1
|
Patrícia Gonçalves Tenório L, Xavier FHDC, Silveira Wagner M, Moreira Bagri K, Alves Ferreira EG, Galvani R, Mermelstein C, Bonomo AC, Savino W, Barreto E. Uvaol attenuates TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells by modulating expression and membrane localization of β-catenin. Front Pharmacol 2025; 15:1504556. [PMID: 39840107 PMCID: PMC11747490 DOI: 10.3389/fphar.2024.1504556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies. Natural products from the pentacyclic triterpene class have emerged as promising elements in inhibiting EMT. Uvaol is a pentacyclic triterpene found in olive trees (Olea europaea L.) known for its anti-inflammatory, antioxidant, and antiproliferative properties. Yet, its effect on the TGF-β1-induced EMT in alveolar epithelial cells is unknown. The present study aimed to investigate the impact of uvaol upon TGF-β1-induced EMT in a cultured A549 human alveolar epithelial cell line, a classic in vitro model for studies of EMT. Changes in cell shape were measured using phase-contrast and confocal microscopy, whereas protein expression levels were measured using immunofluorescence, flow cytometry, and Western blotting. We also performed wound scratch experiments to explore its effects on cell migration. Uvaol had no significant cytotoxic effects on A549 cells. By contrast, the changes in the cell morphology consistent with TGF-β1-induced EMT were largely suppressed by treatment with uvaol. In addition, increased contents of mesenchymal markers, namely, vimentin, N-cadherin, and fibronectin in TGF-β1-induced A549 cells, were downregulated by uvaol treatment. Furthermore, the TGF-β1-induced migration of A549 cells was significantly suppressed by uvaol. Mechanistically, uvaol prevented the nuclear translocation of β-catenin and reduced the TGF-β1-induced levels of ZEB1 in A549 cells. These results provide compelling evidence that uvaol inhibits EMT by regulating proteins related to the mesenchymal profile in human alveolar epithelial cells, likely by modulating β-catenin and ZEB1 levels.
Collapse
Affiliation(s)
- Liliane Patrícia Gonçalves Tenório
- Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe Henrique da Cunha Xavier
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mônica Silveira Wagner
- Cell Structure and Dynamics Laboratory, National Cancer Institute, Rio de Janeiro, Brazil
| | - Kayo Moreira Bagri
- Muscle Differentiation Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Romulo Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Muscle Differentiation Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Cesar Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Emiliano Barreto
- Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Singh J, Hussain Y, Meena A, Sinha RA, Luqman S. Asiatic acid impedes NSCLC progression by inhibiting COX-2 and modulating PI3K signaling. FEBS Lett 2024; 598:3036-3052. [PMID: 39394402 DOI: 10.1002/1873-3468.15027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 10/13/2024]
Abstract
Non-small cell lung cancer comprises up to 85% of lung cancer cases and has a poor prognosis. At present, there are still no effective treatments for this illness. Evidence suggests that the prostaglandin [cyclooxygenase-2 (COX-2)] and leukotriene [lipoxygenase-5 (5-LOX)] pathways are involved in lung cancer carcinogenesis. Therefore, novel agents that target COX-2 and 5-LOX may have therapeutic potential. In the present study, we examined the role of asiatic acid (AA), a triterpenoid saponin, in targeting the protein kinases responsible for lung cancer proliferation and mobility. The experimental data revealed that AA inhibited the growth of lung cancer cells (> 50%) and it significantly impeded the proliferation of lung cancer cells by inhibiting COX-2, which results in downregulation of the phosphotidyl inositol-3 kinase/protein kinase B/mammalian target of rapamycin signaling pathway, leading to an induction of cytotoxic autophagy-mediated apoptosis. Mechanistically, the expression of mitogen-activated protein kinase/extracellular signal-regulated kinase, hypoxia-inducible factor-1 and vascular endothelial growth factor is downregulated by AA, thereby reducing cell mobility and invasion. It also shows negative osmotic fragility on healthy human erythrocytes. It is concluded that AA may be a viable therapeutic drug for non-small cell lung cancer treatment, which opens new opportunities for synthesizing analogues.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Haraguchi A, Nagasawa J, Kuramochi K, Tsuchida S, Kobayashi A, Hatabu T, Sasai K, Ikadai H, Ushida K, Matsubayashi M. Anticoccidial activity of the secondary metabolites in alpine plants frequently ingested by wild Japanese rock ptarmigans. Int J Parasitol Parasites Wildl 2024; 25:100967. [PMID: 39220322 PMCID: PMC11362645 DOI: 10.1016/j.ijppaw.2024.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024]
Abstract
The Japanese rock ptarmigan (Lagopus muta japonica) is an herbivorous species of partridges that inhabits only alpine zones. Alpine plants are their main source of food. These alpine plants contain toxic compounds to deter herbivores from consuming them. A previous analysis of the alpine plants frequently consumed by Japanese rock ptarmigans revealed the presence of a unique mixture of secondary metabolites and a novel compound. Additionally, wild Japanese rock ptarmigans are often infected by two species of Eimeria parasites. When these parasites were experimentally administered to Svalbard rock ptarmigans (Lagopus muta hyperborean), which do not feed on alpine plants, the birds exhibited symptoms, such as diarrhea and depression, and in some cases, they died. Although little is known about the pathogenesis of these parasites in wild Japanese rock ptarmigans, it was hypothesized that compounds found in alpine plants, their main food source, may reduce the pathogenicity of Eimeria parasites. In the present study, we evaluated the anticoccidial activity of the compounds derived from alpine plants in vitro using Eimeria tenella, which infects chickens belonging to the same pheasant family, as an experimental model. Twenty-seven natural components were extracted from eight alpine plants. The natural components were added to E. tenella sporozoites and incubated for 24 h to evaluate their direct effect. Additionally, Madin-Darby bovine kidney cells were incubated with sporozoites and natural components for 24 h to evaluate the inhibitory effect of the components on sporozoite cell invasion. Six compounds from four alpine plants decreased sporozoite viability by up to 88.3%, and two compounds inhibited sporozoite invasion into the cells. Although further studies are needed to evaluate the effects of these components against Eimeria infections in vivo, our findings suggest that these alpine plants may reduce the degree of infection by decreasing the number of sporozoites in the intestinal tract.
Collapse
Affiliation(s)
- Asako Haraguchi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Jyunki Nagasawa
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Sayaka Tsuchida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Atsushi Kobayashi
- Shin-etsu Nature Conservation Office, Ministry of the Environment, Ministry of Environment, Nagano, 380-0846, Japan
| | - Toshimitsu Hatabu
- Laboratory of Animal Physiology, Department of Animal Science, Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kazumi Sasai
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kazunari Ushida
- College of Bioscience and Biotechnology, Chubu University, Aichi, 487-8501, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Immunology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
4
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Vilkickyte G, Petrikaite V, Marksa M, Ivanauskas L, Jakstas V, Raudone L. Fractionation and Characterization of Triterpenoids from Vaccinium vitis-idaea L. Cuticular Waxes and Their Potential as Anticancer Agents. Antioxidants (Basel) 2023; 12:antiox12020465. [PMID: 36830023 PMCID: PMC9952570 DOI: 10.3390/antiox12020465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Fruit and leaf cuticular waxes are valuable source materials for the isolation of triterpenoids that can be applied as natural antioxidants and anticancer agents. The present study aimed at the semi-preparative fractionation of triterpenoids from cuticular wax extracts of Vaccinium vitis-idaea L. (lingonberry) leaves and fruits and the evaluation of their cytotoxic potential. Qualitative and quantitative characterization of obtained extracts and triterpenoid fractions was performed using HPLC-PDA method, followed by complementary analysis by GC-MS. For each fraction, cytotoxic activities towards the human colon adenocarcinoma cell line (HT-29), malignant melanoma cell line (IGR39), clear renal carcinoma cell line (CaKi-1), and normal endothelial cells (EC) were determined using MTT assay. Furthermore, the effect of the most promising samples on cancer spheroid growth and viability was examined. This study allowed us to confirm that particular triterpenoid mixtures from lingonberry waxes may possess stronger cytotoxic activities than crude unpurified extracts. Fractions containing triterpenoid acids plus fernenol, complexes of oleanolic:ursolic acids, and erythrodiol:uvaol were found to be the most potent therapeutic candidates in the management of cancer diseases. The specificity of cuticular wax extracts of lingonberry leaves and fruits, leading to different purity and anticancer potential of obtained counterpart fractions, was also enclosed. These findings contribute to the profitable utilization of lingonberry cuticular waxes and provide considerable insights into the anticancer effects of particular triterpenoids and pharmacological interactions.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Correspondence: (G.V.); (L.R.)
