerged in the entire part of the lateral gyrus, which includes areas 17 and 18, and then these orientation maps in the posterior part of the lateral gyrus disappeared as orientation maps for higher spatial frequencies matured. Independent of age, an anteroposterior gradient of response strengths from lower to higher spatial frequencies was observed. This indicates that the regional distribution of spatial frequencies is innately determined. The size of iso-orientation domains tended to decrease as the stimulus spatial frequency increased at every age examined. In contrast, orientation representation bias changed with age. In cats younger than 3 months, the cardinal (vertical and horizontal) orientations were represented predominantly over the oblique orientations. However, in young adult cats from 3 to 9 months old, the representation bias switched to predominantly oblique orientations. These age-dependent changes in the orientation representation bias imply that orientation maps continue to elaborate within postnatal 1 year with the consolidation of spatial frequency selectivity. We conclude that both intrinsic and mutual factors lead to the development of orientation maps and spatial frequency selectivity.
Collapse
Affiliation(s)
- Toshiki Tani
- Laboratory for Visual Neurocomputing, Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| | | | | | | |
Collapse
|
14
|
Effects of l-dopa methyl ester on visual cortex injury induced by amblyopia and its underlying mechanism. Neurosci Lett 2012; 508:95-100. [DOI: 10.1016/j.neulet.2011.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 11/20/2022]
|
15
|
Vadakkan KI. Processing Semblances Induced through Inter-Postsynaptic Functional LINKs, Presumed Biological Parallels of K-Lines Proposed for Building Artificial Intelligence. FRONTIERS IN NEUROENGINEERING 2011; 4:8. [PMID: 21845180 PMCID: PMC3145916 DOI: 10.3389/fneng.2011.00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 07/10/2011] [Indexed: 11/29/2022]
Abstract
The internal sensation of memory, which is available only to the owner of an individual nervous system, is difficult to analyze for its basic elements of operation. We hypothesize that associative learning induces the formation of functional LINK between the postsynapses. During memory retrieval, the activation of either postsynapse re-activates the functional LINK evoking a semblance of sensory activity arriving at its opposite postsynapse, nature of which defines the basic unit of internal sensation - namely, the semblion. In neuronal networks that undergo continuous oscillatory activity at certain levels of their organization re-activation of functional LINKs is expected to induce semblions, enabling the system to continuously learn, self-organize, and demonstrate instantiation, features that can be utilized for developing artificial intelligence (AI). This paper also explains suitability of the inter-postsynaptic functional LINKs to meet the expectations of Minsky's K-lines, basic elements of a memory theory generated to develop AI and methods to replicate semblances outside the nervous system.
Collapse
Affiliation(s)
- Kunjumon I. Vadakkan
- Division of Neurology, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
16
|
Beston BR, Jones DG, Murphy KM. Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2010; 2:138. [PMID: 21423524 PMCID: PMC3059668 DOI: 10.3389/fnsyn.2010.00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/06/2010] [Indexed: 02/01/2023] Open
Abstract
Experience-dependent development of visual cortex depends on the balance between excitatory and inhibitory activity. This activity is regulated by key excitatory (NMDA, AMPA) and inhibitory (GABAA) receptors. The composition of these receptors changes developmentally, affecting the excitatory–inhibitory (E/I) balance and synaptic plasticity. Until now, it has been unclear how abnormal visual experience affects this balance. To examine this question, we measured developmental changes in excitatory and inhibitory receptor subunits in visual cortex following normal visual experience and monocular deprivation. We used Western blot analysis to quantify expression of excitatory (NR1, NR2A, NR2B, GluR2) and inhibitory (GABAAα1, GABAAα3) receptor subunits. Monocular deprivation promoted a complex pattern of changes in receptor subunit expression that varied with age and was most severe in the region of visual cortex representing the central visual field. To characterize the multidimensional pattern of experience-dependent change in these synaptic mechanisms, we applied a neuroinformatics approach using principal component analysis. We found that monocular deprivation (i) causes a large portion of the normal developmental trajectory to be bypassed, (ii) shifts the E/I balance in favor of more inhibition, and (iii) accelerates the maturation of receptor subunits. Taken together, these results show that monocularly deprived animals have an abnormal balance of the synaptic machinery needed for functional maturation of cortical circuits and for developmental plasticity. This raises the possibility that interventions intended to treat amblyopia may need to address multiple synaptic mechanisms to produce optimal recovery.
Collapse
Affiliation(s)
- Brett R Beston
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
17
|
Tsytsarev V, Pope D, Pumbo E, Yablonskii A, Hofmann M. Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging. Neuroimage 2010; 53:233-8. [PMID: 20558304 DOI: 10.1016/j.neuroimage.2010.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/04/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022] Open
Abstract
Using voltage-sensitive dye optical imaging methods, we visualized neural activity in the rat barrel cortex in response to the deflection of a single whisker in different directions. Obtained data indicates that fast movements of single whiskers in varying directions correlate with different patterns of activation in the somatosensory cortex. A functional map was created based on the voltage-sensitive dye optical signal. This supports prior research that vibrissae deflections cause responses in different cortical neurons within the barrel field according to the direction of the deflection. By analogy with the orientation columns in the visual cortex, directionally biased single-whisker responses to different directions of deflection could be a possible mechanism for the directional selectivity of this important sensory response.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Biomedical Engineering, Washington University in St. Louis, Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|