1
|
Sun CL, Van Gilst M, Crowder CM. Hypoxia-induced mitochondrial stress granules. Cell Death Dis 2023; 14:448. [PMID: 37468471 PMCID: PMC10356818 DOI: 10.1038/s41419-023-05988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Perturbations of mitochondrial proteostasis have been associated with aging, neurodegenerative diseases, and recently with hypoxic injury. While examining hypoxia-induced mitochondrial protein aggregation in C. elegans, we found that sublethal hypoxia, sodium azide, or heat shock-induced abundant ethidium bromide staining mitochondrial granules that preceded evidence of protein aggregation. Genetic manipulations that reduce cellular and organismal hypoxic death block the formation of these mitochondrial stress granules (mitoSG). Knockdown of mitochondrial nucleoid proteins also blocked the formation of mitoSG by a mechanism distinct from the mitochondrial unfolded protein response. Lack of the major mitochondrial matrix protease LONP-1 resulted in the constitutive formation of mitoSG without external stress. Ethidium bromide-staining RNA-containing mitochondrial granules were also observed in rat cardiomyocytes treated with sodium azide, a hypoxia mimetic. Mitochondrial stress granules are an early mitochondrial pathology controlled by LONP and the nucleoid, preceding hypoxia-induced protein aggregation.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Department of Genome Science, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
| |
Collapse
|
2
|
Lipinski RJ, Krauss RS. Gene-environment interactions in birth defect etiology: Challenges and opportunities. Curr Top Dev Biol 2023; 152:1-30. [PMID: 36707208 PMCID: PMC9942595 DOI: 10.1016/bs.ctdb.2022.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Birth defects are relatively common congenital outcomes that significantly impact affected individuals, their families, and communities. Effective development and deployment of prevention and therapeutic strategies for these conditions requires sufficient understanding of etiology, including underlying genetic and environmental causes. Tremendous progress has been made in defining the genetic basis of familial and syndromic forms of birth defects. However, the majority of birth defect cases are considered nonsyndromic and thought to result from multifactorial gene-environment interactions. While substantial advances have been made in elucidating the genetic landscape of these etiologically complex conditions, significant biological and technical constraints have stymied progress toward a refined knowledge of environmental risk factors. Defining specific gene-environment interactions in birth defect etiology is even more challenging. However, progress has been made, including demonstration of critical proofs of concept and development of new conceptual and technical approaches for resolving complex gene-environment interactions. In this review, we discuss current views of multifactorial birth defect etiology, comparing them with other diseases that also involve gene-environment interactions, including primary immunodeficiency and cancer. We describe how various model systems have illuminated mechanisms of multifactorial etiology and these models' individual strengths and weaknesses. Finally, suggestions for areas of future emphasis are proposed.
Collapse
Affiliation(s)
- Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States,Corresponding authors: ;
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Corresponding authors: ;
| |
Collapse
|
3
|
Hemphill C, Pylarinou-Sinclair E, Itani O, Scott B, Crowder CM, Van Gilst MR. Daf-16 mediated repression of cytosolic ribosomal protein genes facilitates a hypoxia sensitive to hypoxia resistant transformation in long-lived germline mutants. PLoS Genet 2022; 18:e1009672. [PMID: 35622856 PMCID: PMC9197040 DOI: 10.1371/journal.pgen.1009672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/14/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
In C. elegans, germline ablation leads to long life span and stress resistance. It has been reported that mutations that block oogenesis or an upstream step in germline development confer strong resistance to hypoxia. We demonstrate here that the hypoxia resistance of sterile mutants is dependent on developmental stage and age. In just a 12-hour period, sterile animals transform from hypoxia sensitive L4 larvae into hypoxia resistant adults. Since this transformation occurs in animals with no germline, the physiological programs that determine hypoxia sensitivity in germline mutants occur independently of germline signals and instead rely on signals from somatic tissues. Furthermore, we found two distinct mechanisms of hypoxia resistance in germline deficient animals. First, a DAF-16/FoxO independent mechanism that occurs in all hypoxia resistant sterile adults and, second, a DAF-16/FoxO dependent mechanism that confers an added layer of resistance, or “super-resistance”, to animals with no germline as they age past day 1 of adulthood. RNAseq data showed that genes involved in both cytosolic and mitochondrial protein translation are repressed in sterile adults and further repressed only in germline deficient mutants as they age. Importantly, mutation of daf-16 specifically blocked the repression of cytosolic ribosomal protein genes, but not mitochondrial ribosomal protein genes, implicating DAF-16/FoxO mediated repression of cytosolic ribosomal protein genes as a mechanism of hypoxia super-resistance. Consistent with this hypothesis, the hypoxia super-resistance of aging germline deficient adults was also suppressed by dual mutation of ncl-1 and larp-1, two regulators of protein translation and ribosomal protein abundance. These studies provide novel insight into a profound physiological transformation that takes place in germline mutants during development, showing that some of the unique physiological properties of these long-lived animals are derived from developmentally dependent DAF-16/FoxO mediated repression of genes involved in cytosolic protein translation.
