1
|
Structure of the trypanosome paraflagellar rod and insights into non-planar motility of eukaryotic cells. Cell Discov 2021; 7:51. [PMID: 34257277 PMCID: PMC8277818 DOI: 10.1038/s41421-021-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic flagella (synonymous with cilia) rely on a microtubule-based axoneme, together with accessory filaments to carryout motility and signaling functions. While axoneme structures are well characterized, 3D ultrastructure of accessory filaments and their axoneme interface are mostly unknown, presenting a critical gap in understanding structural foundations of eukaryotic flagella. In the flagellum of the protozoan parasite Trypanosoma brucei (T. brucei), the axoneme is accompanied by a paraflagellar rod (PFR) that supports non-planar motility and signaling necessary for disease transmission and pathogenesis. Here, we employed cryogenic electron tomography (cryoET) with sub-tomographic averaging, to obtain structures of the PFR, PFR-axoneme connectors (PACs), and the axonemal central pair complex (CPC). The structures resolve how the 8 nm repeat of the axonemal tubulin dimer interfaces with the 54 nm repeat of the PFR, which consist of proximal, intermediate, and distal zones. In the distal zone, stacked "density scissors" connect with one another to form a "scissors stack network (SSN)" plane oriented 45° to the axoneme axis; and ~370 parallel SSN planes are connected by helix-rich wires into a paracrystalline array with ~90% empty space. Connections from these wires to the intermediate zone, then to overlapping layers of the proximal zone and to the PACs, and ultimately to the CPC, point to a contiguous pathway for signal transmission. Together, our findings provide insights into flagellum-driven, non-planar helical motility of T. brucei and have broad implications ranging from cell motility and tensegrity in biology, to engineering principles in bionics.
Collapse
|
2
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei. mSphere 2021; 6:6/1/e01090-20. [PMID: 33568455 PMCID: PMC8141408 DOI: 10.1128/msphere.01090-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Trypanosoma brucei is the protozoan parasite responsible for sleeping sickness, a lethal vector-borne disease. T. brucei has a single flagellum (cilium) that plays critical roles in transmission and pathogenesis. An emerging concept is that the flagellum is organized into subdomains, each having specialized composition and function. The overall flagellum proteome has been well studied, but a critical knowledge gap is the protein composition of individual subdomains. We have tested whether APEX-based proximity proteomics could be used to examine the protein composition of T. brucei flagellum subdomains. As APEX-based labeling has not previously been described in T. brucei, we first fused APEX2 to the DRC1 subunit of the nexin-dynein regulatory complex, a well-characterized axonemal complex. We found that DRC1-APEX2 directs flagellum-specific biotinylation, and purification of biotinylated proteins yields a DRC1 “proximity proteome” having good overlap with published proteomes obtained from purified axonemes. Having validated the use of APEX2 in T. brucei, we next attempted to distinguish flagellar subdomains by fusing APEX2 to a flagellar membrane protein that is restricted to the flagellum tip, AC1, and another one that is excluded from the tip, FS179. Fluorescence microscopy demonstrated subdomain-specific biotinylation, and principal-component analysis showed distinct profiles between AC1-APEX2 and FS179-APEX2. Comparing these two profiles allowed us to identify an AC1 proximity proteome that is enriched for tip proteins, including proteins involved in signaling. Our results demonstrate that APEX2-based proximity proteomics is effective in T. brucei and can be used to resolve the proteome composition of flagellum subdomains that cannot themselves be readily purified. IMPORTANCE Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Given the essential and multifunctional role of the T. brucei flagellum, there is need for approaches that enable proteomic analysis of individual subdomains. Our work establishes that APEX2 proximity labeling can, indeed, be implemented in the biochemical environment of T. brucei and has allowed identification of proximity proteomes for different flagellar subdomains that cannot be purified. This capacity opens the possibility to study the composition and function of other compartments. We expect this approach may be extended to other eukaryotic pathogens and will enhance the utility of T. brucei as a model organism to study ciliopathies, heritable human diseases in which cilium function is impaired.
