1
|
Kongsomros S, Thanunchai M, Manopwisedjaroen S, Na-Ek P, Wang SF, Taechalertpaisarn T, Thitithanyanont A. Trogocytosis with monocytes associated with increased α2,3 sialic acid expression on B cells during H5N1 influenza virus infection. PLoS One 2020; 15:e0239488. [PMID: 32946496 PMCID: PMC7500609 DOI: 10.1371/journal.pone.0239488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/07/2020] [Indexed: 11/18/2022] Open
Abstract
The immunopathogenesis of H5N1 virus has been studied intensively since it caused cross-species infection and induced high mortality to human. We previously observed the interaction between monocytes and B cells, which increased the susceptibility of B cell to H5N1 virus infection after a co-culture. Levels of α2,3 sialic acid (avian flu receptor) were also significantly increased on B cell surface in this co-culture model with unclear explanation. In this study, we aimed to determine the possible mechanism that responded for this increase in α2,3 sialic acid on B cells. Acquisition of α2,3 SA by B cells via cell contact-dependent trogocytosis was proposed. Results showed that the lack of α2,3 SA was detected on B cell surface, and B cells acquired membrane-bound α2,3 SA molecules from monocytes in H5N1-infected co-cultures. Occurrence of membrane exchange mainly relied on H5N1 infection and cell-cell contact as opposed to a mock infection and transwell. The increase in α2,3 SA on B cell surface mediated by trogocytosis was associated with the enhanced susceptibility to H5N1 infection. These observations thus provide the evidence that H5N1 influenza virus may utilize trogocytosis to expand its cell tropism and spread to immune cells despite the lack of avian flu receptor.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Maytawan Thanunchai
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | | | - Prasit Na-Ek
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sheng-Fan Wang
- Department of Medical Laboratory Sciences and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | | | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
2
|
Venkatachari NJ, Zerbato JM, Jain S, Mancini AE, Chattopadhyay A, Sluis-Cremer N, Bar-Joseph Z, Ayyavoo V. Temporal transcriptional response to latency reversing agents identifies specific factors regulating HIV-1 viral transcriptional switch. Retrovirology 2015; 12:85. [PMID: 26438393 PMCID: PMC4594640 DOI: 10.1186/s12977-015-0211-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022] Open
Abstract
Background Latent HIV-1 reservoirs are identified as one of the major challenges to achieve HIV-1 cure. Currently available strategies are associated with wide variability in outcomes both in patients and CD4+ T cell models. This underlines the critical need to develop innovative strategies to predict and recognize ways that could result in better reactivation and eventual elimination of latent HIV-1 reservoirs. Results and discussion In this study, we combined genome wide transcriptome datasets post activation with Systems Biology approach (Signaling and Dynamic Regulatory Events Miner, SDREM analyses) to reconstruct a dynamic signaling and regulatory network involved in reactivation mediated by specific activators using a latent cell line. This approach identified several critical regulators for each treatment, which were confirmed in follow-up validation studies using small molecule inhibitors. Results indicate that signaling pathways involving JNK and related factors as predicted by SDREM are essential for virus reactivation by suberoylanilide hydroxamic acid. ERK1/2 and NF-κB pathways have the foremost role in reactivation with prostratin and TNF-α, respectively. JAK-STAT pathway has a central role in HIV-1 transcription. Additional evaluation, using other latent J-Lat cell clones and primary T cell model, also confirmed that many of the cellular factors associated with latency reversing agents are similar, though minor differences are identified. JAK-STAT and NF-κB related pathways are critical for reversal of HIV-1 latency in primary resting T cells. Conclusion These results validate our combinatorial approach to predict the regulatory cellular factors and pathways responsible for HIV-1 reactivation in latent HIV-1 harboring cell line models. JAK-STAT have a role in reversal of latency in all the HIV-1 latency models tested, including primary CD4+ T cells, with additional cellular pathways such as NF-κB, JNK and ERK 1/2 that may have complementary role in reversal of HIV-1 latency. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0211-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Narasimhan J Venkatachari
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh/GSPH, Room A435, Crabtree Hall, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - Jennifer M Zerbato
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Siddhartha Jain
- Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA, 15217, USA.
| | - Allison E Mancini
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh/GSPH, Room A435, Crabtree Hall, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ziv Bar-Joseph
- Computer Science Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15217, USA.