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakstas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Correspondence: (G.V.); (L.R.)
| |
Collapse
|
6
|
Fofana S, Delporte C, Calvo Esposito R, Ouédraogo M, Van Antwerpen P, Guissou IP, Semdé R, Mathieu V. In Vitro Antioxidant and Anticancer Properties of Various E. senegalensis Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082583. [PMID: 35458781 PMCID: PMC9025838 DOI: 10.3390/molecules27082583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
Although Erythrina senegalensis is a plant widely used in traditional medicine in sub-Saharan Africa, its biological properties have been poorly investigated to date. We first characterized by conventional reactions the composition of several stem bark extracts and evaluated in acellular and cellular assays their pro- or antioxidant properties supported by their high phenolic and flavonoid content, particularly with the methanolic extract. The pro- or antioxidant effects observed did not correlate with their IC50 concentrations against five cancer cell lines determined by MTT assay. Indeed, the CH2Cl2 extract and its ethyl acetate (EtOAc) subfraction appeared more potent although they harbored lower pro- or antioxidant effects. Nevertheless, at equipotent concentration, both extracts induced ER- and mitochondria-derived vacuoles observed by fluorescent microscopy that further led to non-apoptotic cell death. LC coupled to high resolution MS investigations have been performed to identify chemical compounds of the extracts. These investigations highlighted the presence of compounds formerly isolated from E. senegalensis including senegalensein that could be retrieved only in the EtOAc subfraction but also thirteen other compounds, such as 16:3-Glc-stigmasterol and hexadecanoic acid, whose anticancer properties have been previously reported. Nineteen other compounds remain to be identified. In conclusion, E. senegalensis appeared rich in compounds with antioxidant and anticancer properties, supporting its use in traditional practice and its status as a species of interest for further investigations in anticancer drug research.
Collapse
Affiliation(s)
- Souleymane Fofana
- Laboratory of Drug Sciences, Higher Institute of Health Sciences (INSSA), Nazi BONI University, Bobo-Dioulasso 01 P.O. Box 1091, Burkina Faso;
| | - Cédric Delporte
- RD3—Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Rafaèle Calvo Esposito
- Protein Chemistry Unit, Department of General Chemistry I, Faculty of Medicine, Université Libre de Bruxelles, Campus Erasme (CP 609), Route de Lennik, 1070 Brussels, Belgium;
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Moussa Ouédraogo
- Laboratory of Drug Development (LADME), Center of Training, Research and Expertises of Pharmaceutical Sciences (CEA-CFOREM), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou 03 P.O. Box 7021, Burkina Faso; (M.O.); (R.S.)
| | - Pierre Van Antwerpen
- RD3—Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Innocent Pierre Guissou
- Faculty of Health Sciences, Saint Thomas d’Aquin University, Ouagadougou 06 P.O. Box 10212, Burkina Faso;
| | - Rasmané Semdé
- Laboratory of Drug Development (LADME), Center of Training, Research and Expertises of Pharmaceutical Sciences (CEA-CFOREM), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou 03 P.O. Box 7021, Burkina Faso; (M.O.); (R.S.)
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-478-31-73-88
| |
Collapse
|
7
|
Peñas-Fuentes JL, Siles E, Rufino-Palomares EE, Pérez-Jiménez A, Reyes-Zurita FJ, Lupiáñez JA, Fuentes-Almagro C, Peragón-Sánchez J. Effects of Erythrodiol on the Antioxidant Response and Proteome of HepG2 Cells. Antioxidants (Basel) 2021; 11:antiox11010073. [PMID: 35052578 PMCID: PMC8772852 DOI: 10.3390/antiox11010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Erythrodiol (EO) is a pentacyclic triterpenic alcohol found in olive tree leaves and olive oil, and it has important effects on the health properties and quality of olive oil. In this study, we characterized the cytotoxic effects of EO on human hepatocarcinoma (HepG2) cells by studying changes in cell viability, reactive oxygen species (ROS) production, antioxidant defense systems, and the proteome. The results reveal that EO markedly decreased HepG2 cell viability without changing ROS levels. The concentrations of glutathione and NADPH were significantly reduced, with selective changes in the activity of several antioxidant enzymes: glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase. Proteomic data reveal that EO led to the complete elimination or decreased abundance of 41 and 3 proteins, respectively, and the abundance of 29 proteins increased. The results of functional enrichment analysis show that important metabolic processes and the nuclear transport of mature mRNA were impaired, whereas AMP biosynthesis and cell cycle G2/M phase transition were induced. The transcription factors and miRNAs involved in this response were also identified. These potent antiproliferative effects make EO a good candidate for the further analysis of its hepatic antitumor effects in in vivo studies.
Collapse
Affiliation(s)
- Juan Luis Peñas-Fuentes
- Biochemistry and Molecular Biology Section, Department of Experimental Biology, Campus Las Lagunillas, University of Jaén, 23071 Jaén, Spain; (J.L.P.-F.); (E.S.)
| | - Eva Siles
- Biochemistry and Molecular Biology Section, Department of Experimental Biology, Campus Las Lagunillas, University of Jaén, 23071 Jaén, Spain; (J.L.P.-F.); (E.S.)
| | - Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva 1, 18071 Granada, Spain; (E.E.R.-P.); (F.J.R.-Z.); (J.A.L.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva 1, 18071 Granada, Spain;
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva 1, 18071 Granada, Spain; (E.E.R.-P.); (F.J.R.-Z.); (J.A.L.)
| | - José A. Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva 1, 18071 Granada, Spain; (E.E.R.-P.); (F.J.R.-Z.); (J.A.L.)
| | - Carlos Fuentes-Almagro
- Proteomics Unit, Central Service of Support to Research, University of Córdoba (SCAI), 14014 Córdoba, Spain;
| | - Juan Peragón-Sánchez
- Biochemistry and Molecular Biology Section, Department of Experimental Biology, Campus Las Lagunillas, University of Jaén, 23071 Jaén, Spain; (J.L.P.-F.); (E.S.)
- Correspondence: ; Tel.: +34-953212523; Fax: +34-953211875
| |
Collapse
|
8
|
Fofana S, Ouédraogo M, Esposito RC, Ouedraogo WP, Delporte C, Van Antwerpen P, Mathieu V, Guissou IP. Systematic Review of Potential Anticancerous Activities of Erythrina senegalensis DC (Fabaceae). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010019. [PMID: 35009024 PMCID: PMC8747466 DOI: 10.3390/plants11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
The objective of this study was to carry out a systematic review of the substances isolated from the African medicinal plant Erythrina senegalensis, focusing on compounds harboring activities against cancer models detailed in depth herein at both in vitro and in vivo preclinical levels. The review was conducted through Pubmed and Google Scholar. Nineteen out of the forty-two secondary metabolites isolated to date from E. senegalensis displayed interesting in vitro and/or in vivo antitumor activities. They belonged to alkaloid (Erysodine), triterpenes (Erythrodiol, maniladiol, oleanolic acid), prenylated isoflavonoids (senegalensin, erysenegalensein E, erysenegalensein M, alpinumisoflavone, derrone, warangalone), flavonoids (erythrisenegalone, senegalensein, lupinifolin, carpachromene) and pterocarpans (erybraedine A, erybraedine C, phaseollin). Among the isoflavonoids called "erysenegalensein", only erysenealenseins E and M have been tested for their anticancerous properties and turned out to be cytotoxic. Although the stem bark is the most frequently used part of the plant, all pterocarpans were isolated from roots and all alkaloids from seeds. The mechanisms of action of its metabolites include apoptosis, pyroptosis, autophagy and mitophagy via the modulation of cytoplasmic proteins, miRNA and enzymes involved in critical pathways deregulated in cancer. Alpinumisoflavone and oleanolic acid were studied in a broad spectrum of cancer models both in vitro and in preclinical models in vivo with promising results. Other metabolites, including carpachromen, phaseollin, erybraedin A, erysenegalensein M and maniladiol need to be further investigated, as they display potent in vitro effects.
Collapse
Affiliation(s)
- Souleymane Fofana
- Laboratory of Drug Science, Higher Institute of Health Sciences (INSSA), Nazi BONI University, Bobo-Dioulasso P.O. Box 1091, Burkina Faso;
| | - Moussa Ouédraogo
- Laboratory of Drug Development (LADME), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou P.O. Box 7021, Burkina Faso; (M.O.); (W.P.O.)
| | - Rafaèle Calvo Esposito
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Protein Chemistry Unit, Department of General Chemistry I, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Windbedema Prisca Ouedraogo
- Laboratory of Drug Development (LADME), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou P.O. Box 7021, Burkina Faso; (M.O.); (W.P.O.)
| | - Cédric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- ULB Cancer Research Center, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
- Correspondence: (V.M.); (I.P.G.); Tel.: +32-478-31-73-88 (V.M.)
| | - Innocent Pierre Guissou
- Faculty of Health Sciences, Saint Thomas d’Aquin University, Ouagadougou P.O. Box 10212, Burkina Faso
- Correspondence: (V.M.); (I.P.G.); Tel.: +32-478-31-73-88 (V.M.)