Collapse
|
4
|
Alves AA, Gabriel HB, Bezerra MJR, de Souza W, Vaughan S, Cunha-E-Silva NL, Sunter JD. Control of assembly of extra-axonemal structures: the paraflagellar rod of trypanosomes. J Cell Sci 2020; 133:jcs242271. [PMID: 32295845 PMCID: PMC7272336 DOI: 10.1242/jcs.242271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic flagella are complex microtubule-based organelles that, in many organisms, contain extra-axonemal structures, such as the outer dense fibres of mammalian sperm and the paraflagellar rod (PFR) of trypanosomes. Flagellum assembly is a complex process occurring across three main compartments, the cytoplasm, the transition zone and the flagellum itself. The process begins with the translation of protein components followed by their sorting and trafficking into the flagellum, transport to the assembly site and incorporation. Flagella are formed from over 500 proteins and the principles governing assembly of the axonemal components are relatively clear. However, the coordination and location of assembly of extra-axonemal structures are less clear. We have discovered two cytoplasmic proteins in Trypanosoma brucei that are required for PFR formation, PFR assembly factors 1 and 2 (PFR-AF1 and PFR-AF2, respectively). Deletion of either PFR-AF1 or PFR-AF2 dramatically disrupted PFR formation and caused a reduction in the amount of major PFR proteins. The existence of cytoplasmic factors required for PFR formation aligns with the concept that processes facilitating axoneme assembly occur across multiple compartments, and this is likely a common theme for extra-axonemal structure assembly.
Collapse
Affiliation(s)
- Aline A Alves
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Heloisa B Gabriel
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Maria J R Bezerra
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
5
|
Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc Natl Acad Sci U S A 2017; 114:11757-11762. [PMID: 29078369 DOI: 10.1073/pnas.1712311114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paratrypanosoma confusum is a monoxenous kinetoplastid flagellate that constitutes the most basal branch of the highly diverse parasitic trypanosomatids, which include human pathogens Trypanosoma and Leishmania This makes Paratrypanosoma uniquely informative for the evolution of obligatory parasitism from free-living lifestyle and the evolution of human parasitism in some trypanosomatid lineages. It has typical promastigote morphology but also forms surface-attached haptomonads and amastigotes. Haptomonads form by attachment to a surface via a large bulge at the base of the flagellum, which is then remodeled into a thin attachment pad associated with flagellum shortening. Promastigotes and haptomonads multiply by binary division, and the progeny of a haptomonad can either remain attached or grow a flagellum and resume swimming. Whole genome sequencing and transcriptome profiling, in combination with analysis of the cell ultrastructure, reveal how the cell surface and metabolism are adapted to parasitism and how characteristic cytoskeletal features are conserved. Our data demonstrate that surface attachment by the flagellum and the flagellar pocket, a Leishmania-like flagellum attachment zone, and a Trypanosoma cruzi-like cytostome are ancestral features, while evolution of extant trypanosomatids, including the human parasites, is associated with genome streamlining and diversification of membrane proteins.
Collapse
|
6
|
Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS One 2017; 12:e0174165. [PMID: 28328988 PMCID: PMC5362078 DOI: 10.1371/journal.pone.0174165] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/04/2017] [Indexed: 02/02/2023] Open
Abstract
In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.
Collapse
|
7
|
Novel Effects of Lapatinib Revealed in the African Trypanosome by Using Hypothesis-Generating Proteomics and Chemical Biology Strategies. Antimicrob Agents Chemother 2017; 61:AAC.01865-16. [PMID: 27872081 DOI: 10.1128/aac.01865-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei Lapatinib, a human epidermal growth factor receptor (EGFR) inhibitor, can cure 25% of trypanosome-infected mice, although the parasite lacks EGFR-like tyrosine kinases. Four trypanosome protein kinases associate with lapatinib, suggesting that the drug may be a multitargeted inhibitor of phosphoprotein signaling in the bloodstream trypanosome. Phosphoprotein signaling pathways in T. brucei have diverged significantly from those in humans. As a first step in the evaluation of the polypharmacology of lapatinib in T. brucei, we performed a proteome-wide phosphopeptide analysis before and after drug addition to cells. Lapatinib caused dephosphorylation of Ser/Thr sites on proteins predicted to be involved in scaffolding, gene expression, and intracellular vesicle trafficking. To explore the perturbation of phosphotyrosine (pTyr)-dependent signaling by lapatinib, proteins in lapatinib-susceptible pTyr complexes were identified by affinity chromatography; they included BILBO-1, MORN, and paraflagellar rod (PFR) proteins PFR1 and PFR2. These data led us to hypothesize that lapatinib disrupts PFR functions and/or endocytosis in the trypanosome. In direct chemical biology tests of these speculations, lapatinib-treated trypanosomes (i) lost segments of the PFR inside the flagellum, (ii) were inhibited in the endocytosis of transferrin, and (iii) changed morphology from long and slender to rounded. Thus, our hypothesis-generating phosphoproteomics strategy predicted novel physiological pathways perturbed by lapatinib, which were verified experimentally. General implications of this workflow for identifying signaling pathways perturbed by drug hits discovered in phenotypic screens are discussed.