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh/GSPH, Room A435, Crabtree Hall, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
3
|
Atanley E, van Drunen Littel-van den Hurk S. Future considerations for dendritic cell immunotherapy against chronic viral infections. Expert Rev Clin Immunol 2014; 10:801-13. [PMID: 24734867 DOI: 10.1586/1744666x.2014.907742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are multifunctional cells that are pivotal in immune defense. As such they have been explored as vaccine carriers, largely in cancer immunotherapy and against some infectious diseases including HIV and viral hepatitis. However, while the use of DCs as vaccine carrier has shown some promise in cancer immunotherapy, this approach is laborious and is subject to strict quality control, which makes it expensive. Furthermore, in some individuals chronically infected with HIV, HCV and/or HBV the numbers of circulating DCs are reduced and/or their functions impaired. In vivo expansion and mobilization of DCs with Flt3L in combination with antigen and/or adjuvant targeting to critical DC receptors may be a more effective approach to control viral replication in chronically infected HIV, HBV and/or HCV patients than current DC immunotherapy approaches.
Collapse
Affiliation(s)
- Ethel Atanley
- VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | | |
Collapse
|
4
|
Ragupathy V, Devadas K, Tang S, Wood O, Lee S, Dastyer A, Wang X, Dayton A, Hewlett I. Effect of sex steroid hormones on replication and transmission of major HIV subtypes. J Steroid Biochem Mol Biol 2013; 138:63-71. [PMID: 23542659 DOI: 10.1016/j.jsbmb.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND The HIV epidemic is expanding worldwide with an increasing number of distinct viral subtypes and circulating recombinant forms (CRFs). Out of 34 million adults living with HIV and AIDS, women account for one half of all HIV-1 infections worldwide. These gender differences in HIV pathogenesis may be attributed to sex hormones. Little is known about the role of sex hormone effects on HIV Subtypes pathogenesis. The aim of our study was to determine sex hormone effects on replication and transmissibility of HIV subtypes. METHODS Peripheral blood mononuclear cells (PBMC) and monocyte derived dendritic cells (MDDC) from male and female donors were infected with HIV subtypes A-D and CRF02_AG, CRF01_AE, MN (lab adapted), Group-O, Group-N and HIV-2 at a concentration of 5ng/ml of p24 or p27. Virus production was evaluated by measuring p24 and p27 levels in culture supernatants. Similar experiments were carried out in the presence of physiological concentrations of sex steroid hormones. R5/X4 expressions measured by flow cytometry and transmissibility was evaluated by transfer of HIV from primary dendritic cells (DC) to autologous donor PBMC. RESULTS Our results from primary PBMC and MDDC from male and female donors indicate in the absence of physiological concentrations of hormone treatment virus production was observed in three clusters; high replicating virus (subtype B and C), moderate replicative virus (subtype A, D, CRF01_AE, Group_N) and least replicative virus (strain MN). However, dose of sex steroid hormone treatment influenced HIV replication and transmission kinetics in PBMC, DCs and cell lines. Such effects were inconsistent between donors and HIV subtypes. Sex hormone effects on HIV entry receptors (CCR5/CXCR4) did not correlate with virus production. CONCLUSIONS Subtypes B and C showed higher replication in PBMC from males and females and were transmitted more efficiently through DC to male and female PBMC compared with other HIV-1 subtypes, HIV-1 Group O and HIV-2. These findings are consistent with increased worldwide prevalence of subtype B and C compared to other subtypes. Sex steroid hormones had variable effect on replication or transmission of different subtypes. These findings suggest that subtype, gender and sex hormones may play a crucial role in the replication and transmission of HIV.
Collapse
Affiliation(s)
- Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Could CD4 capture by CD8+ T cells play a role in HIV spreading? J Biomed Biotechnol 2010; 2010:907371. [PMID: 20368790 PMCID: PMC2846356 DOI: 10.1155/2010/907371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/15/2010] [Indexed: 11/17/2022] Open
Abstract
CD8(+) T cells have been shown to capture plasma membrane fragments from target cells expressing their cognate antigen, a process termed "trogocytosis". Here, we report that human CD4, the Human Immunodeficiency Virus (HIV) receptor, can be found among the proteins transferred by trogocytosis. CD4 is expressed in a correct orientation after its capture by CD8(+) T cells as shown by its detection using conformational antibodies and its ability to allow HIV binding on recipient CD8(+) T cells. Although we could not find direct evidence for infection of CD8(+) T cells having captured CD4 by HIV, CD4 was virologically functional on these cells as it conferred on them the ability to undergo syncytia formation induced by HIV-infected MOLT-4 cells. Our results show that acquisition of CD4 by CD8(+) T cells via trogocytosis could play a previously unappreciated role for CD8(+) T cells in HIV spreading possibly without leading to their infection.
Collapse
|