| |
Collapse
|
9
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
10
|
Aggarwal V, Kumar G, Aggarwal D, Yerer MB, Cumaoğlu A, Kumar M, Sak K, Mittal S, Tuli HS, Sethi G. Cancer preventive role of olives and olive oil via modulation of apoptosis and nuclear factor-kappa B activation. OLIVES AND OLIVE OIL IN HEALTH AND DISEASE PREVENTION 2021:377-388. [DOI: 10.1016/b978-0-12-819528-4.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
11
|
Carmo J, Cavalcante-Araújo P, Silva J, Ferro J, Correia AC, Lagente V, Barreto E. Uvaol Improves the Functioning of Fibroblasts and Endothelial Cells and Accelerates the Healing of Cutaneous Wounds in Mice. Molecules 2020; 25:molecules25214982. [PMID: 33126422 PMCID: PMC7662923 DOI: 10.3390/molecules25214982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Uvaol is a natural pentacyclic triterpene that is widely found in olives and virgin olive oil, exerting various pharmacological properties. However, information remains limited about how it affects fibroblasts and endothelial cells in events associated with wound healing. Here, we report the effect of uvaol in the in vitro and in vivo healing process. We show the positive effects of uvaol on migration of fibroblasts and endothelial cells in the scratch assay. Protein synthesis of fibronectin and laminin (but not collagen type I) was improved in uvaol-treated fibroblasts. In comparison, tube formation by endothelial cells was enhanced after uvaol treatment. Mechanistically, the effects of uvaol on cell migration involved the PKA and p38-MAPK signaling pathway in endothelial cells but not in fibroblasts. Thus, the uvaol-induced migratory response was dependent on the PKA pathway. Finally, topical treatment with uvaol caused wounds to close faster than in the control treatment using experimental cutaneous wounds model in mice. In conclusion, uvaol positively affects the behavior of fibroblasts and endothelial cells, potentially promoting cutaneous healing.
Collapse
Affiliation(s)
- Julianderson Carmo
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
| | - Polliane Cavalcante-Araújo
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
| | - Juliane Silva
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
| | - Jamylle Ferro
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
| | - Ana Carolina Correia
- Garanhuns College of Science, Education and Technology, University of Pernambuco, 55294-902 Garanhuns, Brazil;
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France;
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900 Maceió, Brazil; (J.C.); (P.C.-A.); (J.S.); (J.F.)
- Correspondence: ; Tel.: +55-82-3214-1704
| |
Collapse
|
12
|
Dietary Erythrodiol Modifies Hepatic Transcriptome in Mice in a Sex and Dose-Dependent Way. Int J Mol Sci 2020; 21:ijms21197331. [PMID: 33020388 PMCID: PMC7582860 DOI: 10.3390/ijms21197331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023] Open
Abstract
Erythrodiol is a terpenic compound found in a large number of plants. To test the hypotheses that its long-term administration may influence hepatic transcriptome and this could be influenced by the presence of APOA1-containing high-density lipoproteins (HDL), Western diets containing 0.01% of erythrodiol (10 mg/kg dose) were provided to Apoe- and Apoa1-deficient mice. Hepatic RNA-sequencing was carried out in male Apoe-deficient mice fed purified Western diets differing in the erythrodiol content. The administration of this compound significantly up- regulated 68 and down-regulated 124 genes at the level of 2-fold change. These genes belonged to detoxification processes, protein metabolism and nucleic acid related metabolites. Gene expression changes of 21 selected transcripts were verified by RT-qPCR. Ccl19-ps2, Cyp2b10, Rbm14-rbm4, Sec61g, Tmem81, Prtn3, Amy2a5, Cyp2b9 and Mup1 showed significant changes by erythrodiol administration. When Cyp2b10, Dmbt1, Cyp2b13, Prtn3 and Cyp2b9 were analyzed in female Apoe-deficient mice, no change was observed. Likewise, no significant variation was observed in Apoa1- or in Apoe-deficient mice receiving doses ranging from 0.5 to 5 mg/kg erythrodiol. Our results give evidence that erythrodiol exerts a hepatic transcriptional role, but this is selective in terms of sex and requires a threshold dose. Furthermore, it requires an APOA1-containing HDL.
Collapse
|
13
|
Bonel-Pérez GC, Pérez-Jiménez A, Gris-Cárdenas I, Parra-Pérez AM, Lupiáñez JA, Reyes-Zurita FJ, Siles E, Csuk R, Peragón J, Rufino-Palomares EE. Antiproliferative and Pro-Apoptotic Effect of Uvaol in Human Hepatocarcinoma HepG2 Cells by Affecting G0/G1 Cell Cycle Arrest, ROS Production and AKT/PI3K Signaling Pathway. Molecules 2020; 25:molecules25184254. [PMID: 32947962 PMCID: PMC7571068 DOI: 10.3390/molecules25184254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
Natural products have a significant role in the development of new drugs, being relevant the pentacyclic triterpenes extracted from Olea europaea L. Anticancer effect of uvaol, a natural triterpene, has been scarcely studied. The aim of this study was to understand the anticancer mechanism of uvaol in the HepG2 cell line. Cytotoxicity results showed a selectivity effect of uvaol with higher influence in HepG2 than WRL68 cells used as control. Our results show that uvaol has a clear and selective anticancer activity in HepG2 cells supported by a significant anti-migratory capacity and a significant increase in the expression of HSP-60. Furthermore, the administration of this triterpene induces cell arrest in the G0/G1 phase, as well as an increase in the rate of cell apoptosis. These results are supported by a decrease in the expression of the anti-apoptotic protein Bcl2, an increase in the expression of the pro-apoptotic protein Bax, together with a down-regulation of the AKT/PI3K signaling pathway. A reduction in reactive oxygen species (ROS) levels in HepG2 cells was also observed. Altogether, results showed anti-proliferative and pro-apoptotic effect of uvaol on hepatocellular carcinoma, constituting an interesting challenge in the development of new treatments against this type of cancer.
Collapse
Affiliation(s)
- Gloria C. Bonel-Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain;
| | - Isabel Gris-Cárdenas
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - Alberto M. Parra-Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - Eva Siles
- Department of Experimental Biology, University of Jaen, Campus Las Lagunillas s/n. 23071 Jaén, Spain;
| | - René Csuk
- Berreich Organische Chemie, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Juan Peragón
- Department of Experimental Biology, University of Jaen, Campus Las Lagunillas s/n. 23071 Jaén, Spain;
- Correspondence: (J.P.); (E.E.R.-P.); Tel.: +34-953-212523 (J.P.); +34-958-243252 (E.E.R.-P.)
| | - Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
- Correspondence: (J.P.); (E.E.R.-P.); Tel.: +34-953-212523 (J.P.); +34-958-243252 (E.E.R.-P.)
| |
Collapse
|
14
|
Thangam R, Gokul S, Sathuvan M, Suresh V, Sivasubramanian S. A novel antioxidant rich compound 2-hydoxy 4-methylbenzaldehyde from Decalepis arayalpathra induces apoptosis in breast cancer cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Peluso I, Yarla NS, Ambra R, Pastore G, Perry G. MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol 2019; 56:185-195. [DOI: 10.1016/j.semcancer.2017.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 12/11/2022]
|
16
|
Phenolic Compounds Isolated from Olive Oil as Nutraceutical Tools for the Prevention and Management of Cancer and Cardiovascular Diseases. Int J Mol Sci 2018; 19:ijms19082305. [PMID: 30082650 PMCID: PMC6121682 DOI: 10.3390/ijms19082305] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022] Open
Abstract
Non-communicable diseases (NCDs) have become the largest contributor to worldwide morbidity and mortality. Among them, cancer and cardiovascular diseases (CVDs) are responsible for a 47% of worldwide mortality. In general, preventive approaches modifying lifestyle are more cost-effective than treatments after disease onset. In this sense, a healthy diet could help a range of NCDs, such as cancer and CVDs. Traditional Mediterranean Diet (MD) is associated by the low-prevalence of certain types of cancers and CVDs, where olive oil plays an important role. In fact, different epidemiological studies suggest that olive oil consumption prevents some cancers, as well as coronary heart diseases and stroke incidence and mortality. Historically, the beneficial health effects of virgin olive oil (VOO) intake were first attributed to the high concentration of monounsaturated fatty acids. Nowadays, many studies indicate that phenolic compounds contained in olive oil have positive effects on different biomarkers related to health. Among them, phenolic compounds would be partially responsible for health benefits. The present work aims to explore, in studies published during the last five years, the effects of the main phenolic compounds isolated from olive oil on different cancer or CVD aspects, in order to clarify which compounds have more potential to be used as nutraceuticals with preventive or even therapeutic properties.