Collapse
|
8
|
Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation. Sci Rep 2016; 6:35826. [PMID: 27779220 PMCID: PMC5078803 DOI: 10.1038/srep35826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod.
Collapse
|
9
|
Krogan, PhD NJ, Babu, PhD M. Mapping the Protein-Protein Interactome Networks Using Yeast Two-Hybrid Screens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:187-214. [PMID: 26621469 PMCID: PMC7120425 DOI: 10.1007/978-3-319-23603-2_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The yeast two-hybrid system (Y2H) is a powerful method to identify binary protein-protein interactions in vivo. Here we describe Y2H screening strategies that use defined libraries of open reading frames (ORFs) and cDNA libraries. The array-based Y2H system is well suited for interactome studies of small genomes with an existing ORFeome clones preferentially in a recombination based cloning system. For large genomes, pooled library screening followed by Y2H pairwise retests may be more efficient in terms of time and resources, but multiple sampling is necessary to ensure comprehensive screening. While the Y2H false positives can be efficiently reduced by using built-in controls, retesting, and evaluation of background activation; implementing the multiple variants of the Y2H vector systems is essential to reduce the false negatives and ensure comprehensive coverage of an interactome.
Collapse
Affiliation(s)
- Nevan J. Krogan, PhD
- grid.266102.10000000122976811Cellular and Molecular Pharmacology, Univ of California, San Francisco, SAN FRANCISCO, California USA
| | - Mohan Babu, PhD
- grid.57926.3f0000000419369131Department of Biochemistry, University of Regina, Regina, Saskatchewan Canada
| |
Collapse
|
10
|
Florimond C, Sahin A, Vidilaseris K, Dong G, Landrein N, Dacheux D, Albisetti A, Byard EH, Bonhivers M, Robinson DR. BILBO1 is a scaffold protein of the flagellar pocket collar in the pathogen Trypanosoma brucei. PLoS Pathog 2015; 11:e1004654. [PMID: 25822645 PMCID: PMC4379179 DOI: 10.1371/journal.ppat.1004654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/04/2015] [Indexed: 01/23/2023] Open
Abstract
The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the annulus/horseshoe shaped flagellar pocket collar (FPC). To date the only known component of the FPC is the protein BILBO1, a cytoskeleton protein that has a N-terminus that contains an ubiquitin-like fold, two EF-hand domains, plus a large C-terminal coiled-coil domain. BILBO1 has been shown to bind calcium, but in this work we demonstrate that mutating either or both calcium-binding domains prevents calcium binding. The expression of deletion or mutated forms of BILBO1 in trypanosomes and mammalian cells demonstrate that the coiled-coil domain is necessary and sufficient for the formation of BILBO1 polymers. This is supported by Yeast two-hybrid analysis. Expression of full-length BILBO1 in mammalian cells induces the formation of linear polymers with comma and globular shaped termini, whereas mutation of the canonical calcium-binding domain resulted in the formation of helical polymers and mutation in both EF-hand domains prevented the formation of linear polymers. We also demonstrate that in T. brucei the coiled-coil domain is able to target BILBO1 to the FPC and to form polymers whilst the EF-hand domains influence polymers shape. This data indicates that BILBO1 has intrinsic polymer forming properties and that binding calcium can modulate the form of these polymers. We discuss whether these properties can influence the formation of the FPC. Trypanosoma brucei avoids destruction by, in part, changing its surface glycoprotein coat, which is trafficked onto the cell surface via an invagination of the cell surface called the flagellar pocket. The pocket is essential for pathogenicity. The distal membrane of the pocket is anchored to a cytoskeleton structure called the flagellar pocket collar (FPC). The FPC is a ring/horseshoe shaped structure, which itself is attached to the single copy flagellum of the parasite. How the “ring” shape of the collar is formed is not understood. Moreover, the only known protein component of the FPC is the protein BILBO1. BILBO1 is modular and has a distinct N-terminal domain, two EF-hand calcium-binding domains and a large C-terminal coiled-coil domain. Here we demonstrate that mutating the EF hand domains prevent calcium binding and that the coiled-coil domain is not only sufficient to target to the collar, but can also form polymers in mammalian cells. Mutating either or both calcium-binding domains of BILBO1 influences polymer formation and type when expressed in mammalian and trypanosome cells. Our premise is that BILBO1 has intrinsic polymer forming properties that are essential for the flagellar pocket collar making the pocket a target for intervention.
Collapse
Affiliation(s)
- Célia Florimond
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Annelise Sahin
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Keni Vidilaseris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Gang Dong
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Nicolas Landrein
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Denis Dacheux
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Bordeaux, France
| | - Anna Albisetti
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Edward H Byard
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Mélanie Bonhivers
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Derrick R Robinson
- University Bordeaux, Microbiologie Fondamentale et Pathogenicité, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| |
Collapse
|
11
|
Brown RWB, Collingridge PW, Gull K, Rigden DJ, Ginger ML. Evidence for loss of a partial flagellar glycolytic pathway during trypanosomatid evolution. PLoS One 2014; 9:e103026. [PMID: 25050549 PMCID: PMC4106842 DOI: 10.1371/journal.pone.0103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael L. Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
A new strategy of RNA interference that targets heterologous sequences reveals CITFA1 as an essential component of class I transcription factor A in Trypanosoma brucei. EUKARYOTIC CELL 2014; 13:785-95. [PMID: 24728195 DOI: 10.1128/ec.00014-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Conditional gene silencing by RNA interference in Trypanosoma brucei can be inconclusive if knockdowns are inefficient or have off-target effects. To enable efficient, specific silencing of single-copy genes in mammalian-infective, bloodstream form trypanosomes, we developed a system that targets the heterologous and functional Trypanosoma cruzi U2AF35 3' untranslated region (UTR) (Tc3) or, alternatively, the sequence of the PTP tag, which can be fused to any mRNA of interest. Two cell lines were created, single-marker Tc3 (smTc3) and smPTP, which conditionally express Tc3 and PTP double-stranded RNA (dsRNA), respectively. The system depends on manipulating both alleles of the gene of interest so that cells exclusively express the target mRNA as a fusion to one of these heterologous sequences. We generated allele integration vectors in which the C-terminal part of a gene's coding sequence can be fused to either heterologous sequence in a single cloning step. We first tested this system with CITFA7, which encodes a well-characterized subunit of the class I transcription factor A (CITFA), an essential factor for transcription initiation by RNA polymerase I. Targeting either Tc3 or PTP fused to the CITFA7 mRNA resulted in gene knockdowns that were as efficient and specific as targeting the endogenous CITFA7 mRNA. Moreover, application of this system to CITFA1, which could not be silenced by established methods, demonstrated that the gene encodes an essential CITFA subunit that mediates binding of the transcription factor complex to RNA polymerase I promoters.