Collapse
|
17
|
Bassan P, Bhushan S, Kaur T, Arora R, Arora S, Vig AP. Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. raya. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:399-409. [PMID: 29692548 PMCID: PMC5911257 DOI: 10.1007/s12298-018-0509-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
Cruciferous vegetables are rich source of glucosinolates (GSLs), which in presence of myrosinase enzyme cause hydrolytic cleavage and result in different hydrolytic products like isothiocyanates, thiocyanates, nitriles and epinitriles. The GSLs hydrolytic products are volatile compounds, which are known to exhibit bioactivities like antioxidant, fungicidal, bioherbicidal and anticancer. Among the Brassicaceae family, Brassica juncea is very well known for high content of GSLs. In the present study, the isolation of volatile oil of B. juncea var. raya was done by hydrodistillation method using clevenger apparatus and further there extraction was done by solvents ethyl acetate and dichloromethane. The volatile compounds present in the extract were analysed by gas chromatography/gas chromatography-mass spectrometry (GC/GC-MS). Fatty acid esters, sulphur and/or nitrogen compounds, carbonyl compounds and some other volatile compounds were also identified. Besides the analytical studies, the extracts were analysed for their bioactivities including radical scavenging activity by using DNA nicking assay and cytotoxic effect using different human cancer cell lines viz. breast (MCF-7 and MDA-MB-231), prostate (PC-3), lung (A-549), cervix (HeLa) and colon (HCT116) by MTT assay. The oil extracts were efficiently able to reduce the increase of cancer cells in a dose-dependent manner. Among all cell lines, the most effective anticancer activity was observed in case of breast (MCF-7) cancer cell line. So, MCF-7 cells were used for further mechanistic studies for analysing the mechanism of anticancer activity. Confocal microscopy was done for analysing morphological changes in the cells and the images confirmed the features typical of apoptosis. For evaluating the mode of cell death, spectrofluorometric determination of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) was done. The volatile oil extract treated MCF-7 cells had a significant increase in number of ROS, also there was a rise in percentage of cells with increased disruption of MMP. So, the present study marks necessary indication that B. juncea (raya) oil extracts significantly induces apoptosis in all the above mentioned cancer cells lines through a ROS-mediated mitochondrial pathway and thus play a remarkable role in death of cancer cells.
Collapse
Affiliation(s)
- Priyanka Bassan
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Sakshi Bhushan
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Tajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rohit Arora
- Department of Biochemistry, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab 143501 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
18
|
Prophetic medicine as potential functional food elements in the intervention of cancer: A review. Biomed Pharmacother 2017; 95:614-648. [DOI: 10.1016/j.biopha.2017.08.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
19
|
Triterpenes in cancer: significance and their influence. Mol Biol Rep 2016; 43:881-96. [PMID: 27344437 DOI: 10.1007/s11033-016-4032-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/20/2016] [Indexed: 01/11/2023]
Abstract
Natural products are enriched with numerous compounds with a broad spectrum of therapeutics indication suggesting the role of functional moieties as a core pharmacophore. This review highlights the role of triterpene in targeting signaling pathways in cancer. Advancement in cellular, biochemical, experimental, and computational approaches provides new insights into various pathways in cancer. In signaling network, triterpenes primarily target membrane receptors which control and modulates expression level of the biological responses. Triterpenes are immunomodulatory targeting nuclear factor kappa B, toll-like receptors, signal transducer and activator of transcription 3, and PI3K/Akt/mTOR. Triterpenes isolated from plants and fungus mainly focus on the process of apoptosis while other signaling areas in the cancer are still shrouded. Some of the triterpenes have already passed the clinical trial, whereas many more have been proven to yield effective results. This review would help the researchers to study the role of triterpenes in cancer, thus, helping them to discover and design efficacious therapeutics agents.
Collapse
|
20
|
Liu K, Qin YH, Yu JY, Ma H, Song XL. 3-β-Εrythrodiol isolated from Conyza canadensis inhibits MKN‑45 human gastric cancer cell proliferation by inducing apoptosis, cell cycle arrest, DNA fragmentation, ROS generation and reduces tumor weight and volume in mouse xenograft model. Oncol Rep 2016; 35:2328-38. [PMID: 26846256 DOI: 10.3892/or.2016.4610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of 3-β-erythrodiol, a plant-derived triterpene against MKN-45 human gastric cancer cells. In addition, effects on cellular morphology, cell cycle phase distribution, DNA fragmentation, and ROS generation were also elucidated in the current research work. Cytotoxic activity of 3-β-erythrodiol was demonstrated by MTT cell viability and LDH assay. Cellular morphological study was carried out using phase contrast, fluorescence and scanning electron microscopy. Cell cycle analysis was evaluated by flow cytometry and gel electrophoresis was used to evaluate DNA fragmentation pattern. The results of the present study revealed that 3-β-erythrodiol induced dose-dependent as well as time-dependent anticancer effects in MKN-45 gastric cancer cells. Cellular morphological changes in MKN-45 cells as indicated by fluorescence and scanning electron microscopy were induced by 3-β-erythrodiol. This triterpene induced both early and late apoptotic features in these cancer cells. 3-β-Erythrodiol treatment led to sub-G1 cell cycle arrest with a corresponding decrease in S-phase cells and an increase in G2/M phase cells. DNA fragments were evident in gel electrophoresis experiment following 3-β-erythrodiol treatment. It was observed that 0.50 and 1.0 µg/g 3-β-erythrodiol injection reduced the tumor weight from 1.4 g in PBS-treated group (control) to 0.61 and 0.22 g, respectively. Similarly, 0.50 and 1.0 µg/g 3-β-erythrodiol injection reduced the tumor volume from 1.5 cm3 in PBS-treated group (control) to 0.91 and 0.31 cm3, respectively. The present investigation indicates that 3-β-erythrodiol exerts anti-proliferative effects in human gastric cancer by inducing early and late apoptosis, cell cycle arrest, and ROS generation. It also decreased the tumor volume and tumor weight in male Balb/c nude mice.
Collapse
Affiliation(s)
- Kai Liu
- Department of Gastrointestinal Surgery, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Yue-Hong Qin
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jian-Yong Yu
- Department of Gastrointestinal Surgery, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Heng Ma
- Department of Gastrointestinal Surgery, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Xi-Lin Song
- Department of Gastrointestinal Surgery, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
21
|
Abboud R, Charcosset C, Greige-Gerges H. Tetra- and Penta-Cyclic Triterpenes Interaction with Lipid Bilayer Membrane: A Structural Comparative Study. J Membr Biol 2016; 249:327-38. [PMID: 26759229 DOI: 10.1007/s00232-016-9871-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
Abstract
The effect of tetracyclic (cortisol, prednisolone, and 9-fluorocortisol acetate) and pentacyclic (uvaol and erythrodiol) triterpenes (TTPs) on the fluidity of dipalmitoyl phosphatidyl choline (DPPC) liposome membrane was investigated by differential scanning calorimetry, Raman spectroscopy, and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). Liposomes were prepared in the absence and presence of TTPs at molar ratios DPPC:TTP 100:1, 100:2.5, and 100:10. All the studied TTPs abolished the pre-transition and modified the intensity of the Raman peak at 715 cm(-1) proving the interaction of TTP molecules with the choline head group of phospholipids. An increase in the Raman height intensity ratios of the peaks I 2935/2880, I 2844/2880, and I 1090/1130, giving information about the ratio disorder/order of the alkyl chains, and a decrease of the main transition temperature demonstrated the interaction of TTPs with the alkyl chains. The tetracyclic TTPs produced broadening of the phase transition profile. Besides, a scarcely splitting of the main transition peak was obtained with prednisolone and 9-fluorocortisol acetate. The results of fluorescence depolarization of DPH showed that the studied molecules fluidized the liposomal membrane at 25, 41, and 50 °C. Pentacyclic TTPs, being more hydrophobic than tetracyclic ones, demonstrated higher fluidizing effect than tetracyclic TTPs in the liquid crystalline phase suggesting a deeper incorporation in the lipid bilayer. The presence of a free polar head group at the ring D seems to control the TTP incorporation in the bilayer and consequently its effect on the membrane fluidity.
Collapse
Affiliation(s)
- Rola Abboud
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, B.P. 90656, Jdaidet el-Matn, Lebanon.,Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR-CNRS 5007, Université Claude Bernard Lyon 1, CPE Lyon, Bat 308G, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés (LAGEP), UMR-CNRS 5007, Université Claude Bernard Lyon 1, CPE Lyon, Bat 308G, 43 Boulevard du 11 Novembre 1918, 69622, Villeurbanne Cedex, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Faculty of Sciences, Section II, Lebanese University, B.P. 90656, Jdaidet el-Matn, Lebanon.
| |
Collapse
|
22
|
Habib L, Jraij A, Khreich N, Charcosset C, Greige-Gerges H. Effect of Erythrodiol, A Natural Pentacyclic Triterpene from Olive Oil, on the Lipid Membrane Properties. J Membr Biol 2015; 248:1079-87. [DOI: 10.1007/s00232-015-9821-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
|
23
|
|
24
|
Sánchez-Quesada C, López-Biedma A, Gaforio JJ. The differential localization of a methyl group confers a different anti-breast cancer activity to two triterpenes present in olives. Food Funct 2014; 6:249-56. [PMID: 25412049 DOI: 10.1039/c4fo00675e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Uvaol (UV) and erythrodiol (ER) are two triterpenic dialcohols present in the minor fraction of virgin olive oil, in leaves and in the drupe of olives. These triterpenes possess the same chemical structure and differ only in the location of a methyl group. It has been reported that they have antitumoral effects in leukemic cells, in skin mice tumours and, finally, in astrocytoma cells, but there are no evidences about their effects in highly invasive human breast cancer cells and human epithelial breast cells. For this purpose, we have evaluated their cytotoxic activities as well as their effects on cell proliferation, cell cycle profile, apoptotic induction, oxidative stress and DNA oxidative damage in both highly invasive human breast cancer cells (MDA-MB-231) and human epithelial breast cells (MCF10A). UV and ER showed different effects in normal and breast cancer cells, whereas both compounds possess the same structure, except for the location of a methyl group. UV protects from damage to DNA in both cell lines, whereas ER enhances damage to DNA in these cell lines. Thus, ER promotes apoptosis and arrests cell cycle in human epithelial breast cells. Hence, both compounds differ in their action in human breast cells apparently by the different location of only a methyl group.
Collapse
Affiliation(s)
- Cristina Sánchez-Quesada
- Immunology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, Campus las Lagunillas s/n, 23071 Jaén, Spain.
| | | | | |
Collapse
|
25
|
Lin KW, Huang AM, Lin CC, Chang CC, Hsu WC, Hour TC, Pu YS, Lin CN. Anti-cancer effects of ursane triterpenoid as a single agent and in combination with cisplatin in bladder cancer. Eur J Pharmacol 2014; 740:742-51. [PMID: 24933647 DOI: 10.1016/j.ejphar.2014.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 01/06/2023]
Abstract
Ursolic acid and most of its derivatives are cytotoxic to bladder cancer cells. An ursolic acid derivative, isopropyl 3β-hydroxyurs-12-en-28-oat (UA17), previously reported that it exhibited potent cytotoxicity against bladder cancer cells, NTUB1 cells. In this study, we further investigated the underlying mechanism of UA17 and evaluated its potential clinical use. UA17 may exert the onset of a p53-mediated p38 MAPK activation to up-regulate GADD153. GADD153, in turn, down-regulated Bcl-2 protein to cause mitochondrial membrane potential loss and apoptosis through intracellular ROS generation. In addition, UA17 markedly decreased the levels of cyclins (D1 and E), cyclin-dependent kinases (CDK2 and CDK4), and caused increase of p21 and p27 levels. To assess the suitability of UA17 as a chemotherapeutic agent against NTUB1 cells, its cytotoxic effects have been further evaluated in the combination with cisplatin. The addition of UA17 to cisplatin induces possibly additive cell growth inhibition which correlated to the accumulation of S phase cells and a corresponding decrease in accumulation of G1 phase cells, accompanied an increased accumulation of sub-G1 phase cells. Furthermore, UA17/cisplatin combination exhibited increase of p21, cyclin E, and p-p53 level, and decrease of p27 and cyclin D1 proteins, and slightly diminishing the level of CDK2. P-p38 up-regulation induced by UA17/cisplatin combination through generation of ROS and Bcl-2 down-regulation induced by UA17/cisplatin combination increased cell death. Finally, the antitumorigenic effects of UA17 or UA17/cisplatin combination were further supported by their inhibition on growth of bladder tumor cells in a therapeutic murine MBT-2 bladder tumor model.
Collapse
Affiliation(s)
- Kai-Wei Lin
- Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - A-Mei Huang
- Department of Medicine, Graduate Institute of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chi-Chen Lin
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsiung University, Taichung 40227, Taiwan
| | - Wei-Chi Hsu
- Department of Medicine, Graduate Institute of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzyh-Chyuan Hour
- Department of Medicine, Graduate Institute of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun-Nan Lin
- Faculty of Fragrance and Cosmetics, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
26
|
Capilliposide C derived from Lysimachia capillipes Hemsl inhibits growth of human prostate cancer PC3 cells by targeting caspase and MAPK pathways. Int Urol Nephrol 2014; 46:1335-44. [DOI: 10.1007/s11255-013-0641-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
|
27
|
Ebeling S, Naumann K, Pollok S, Wardecki T, Vidal-y-Sy S, Nascimento JM, Boerries M, Schmidt G, Brandner JM, Merfort I. From a traditional medicinal plant to a rational drug: understanding the clinically proven wound healing efficacy of birch bark extract. PLoS One 2014; 9:e86147. [PMID: 24465925 PMCID: PMC3899119 DOI: 10.1371/journal.pone.0086147] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/05/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Birch bark has a long lasting history as a traditional medicinal remedy to accelerate wound healing. Recently, the efficacy of birch bark preparations has also been proven clinically. As active principle pentacyclic triterpenes are generally accepted. Here, we report a comprehensive study on the underlying molecular mechanisms of the wound healing properties of a well-defined birch bark preparation named as TE (triterpene extract) as well as the isolated single triterpenes in human primary keratinocytes and porcine ex-vivo wound healing models. METHODOLOGY/PRINCIPAL FINDINGS We show positive wound healing effects of TE and betulin in scratch assay experiments with primary human keratinocytes and in a porcine ex-vivo wound healing model (WHM). Mechanistical studies elucidate that TE and betulin transiently upregulate pro-inflammatory cytokines, chemokines and cyclooxygenase-2 on gene and protein level. For COX-2 and IL-6 this increase of mRNA is due to an mRNA stabilizing effect of TE and betulin, a process in which p38 MAPK and HuR are involved. TE promotes keratinocyte migration, putatively by increasing the formation of actin filopodia, lamellipodia and stress fibers. Detailed analyses show that the TE components betulin, lupeol and erythrodiol exert this effect even in nanomolar concentrations. Targeting the actin cytoskeleton is dependent on the activation of Rho GTPases. CONCLUSION/SIGNIFICANCE Our results provide insights to understand the molecular mechanism of the clinically proven wound healing effect of birch bark. TE and betulin address the inflammatory phase of wound healing by transient up-regulation of several pro-inflammatory mediators. Further, they enhance migration of keratinocytes, which is essential in the second phase of wound healing. Our results, together with the clinically proven efficacy, identify birch bark as the first medical plant with a high potential to improve wound healing, a field which urgently needs effective remedies.
Collapse
Affiliation(s)
- Sandra Ebeling
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Katrin Naumann
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Simone Pollok
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tina Wardecki
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Sabine Vidal-y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Juliana M. Nascimento
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Johanna M. Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Irmgard Merfort
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Sánchez-Quesada C, López-Biedma A, Warleta F, Campos M, Beltrán G, Gaforio JJ. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of Olea europaea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12173-82. [PMID: 24279741 DOI: 10.1021/jf403154e] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Oleanolic acid, maslinic acid, uvaol, and erythrodiol are the main triterpenes present in olives, olive tree leaves, and virgin olive oil. Their concentration in virgin olive oil depends on the quality of the olive oil and the variety of the olive tree. These triterpenes are described to present different properties, such as antitumoral activity, cardioprotective activity, anti-inflammatory activity, and antioxidant protection. Olive oil triterpenes are a natural source of antioxidants that could be useful compounds for the prevention of multiple diseases related to cell oxidative damage. However, special attention has to be paid to the concentrations used, because higher concentration may lead to cytotoxic or biphasic effects. This work explores all of the bioactive properties so far described for the main triterpenes present in virgin olive oil.
Collapse
Affiliation(s)
- Cristina Sánchez-Quesada
- Immunology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén , Campus las Lagunillas s/n, 23071 Jaén, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Lin KW, Lin ZY, Huang AM, Weng JR, Yen MH, Yang SC, Lin CN. Lantabetulic acid derivatives induce G1 arrest and apoptosis in human prostate cancer cells. Arch Pharm (Weinheim) 2013; 347:42-53. [PMID: 24243582 DOI: 10.1002/ardp.201300224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022]
Abstract
Ten new lantabetulic acid (1) derivatives 2-11 were synthesized and their cytotoxicities against human prostate cancer cells were evaluated. PC3 cells treated with 10 μM 8 exhibited the most potent G1 phase arrest. In addition, 10 μM 8 markedly decreased the levels of cyclin E and cdk2 and caused an increase in the p21 and p27 levels, while 20 μM 8 mainly led to cell death through the apoptotic pathway, which correlated with an increase in reactive oxygen species levels, decreased expression levels of Bcl-2 and caspase-8, the induction of mitochondrial changes, and decreased levels of cytochrome c in mitochondria. The dual action of 8 could provide a new approach for the development of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Kai-Wei Lin
- Faculty of Fragrance and Cosmetics, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Guo G, Yao W, Zhang Q, Bo Y. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLoS One 2013; 8:e72079. [PMID: 23991044 PMCID: PMC3749117 DOI: 10.1371/journal.pone.0072079] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/11/2013] [Indexed: 01/29/2023] Open
Abstract
Mitogen-activated protein kinases/Extracellular signal-regulated kinase (MAPK/ERK) pathway is essential for migration and invasion of malignant glioma. It is efficient to inhibit migration and invasion of glioma cells by targeting this pathway. Oleanolic acid (OA) has been well demonstrated to suppress survival, growth and angiogenesis of glioma cells. However, it is still unknown if OA affects the migration and invasion of glioma cells. We utilized U-87 MG glioma cell lines and primary glioma cells from patients to study the effect of OA on migration and invasion of glioma cells with multidisciplinary approaches. In this study, we found that OA significantly decreased the ability of glioma cells to migrate and invade. Epithelial-mesenchymal transition (EMT) of glioma cells was also suppressed by OA treatment. Furthermore, MAPK/ERK pathway was greatly inhibited in glioma cells under OA treatment. MAPK/ERK reactivation induced by a recombinant lentiviral vector, Lv-MEK, was able to rescue the inhibitory effect of OA on migration and invasion of glioma cells. Taken together, we provided evidences that OA was a MAPK/ERK pathway-targeting anti-tumor agent. Although the concentrations we used exceeded its physiological level, OA may be used to prevent migration and invasion of glioma cells by developing its derivatives with enhanced bioactivity.