Collapse
|
13
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
14
|
Ginger ML, Collingridge PW, Brown RWB, Sproat R, Shaw MK, Gull K. Calmodulin is required for paraflagellar rod assembly and flagellum-cell body attachment in trypanosomes. Protist 2013; 164:528-40. [PMID: 23787017 DOI: 10.1016/j.protis.2013.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023]
Abstract
In the flagellum of the African sleeping sickness parasite Trypanosoma brucei calmodulin (CaM) is found within the paraflagellar rod (PFR), an elaborate extra-axonemal structure, and the axoneme. In dissecting mechanisms of motility regulation we analysed CaM function using RNAi. Unexpectedly CaM depletion resulted in total and catastrophic failure in PFR assembly; even connections linking axoneme to PFR failed to form following CaM depletion. This provides an intriguing parallel with the role in the green alga Chlamydomonas of a CaM-related protein in docking outer-dynein arms to axoneme outer-doublet microtubules. Absence of CaM had no discernible effect on axoneme assembly, but the failure in PFR assembly was further compounded by loss of the normal linkage between PFR and axoneme to the flagellum attachment zone of the cell body. Thus, flagellum detachment was a secondary, time-dependent consequence of CaM RNAi, and coincided with the loss of normal trypomastigote morphology, thereby linking the presence of PFR architecture with maintenance of cell form, as well as cell motility. Finally, wider comparison between the flagellum detachment phenotypes of RNAi mutants for CaM and the FLA1 glycoprotein potentially provides new perspective into the function of the latter into establishing and maintaining flagellum-cell body attachment.
Collapse
Affiliation(s)
- Michael L Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The decoding of the Tritryp reference genomes nearly 7 years ago provided a first peek into the biology of pathogenic trypanosomatids and a blueprint that has paved the way for genome-wide studies. Although 60-70% of the predicted protein coding genes in Trypanosoma brucei, Trypanosoma cruzi and Leishmania major remain unannotated, the functional genomics landscape is rapidly changing. Facilitated by the advent of next-generation sequencing technologies, improved structural and functional annotation and genes and their products are emerging. Information is also growing for the interactions between cellular components as transcriptomes, regulatory networks and metabolomes are characterized, ushering in a new era of systems biology. Simultaneously, the launch of comparative sequencing of multiple strains of kinetoplastids will finally lead to the investigation of a vast, yet to be explored, evolutionary and pathogenomic space.
Collapse
Affiliation(s)
- J Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
16
|
Abstract
Trypanosoma brucei is the etiological agent of devastating parasitic disease in humans and livestock in sub-saharan Africa. The pathogenicity and growth of the parasite are intimately linked to its shape and form. This is in turn derived from a highly ordered microtubule cytoskeleton that forms a tightly arrayed cage directly beneath the pellicular membrane and numerous other cytoskeletal structures such as the flagellum. The parasite undergoes extreme changes in cellular morphology during its life cycle and cell cycles which require a high level of integration and coordination of cytoskeletal processes. In this review we will discuss the role that proteomics techniques have had in advancing our understanding of the molecular composition of the cytoskeleton and its functions. We then consider future opportunities for the application of these techniques in terms of addressing some of the unanswered questions of trypanosome cytoskeletal cell biology with particular focus on the differences in the composition and organisation of the cytoskeleton through the trypanosome life-cycle.
Collapse
|
17
|
Price HP, Hodgkinson MR, Curwen RS, MacLean LM, Brannigan JA, Carrington M, Smith BA, Ashford DA, Stark M, Smith DF. The orthologue of Sjögren's syndrome nuclear autoantigen 1 (SSNA1) in Trypanosoma brucei is an immunogenic self-assembling molecule. PLoS One 2012; 7:e31842. [PMID: 22363749 PMCID: PMC3282761 DOI: 10.1371/journal.pone.0031842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
Primary Sjögren's Syndrome (PSS) is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14) is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13) and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle.