Collapse
Affiliation(s)
- Guocai Guo
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Weicheng Yao
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Quanqin Zhang
- Department of Internal Medicine, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yongli Bo
- Department of Neurosurgery, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
- * E-mail:
| |
Collapse
|
31
|
Gao QH, Wu CS, Wang M. The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3351-63. [PMID: 23480594 DOI: 10.1021/jf4007032] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The nutritional jujube ( Ziziphus jujube Mill.) fruit belonging to the Rhamnaceous family grows mostly in Europe, southern and eastern Asia, and Australia, especially the inland region of northern China. Jujube has a long history of usage as a fruit and remedy. The main biologically active components are vitamin C, phenolics, flavonoids, triterpenic acids, and polysaccharides. Recent phytochemical studies of jujube fruits have shed some light on their biological effects, such as the anticancer, anti-inflammatory, antiobesity, immunostimulating, antioxidant, hepatoprotective, and gastrointestinal protective activities and inhibition of foam cell formation in macrophages. A stronger focus on clinical studies and phytochemical definition of jujube fruits will be essential for future research efforts. This review may be useful for predicting other medicinal uses and potential drug or food interactions and may be beneficial for people living where the jujube fruits are prevalent and health care resources are scarce.
Collapse
Affiliation(s)
- Qing-Han Gao
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, People's Republic of China
| | | | | |
Collapse
|
32
|
Sánchez-González M, Lozano-Mena G, Juan ME, García-Granados A, Planas JM. Assessment of the safety of maslinic acid, a bioactive compound from Olea europaea L. Mol Nutr Food Res 2012; 57:339-46. [PMID: 23175023 DOI: 10.1002/mnfr.201200481] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/03/2012] [Accepted: 09/27/2012] [Indexed: 11/09/2022]
Abstract
SCOPE Maslinic acid, the main pentacyclic triterpene of the cuticle of Olea europaea L. fruit, has multiple beneficial effects on health, most notably antitumor and hypoglycemic properties. Notwithstanding the biological activities, there is a lack of knowledge about its safety. Therefore, the purpose of this study was to evaluate whether high doses of maslinic acid have harmful effects on Swiss CD-1 male mice. METHODS AND RESULTS The single oral administration of the pentacyclic triterpene at 1000 mg/kg to mice did not produce any signs of morbidity or mortality. The repeated daily oral administration of 50 mg/kg of maslinic acid for 28 days did not induce any sign of toxicity during the experimental period. Body weight did not differ between mice that received the triterpene and the control group. Similarly, hematological and biochemical variables were not affected by the treatment. Histopathologic examination of the organs revealed that there were no differences between the control and the treated mice. CONCLUSION Taken together the results obtained from the acute and the repeated intake of maslinic acid indicate that the compound does not exert any adverse effects on the variables tested in mice, thus suggesting a sufficient margin of safety for its putative use as a nutraceutical.
Collapse
Affiliation(s)
- Marta Sánchez-González
- Departament de Fisiologia and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
33
|
Liu M, Zhao X, Zhao J, Xiao L, Liu H, Wang C, Cheng L, Wu N, Lin X. Induction of apoptosis, G₀/G₁ phase arrest and microtubule disassembly in K562 leukemia cells by Mere15, a novel polypeptide from Meretrix meretrix Linnaeus. Mar Drugs 2012. [PMID: 23203280 PMCID: PMC3509538 DOI: 10.3390/md10112596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mere15 is a novel polypeptide from Meretrix meretrix Linnaeus with cytotoxicity in solid cancer cells. In this study, we investigated its activity on human K562 chronic myelogenous leukemia cells. Mere15 inhibited the growth of K562 cells with IC50 values of 38.2 μg/mL. Mere15 also caused concentration dependent induction of apoptosis, with overproduction of reactive oxygen species and loss of mitochondrial membrane potential. Moreover, Mere15 arrested cell cycle progression at G0/G1 phase of K562 cells in a concentration dependent manner. In addition, Mere15 caused the disassembly of the microtubule cytoskeleton in K562 cells and inhibited the polymerization of tubulin in a cell free system via interaction with tubulin. We concluded that Mere15 was cytotoxic to K562 leukemia cells and the cytotoxicity was related to the apoptosis induction, cell cycle arrest and microtubule disassembly. These results implied that Merer15 was a broad spectrum anticancer polypeptide, not only cytotoxic to various solid cancer cells but also to the chronic myelogenous leukemia cells. Mere15 may have therapeutic potential for the treatment of leukemia.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Rd, Qingdao 266071, China; (M.L.); (J.Z.); (L.X.); (H.L.); (C.W.); (L.C.); (N.W.)
| | - Xiangzhong Zhao
- Key Laboratory for Rare Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan 250062, China;
| | - Jin Zhao
- Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Rd, Qingdao 266071, China; (M.L.); (J.Z.); (L.X.); (H.L.); (C.W.); (L.C.); (N.W.)
| | - Lin Xiao
- Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Rd, Qingdao 266071, China; (M.L.); (J.Z.); (L.X.); (H.L.); (C.W.); (L.C.); (N.W.)
| | - Haizhou Liu
- Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Rd, Qingdao 266071, China; (M.L.); (J.Z.); (L.X.); (H.L.); (C.W.); (L.C.); (N.W.)
| | - Cuicui Wang
- Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Rd, Qingdao 266071, China; (M.L.); (J.Z.); (L.X.); (H.L.); (C.W.); (L.C.); (N.W.)
| | - Linyou Cheng
- Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Rd, Qingdao 266071, China; (M.L.); (J.Z.); (L.X.); (H.L.); (C.W.); (L.C.); (N.W.)
| | - Ning Wu
- Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Rd, Qingdao 266071, China; (M.L.); (J.Z.); (L.X.); (H.L.); (C.W.); (L.C.); (N.W.)
| | - Xiukun Lin
- Institute of Oceanology, Chinese Academy of Science, 7 Nanhai Rd, Qingdao 266071, China; (M.L.); (J.Z.); (L.X.); (H.L.); (C.W.); (L.C.); (N.W.)
- Author to whom correspondence should be addressed; ; Tel.: +86-532-82898916; Fax: +86-532-82898916
| |
Collapse
|
34
|
Zheng FJ, Ye HB, Wu MS, Lian YF, Qian CN, Zeng YX. Repressing malic enzyme 1 redirects glucose metabolism, unbalances the redox state, and attenuates migratory and invasive abilities in nasopharyngeal carcinoma cell lines. CHINESE JOURNAL OF CANCER 2012; 31:519-31. [PMID: 23114090 PMCID: PMC3777517 DOI: 10.5732/cjc.012.10088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A large amount of nicotinamide adenine dinucleotide phosphate (NADPH) is required for fatty acid synthesis and maintenance of the redox state in cancer cells. Malic enzyme 1(ME1)-dependent NADPH production is one of the three pathways that contribute to the formation of the cytosolic NADPH pool. ME1 is generally considered to be overexpressed in cancer cells to meet the high demand for increased de novo fatty acid synthesis. In the present study, we found that glucose induced higher ME1 activity and that repressing ME1 had a profound impact on glucose metabolism of nasopharyngeal carcinoma(NPC) cells. High incorporation of glucose and an enhancement of the pentose phosphate pathway were observed in ME1-repressed cells. However, there were no obvious changes in the other two pathways for glucose metabolism: glycolysis and oxidative phosphorylation. Interestingly, NADPH was decreased under low-glucose condition in ME1-repressed cells relative to wild-type cells, whereas no significant difference was observed under high-glucose condition. ME1-repressed cells had significantly decreased tolerance to low-glucose condition. Moreover, NADPH produced by ME1 was not only important for fatty acid synthesis but also essential for maintenance of the intracellular redox state and the protection of cells from oxidative stress. Furthermore, diminished migration and invasion were observed in ME1-repressed cells due to a reduced level of Snail protein. Collectively, these results suggest an essential role for ME1 in the production of cytosolic NADPH and maintenance of migratory and invasive abilities of NPC cells.
Collapse
|
35
|
Martín R, Hernández M, Córdova C, Nieto ML. Natural triterpenes modulate immune-inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis. Br J Pharmacol 2012; 166:1708-23. [PMID: 22260389 DOI: 10.1111/j.1476-5381.2012.01869.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases that develop as a result of deregulated immune responses causing glial activation and destruction of CNS tissues. Oleanolic acid and erythrodiol are natural triterpenes that display strong anti-inflammatory and immunomodulatory activities. Oleanolic acid beneficially influences the course of established EAE. We now extend our previous observations to erythrodiol and address the efficacy of both compounds to protect against EAE, given under different regimens. EXPERIMENTAL APPROACH The utility of both triterpenes in disease prevention was evaluated at a clinical and molecular level: in vivo through their prophylactic administration to myelin oligodendrocyte protein-immunized C57BL/6 mice, and in vitro through their addition to stimulated-BV2 microglial cells. KEY RESULTS These triterpenes protected against EAE by restricting infiltration of inflammatory cells into the CNS and by preventing blood-brain barrier disruption. Triterpene-pretreated EAE-mice exhibited less leptin secretion, and switched cytokine production towards a Th2/regulatory profile, with lower levels of Th1 and Th17 cytokines and higher expression of Th2 cytokines in both serum and spinal cord. Triterpenes also affected the humoral response causing auto-antibody production inhibition. In vitro, triterpenes inhibited ERK and rS6 phosphorylation and reduced the proliferative response, phagocytic properties and synthesis of proinflammatory mediators induced by the addition of inflammatory stimuli to microglia. CONCLUSIONS AND IMPLICATIONS Both triterpenes restricted the development of the characteristic features of EAE. We envision these natural products as novel helpful tools for intervention in autoimmune and neurodegenerative diseases including MS.
Collapse
Affiliation(s)
- R Martín
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | | | | | | |
Collapse
|
36
|
DIOL triterpenes block profibrotic effects of angiotensin II and protect from cardiac hypertrophy. PLoS One 2012; 7:e41545. [PMID: 22844495 PMCID: PMC3402387 DOI: 10.1371/journal.pone.0041545] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022] Open
Abstract
Background The natural triterpenes, erythrodiol and uvaol, exert anti-inflammatory, vasorelaxing and anti-proliferative effects. Angiotensin II is a well-known profibrotic and proliferative agent that participates in the cardiac remodeling associated with different pathological situations through the stimulation and proliferation of cardiac fibroblasts. Therefore, the aim of the study was to investigate the preventive effects of the natural triterpenes erythrodiol and uvaol on the proliferation and collagen production induced by angiotensin II in cardiac myofibroblasts. Their actions on cardiac hypertrophy triggered by angiotensin II were also studied. Methodology/Principal Findings The effect of erythrodiol and uvaol on angiotensin II-induced proliferation was evaluated in cardiac myofibroblasts from adult rats in the presence or the absence of the inhibitors of PPAR-γ, GW9662 or JNK, SP600125. The effect on collagen levels induced by angiotensin II was evaluated in cardiac myofibroblasts and mouse heart. The presence of low doses of both triterpenes reduced the proliferation of cardiac myofibroblasts induced by angiotensin II. Pretreatment with GW9662 reversed the effect elicited by both triterpenes while SP600125 did not modify it. Both triterpenes at high doses produced an increase in annexing-V binding in the presence or absence of angiotensin II, which was reduced by either SP600125 or GW9662. Erythrodiol and uvaol decreased collagen I and galectin 3 levels induced by angiotensin II in cardiac myofribroblasts. Finally, cardiac hypertrophy, ventricular remodeling, fibrosis, and increases in myocyte area and brain natriuretic peptide levels observed in angiotensin II-infused mice were reduced in triterpene-treated animals. Conclusions/Significance Erythrodiol and uvaol reduce cardiac hypertrophy and left ventricle remodeling induced by angiotensin II in mice by diminishing fibrosis and myocyte area. They also modulate growth and survival of cardiac myofibroblasts. They inhibit the angiotensin II-induced proliferation in a PPAR-γ-dependent manner, while at high doses they activate pathways of programmed cell death that are dependent on JNK and PPAR-γ.
Collapse
|
37
|
Wei J, Liu M, Liu H, Wang H, Wang F, Zhang Y, Han L, Lin X. Oleanolic acid arrests cell cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. J Appl Toxicol 2012; 33:756-65. [PMID: 22678527 DOI: 10.1002/jat.2725] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/28/2011] [Accepted: 12/28/2011] [Indexed: 12/30/2022]
Abstract
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits potential anti-tumor activity against many tumor cell lines. This study aims to examine the anti-tumor activity of OA on pancreatic cancer cells and its potential molecular mechanism. The results showed that the proliferation of Panc-28 cells was inhibited by OA in a concentration-dependent manner, with an IC50 (The half maximal inhibitory concentration) value of 46.35 µg ml(-1) , as determined by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The cell cycle was arrested in S phase and G2/M phase by OA. The study also showed that OA could induce remarkable apoptosis, evidenced by an increased percentage of early/late apoptotic cells, DNA ladder and nuclear morphology change. Further study revealed that OA could induce Reactive Oxygen Species (ROS) generation, mitochondrial depolarization, release of cytochrome C, lysosomal membrane permeabilization and leakage of cathepin B. The expression of apoptosis-correlated proteins was also affected in cells treated with OA, including activation of caspases-3/9 and cleavage of PARP. Further study confirmed that ROS scavenger vitamin C could reverse the apoptosis induced by OA in Panc-28 cells. Our results provide evidence that OA arrests the cell cycle and induces apoptosis, possibly via ROS-mediated mitochondrial and a lysosomal pathway in Panc-28 cells.
Collapse
Affiliation(s)
- Jianteng Wei
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Szakiel A, Pączkowski C, Pensec F, Bertsch C. Fruit cuticular waxes as a source of biologically active triterpenoids. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2012; 11:263-284. [PMID: 23519009 PMCID: PMC3601259 DOI: 10.1007/s11101-012-9241-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/04/2012] [Indexed: 05/07/2023]
Abstract
The health benefits associated with a diet rich in fruit and vegetables include reduction of the risk of chronic diseases such as cardiovascular disease, diabetes and cancer, that are becoming prevalent in the aging human population. Triterpenoids, polycyclic compounds derived from the linear hydrocarbon squalene, are widely distributed in edible and medicinal plants and are an integral part of the human diet. As an important group of phytochemicals that exert numerous biological effects and display various pharmacological activities, triterpenoids are being evaluated for use in new functional foods, drugs, cosmetics and healthcare products. Screening plant material in the search for triterpenoid-rich plant tissues has identified fruit peel and especially fruit cuticular waxes as promising and highly available sources. The chemical composition, abundance and biological activities of triterpenoids occurring in cuticular waxes of some economically important fruits, like apple, grape berry, olive, tomato and others, are described in this review. The need for environmentally valuable and potentially profitable technologies for the recovery, recycling and upgrading of residues from fruit processing is also discussed.
Collapse
Affiliation(s)
- Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Flora Pensec
- UFR Pluridisciplinaire Enseignement Professionnalisant Supérieur, Laboratoire Vigne Biotechnologie et Environnement EA 3391, Université de Haute-Alsace, 33, rue de Herrlisheim, 68000 Colmar, France
| | - Christophe Bertsch
- UFR Pluridisciplinaire Enseignement Professionnalisant Supérieur, Laboratoire Vigne Biotechnologie et Environnement EA 3391, Université de Haute-Alsace, 33, rue de Herrlisheim, 68000 Colmar, France
| |
Collapse
|
39
|
Chan CK, Goh BH, Kamarudin MNA, Kadir HA. Aqueous fraction of Nephelium ramboutan-ake rind induces mitochondrial-mediated apoptosis in HT-29 human colorectal adenocarcinoma cells. Molecules 2012; 17:6633-57. [PMID: 22728359 PMCID: PMC6268511 DOI: 10.3390/molecules17066633] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to investigate the cytotoxic and apoptotic effects of Nephelium ramboutan-ake (pulasan) rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous) of N. ramboutan-ake inhibited the growth of HT-29, HCT-116, MDA-MB-231, Ca Ski cells according to MTT assays. The N. ramboutan-ake aqueous fraction (NRAF) was found to exert the greatest cytotoxic effect against HT-29 in a dose-dependent manner. Evidence of apoptotic cell death was revealed by features such as chromatin condensation, nuclear fragmentation and apoptotic body formation. The result from a TUNEL assay strongly suggested that NRAF brings about DNA fragmentation in HT-29 cells. Phosphatidylserine (PS) externalization on the outer leaflet of plasma membranes was detected with annexin V-FITC/PI binding, confirming the early stage of apoptosis. The mitochondrial permeability transition is an important step in the induction of cellular apoptosis, and the results clearly suggested that NRAF led to collapse of mitochondrial transmembrane potential in HT-29 cells. This attenuation of mitochondrial membrane potential (Δψm) was accompanied by increased production of ROS and depletion of GSH, an increase of Bax protein expression, and induced-activation of caspase-3/7 and caspase-9. These combined results suggest that NRAF induces mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
| | | | | | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Lin KW, Huang AM, Hour TC, Yang SC, Pu YS, Lin CN. 18β-Glycyrrhetinic acid derivatives induced mitochondrial-mediated apoptosis through reactive oxygen species-mediated p53 activation in NTUB1 cells. Bioorg Med Chem 2011; 19:4274-85. [DOI: 10.1016/j.bmc.2011.05.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 11/28/2022]
|
41
|
Wang O, Liu S, Zou J, Lu L, Chen L, Qiu S, Li H, Lu X. Anticancer activity of 2α, 3α, 19β, 23β-Tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid isolated from Sinojackia sarcocarpa. PLoS One 2011; 6:e21130. [PMID: 21695177 PMCID: PMC3112233 DOI: 10.1371/journal.pone.0021130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/20/2011] [Indexed: 01/28/2023] Open
Abstract
Background Natural products represent an important source for agents of cancer prevention and cancer treatment. More than 60% of conventional anticancer drugs are derived from natural sources, particularly from plant-derived materials. In this study, 2α, 3α, 19β, 23β-tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid from the leaves of Sinojackia sarcocarpa, was isolated, and its anticancer activity was investigated both in vitro and in vivo. Principal Findings THA possessed potent tumor selected toxicity in vitro. It exhibited significantly higher cytotoxicity to the cancer cell lines A2780 and HepG2 than to IOSE144 and QSG7701, two noncancerous cell lines derived from ovary epithelium and liver, respectively. Moreover, THA showed a dose-dependent inhibitory effect on A2780 ovary tumor growth in vivo in nude mice. THA induced a dose-dependent apoptosis and G2/M cell cycle arrest in A2780 and HepG2 cells. The THA-induced cell cycle arrest was accompanied by a downregulation of Cdc2. The apoptosis induced by THA was evident by induction of DNA fragmentation, release of cytoplasmic Cytochrome c from mitochondria, activation of caspases, downregulation of Bcl-2 and upregulation of Bax. Conclusion The primary data indicated that THA exhibit a high toxicity toward two cancer cells than their respective non-cancerous counterparts and has a significant anticancer activity both in vitro and in vivo. Thus, THA and/or its derivatives may have great potential in the prevention and treatment of human ovary tumors and other malignancies.