Collapse
Affiliation(s)
- Helen P Price
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012; 33:109-18. [DOI: 10.1016/j.tips.2011.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 01/08/2023]
|
19
|
Teixeira SM, de Paiva RMC, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35:1-17. [PMID: 22481868 PMCID: PMC3313497 DOI: 10.1590/s1415-47572012005000008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023] Open
Abstract
In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
20
|
Lacomble S, Vaughan S, Deghelt M, Moreira-Leite FF, Gull K. A Trypanosoma brucei protein required for maintenance of the flagellum attachment zone and flagellar pocket ER domains. Protist 2011; 163:602-15. [PMID: 22186015 PMCID: PMC3405529 DOI: 10.1016/j.protis.2011.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 01/24/2023]
Abstract
Trypanosomes and Leishmanias are important human parasites whose cellular architecture is centred on the single flagellum. In trypanosomes, this flagellum is attached to the cell along a complex flagellum attachment zone (FAZ), comprising flagellar and cytoplasmic components, the integrity of which is required for correct cell morphogenesis and division. The cytoplasmic FAZ cytoskeleton is conspicuously associated with a sheet of endoplasmic reticulum termed the ‘FAZ ER’. In the present work, 3D electron tomography of bloodstream form trypanosomes was used to clarify the nature of the FAZ ER. We also identified TbVAP, a T. brucei protein whose knockdown by RNAi in procyclic form cells leads to a dramatic reduction in the FAZ ER, and in the ER associated with the flagellar pocket. TbVAP is an orthologue of VAMP-associated proteins (VAPs), integral ER membrane proteins whose mutation in humans has been linked to familial motor neuron disease. The localisation of tagged TbVAP and the phenotype of TbVAP RNAi in procyclic form trypanosomes are consistent with a function for TbVAP in the maintenance of sub-populations of the ER associated with the FAZ and the flagellar pocket. Nevertheless, depletion of TbVAP did not affect cell viability or cell cycle progression.
Collapse
Affiliation(s)
- Sylvain Lacomble
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Kalidas S, Li Q, Phillips MA. A Gateway® compatible vector for gene silencing in bloodstream form Trypanosoma brucei. Mol Biochem Parasitol 2011; 178:51-5. [PMID: 21420443 PMCID: PMC3101333 DOI: 10.1016/j.molbiopara.2011.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 02/04/2023]
Abstract
RNA interference is the most rapid method for generation of conditional knockdown mutants in Trypanosoma brucei. The dual T7 promoter (pZJM) and the stem-loop vectors have been widely used to generate stable inducible RNAi cell lines with the latter providing tighter regulatory control. However, the steps for cloning stem-loop constructs are cumbersome requiring either multiple cloning steps or multi-fragment ligation reactions. We report the development of a vector (pTrypRNAiGate) derived from pLEW100 that utilizes the Gateway® recombination system to facilitate easy production of hairpin RNA constructs. This approach allows the final stem-loop RNAi construct to be generated from a single cloning step of the PCR-derived gene fragment followed by an in vitro recombination reaction. The new vector facilitates high-throughput applications for gene silencing and provides a tool for functional genomics in T. brucei.
Collapse
Affiliation(s)
- Savitha Kalidas
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| | - Qiong Li
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| | - Margaret A Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, Texas 75390-9041
| |
Collapse
|
22
|
Structure of Trypanosoma brucei flagellum accounts for its bihelical motion. Proc Natl Acad Sci U S A 2011; 108:11105-8. [PMID: 21690369 DOI: 10.1073/pnas.1103634108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei is a parasitic protozoan that causes African sleeping sickness. It contains a flagellum required for locomotion and viability. In addition to a microtubular axoneme, the flagellum contains a crystalline paraflagellar rod (PFR) and connecting proteins. We show here, by cryoelectron tomography, the structure of the flagellum in three bending states. The PFR lattice in straight flagella repeats every 56 nm along the length of the axoneme, matching the spacing of the connecting proteins. During flagellar bending, the PFR crystallographic unit cell lengths remain constant while the interaxial angles vary, similar to a jackscrew. The axoneme drives the expansion and compression of the PFR lattice. We propose that the PFR modifies the in-plane axoneme motion to produce the characteristic trypanosome bihelical motility as captured by high-speed light microscope videography.
Collapse
|
23
|
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 2009; 40:135-48. [PMID: 19879876 PMCID: PMC2813431 DOI: 10.1016/j.ijpara.2009.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/06/2023]
Abstract
The role of the eukaryotic flagellum in cell motility is well established but its importance in many other aspects of cell biology, from cell signalling to developmental regulation, is becoming increasingly apparent. In addition to this diversity of function the core structure of the flagellum, which has been inherited from the earliest ancestor of all eukaryotes, is embellished with a range of extra-axonemal structures in many organisms. One of the best studied of these structures is the paraflagellar rod of kinetoplastid protozoa in which the morphological characteristics have been well defined and some of the major protein constituents have been identified. Here we discuss recent advances in the identification of further molecular components of the paraflagellar rod, how these impact on our understanding of its function and regulation and the implications for therapeutic intervention in a number of devastating human pathologies.
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|