Collapse
Affiliation(s)
- Ouchen Wang
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
- First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Sujun Liu
- Leshan Normal University, Leshan, China
| | - Jiawei Zou
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Liting Lu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Lin Chen
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Sunquan Qiu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - He Li
- First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Xincheng Lu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
- * E-mail:
| |
Collapse
|
42
|
Kazakova OB, Giniyatullina GV, Tolstikov GA, Baikova IP, Zaprutko L, Apryshko GN. Synthesis and antitumor activity of aminopropoxy derivatives of betulin, erythrodiol, and uvaol. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:414-24. [DOI: 10.1134/s1068162011030101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Seo HR, Seo WD, Pyun BJ, Lee BW, Jin YB, Park KH, Seo EK, Lee YJ, Lee YS. Radiosensitization by celastrol is mediated by modification of antioxidant thiol molecules. Chem Biol Interact 2011; 193:34-42. [PMID: 21570383 DOI: 10.1016/j.cbi.2011.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/29/2022]
Abstract
The radiosensitizing effects of naturally occurring triterpenes were investigated in human lung cancer cells. Several quinone methide-containing triterpenes (QMTs) enhanced the cytotoxic effect of ionizing radiation (IR) and of these QMTs, celastrol (CE) had the greatest enhancing effect on IR-induced cell death in vitro. Additionally, the quinone methide moiety of CE was shown to be essential for CE-mediated radiosensitization; in contrast, dihydrocelastrol (DHCE), does not contain this moiety. Reactive oxygen species (ROS) production by IR was augmented in combination with CE, which was responsible for CE-mediated radiosensitization. CE induced the thiol reactivity and inhibited the activities of antioxidant molecules, such as thioredoxin reductase and glutathione. In vivo, nude mouse xenografting data also revealed that tumor growth delay was greater in mice treated with CE plus IR, compared with those treated with CE or IR alone. When DHCE, instead of CE, was combined with IR, tumor growth delay was similar to that in IR alone-treated mice. These results demonstrate that CE synergistically enhances the effects of IR and suggest the novel anticancer therapeutic use of CE in combination with radiation therapy.
Collapse
Affiliation(s)
- Haeng Ran Seo
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lama-Muñoz A, Rodríguez-Gutiérrez G, Rubio-Senent F, Gómez-Carretero A, Fernández-Bolaños J. New hydrothermal treatment of alperujo enhances the content of bioactive minor components in crude pomace olive oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1115-1123. [PMID: 21265536 DOI: 10.1021/jf103555h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The application of a new process based on the hydrothermal treatment of olive oil waste (alperujo) led to a final solid rich in pomace olive oil (POO) enriched in minor components with functional activities. The effects of the time (15-90 min) and the temperature (150, 160, and 170 °C) of the thermal processing of alperujo on the yield, quality, and enrichment of minor components of crude POO were evaluated. The final treated solid had an increase in oil yield up to 97%, with a reduction in solids up to 35.6-47.6% by solubilization. Sterols increased up to 33%, aliphatic alcohols increased up to 92%, triterpenic alcohols increased up to 31%, squalene increased up to 43%, tocopherols increased up to 57%, and oleanolic acid increased up to 16% by the new treatment. The increase maintains a high concentration of functional substances probably even in the refining POO.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Padre García Tejero 4, Sevilla 41012, Spain
| | | | | | | | | |
Collapse
|
45
|
Allouche Y, Warleta F, Campos M, Sánchez-Quesada C, Uceda M, Beltrán G, Gaforio JJ. Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:121-30. [PMID: 21142067 DOI: 10.1021/jf102319y] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This research aimed to investigate erythrodiol, uvaol, oleanolic acid, and maslinic acid scavenging capacities and their effects on cytotoxicity, cell proliferation, cell cycle, apoptosis, reactive oxygen species (ROS) level, and oxidative DNA damage on human MCF-7 breast cancer cell line. The results showed that erythrodiol, uvaol, and oleanolic acid have a significant cytotoxic effect and inhibit proliferation in a dose- and time-dependent manner. At 100 μM, erythrodiol growth inhibition occurred through apoptosis, with the observation of important ROS production and DNA damage, whereas uvaol and oleanolic acid growth inhibition involved cell cycle arrest. Moreover, although all tested triterpenes did not show free radical scavenging activity using ABTS and DPPH assays, they protected against oxidative DNA damage at the concentration 10 μM. Uvaol and oleanolic and maslinic acids, tested at 10 and 100 μM, also reduced intracellular ROS level and prevented H(2)O(2)-induced oxidative injury. Overall, the results suggest that tested triterpenes may have the potential to provide significant natural defense against human breast cancer.
Collapse
Affiliation(s)
- Yosra Allouche
- Immunology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2010; 2:2428-66. [PMID: 22069560 PMCID: PMC3153165 DOI: 10.3390/toxins2102428] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/23/2010] [Accepted: 10/15/2010] [Indexed: 02/07/2023] Open
Abstract
Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”.
Collapse
|
47
|
Chen HL, Lin KW, Huang AM, Tu HY, Wei BL, Hour TC, Yen MH, Pu YS, Lin CN. Terpenoids induce cell cycle arrest and apoptosis from the stems of Celastrus kusanoi associated with reactive oxygen species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3808-3812. [PMID: 20178391 DOI: 10.1021/jf903833a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bioguided fractionation of the CHCl(3) extracts obtained from Celastrus kusanoi stems led to isolation of two new terpenoids, 3beta-hydroxy-11,14-oxo-abieta-8,12-diene (1) and 3beta-trans-(3,4-dihydroxycinnamoyloxy)-11alpha-methoxy-12-ursene (2), and four known compounds characterized by spectroscopic methods. Compounds 1 and 2 and known triterpenoid erythrodiol (3) exhibited cytotoxic activity against bladder cancer cells (NTUB1) with IC(50) values of 58.2 +/- 2.3, 160.1 +/- 60.9, and 18.3 +/- 0.5 microM, respectively. Exposure of NTUB1 to 3 (5 and 10 microM) for 24 h significantly increased the level of production of reactive oxygen species (ROS). Flow cytometric analysis showed that treatment of NTUB1 with 3 led to the cell cycle arrest at G0/G1 accompanied by an increase in the extent of apoptotic cell death after 24 h. These data suggest that the presentation of G1 phase arrest and apoptosis in 3-treated NTUB1 for 24 h was mediated through an increased amount of ROS in cells exposed to 3.
Collapse
Affiliation(s)
- Hui-Ling Chen
- Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee MS, Cha EY, Thuong PT, Kim JY, Ahn MS, Sul JY. Down-Regulation of Human Epidermal Growth Factor Receptor 2/neu Oncogene by Corosolic Acid Induces Cell Cycle Arrest and Apoptosis in NCI-N87 Human Gastric Cancer Cells. Biol Pharm Bull 2010; 33:931-7. [DOI: 10.1248/bpb.33.931] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Myung Sun Lee
- Regional Cancer Institute, Chungnam National University Hospital
| | - Eun Young Cha
- Regional Cancer Institute, Chungnam National University Hospital
| | | | - Ji Yeon Kim
- Department of Surgery and Research Institute for Medicinal Sciences, Chungnam National University School of Medicine
| | - Moon Sang Ahn
- Department of Surgery and Research Institute for Medicinal Sciences, Chungnam National University School of Medicine
| | - Ji Young Sul
- Department of Surgery and Research Institute for Medicinal Sciences, Chungnam National University School of Medicine
| |
Collapse
|
49
|
Olive Oils Modulate Fatty Acid Content and Signaling Protein Expression in Apolipoprotein E Knockout Mice Brain. Lipids 2009; 45:53-61. [DOI: 10.1007/s11745-009-3370-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 10/19/2009] [Indexed: 02/02/2023]
|