Collapse
Affiliation(s)
- Cassidy Hemphill
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Evye Pylarinou-Sinclair
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Omar Itani
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Barbara Scott
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - C. Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Marc Ryan Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
4
|
Yan J, Sun CL, Shin S, Van Gilst M, Crowder CM. Effect of the mitochondrial unfolded protein response on hypoxic death and mitochondrial protein aggregation. Cell Death Dis 2021; 12:711. [PMID: 34267182 PMCID: PMC8282665 DOI: 10.1038/s41419-021-03979-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria are the main oxygen consumers in cells and as such are the primary organelle affected by hypoxia. All hypoxia pathology presumably derives from the initial mitochondrial dysfunction. An early event in hypoxic pathology in C. elegans is disruption of mitochondrial proteostasis with induction of the mitochondrial unfolded protein response (UPRmt) and mitochondrial protein aggregation. Here in C. elegans, we screen through RNAis and mutants that confer either strong resistance to hypoxic cell death or strong induction of the UPRmt to determine the relationship between hypoxic cell death, UPRmt activation, and hypoxia-induced mitochondrial protein aggregation (HIMPA). We find that resistance to hypoxic cell death invariantly mitigated HIMPA. We also find that UPRmt activation invariantly mitigated HIMPA. However, UPRmt activation was neither necessary nor sufficient for resistance to hypoxic death and vice versa. We conclude that UPRmt is not necessarily hypoxia protective against cell death but does protect from mitochondrial protein aggregation, one of the early hypoxic pathologies in C. elegans.
Collapse
Affiliation(s)
- Junyi Yan
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA.,Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, WA, 98109, USA.,Department of Anesthesiology, Central Hospital of Changdian, 118214, Dandong, Liaoning, China
| | - Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA.,Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Seokyung Shin
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA.,Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, WA, 98109, USA.,Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA.,Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA. .,Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, WA, 98109, USA. .,Department of Genome Science, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
5
|
Itani OA, Zhong X, Tang X, Scott BA, Yan JY, Flibotte S, Lim Y, Hsieh AC, Bruce JE, Van Gilst M, Crowder CM. Coordinate Regulation of Ribosome and tRNA Biogenesis Controls Hypoxic Injury and Translation. Curr Biol 2020; 31:128-137.e5. [PMID: 33157031 DOI: 10.1016/j.cub.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
The translation machinery is composed of a myriad of proteins and RNAs whose levels must be coordinated to efficiently produce proteins without wasting energy or substrate. However, protein synthesis is clearly not always perfectly tuned to its environment, as disruption of translation machinery components can lengthen lifespan and stress survival. While much has been learned from bacteria and yeast about translational regulation, much less is known in metazoans. In a screen for mutations protecting C. elegans from hypoxic stress, we isolated multiple genes impacting protein synthesis: a ribosomal RNA helicase gene, tRNA biosynthesis genes, and a gene controlling amino acid availability. To define better the mechanisms by which these genes impact protein synthesis, we performed a second screen for suppressors of the conditional developmental arrest phenotype of the RNA helicase mutant and identified genes involved in ribosome biogenesis. Surprisingly, these suppressor mutations restored normal hypoxic sensitivity and protein synthesis to the tRNA biogenesis mutants, but not to the mutant reducing amino acid uptake. Proteomic analysis demonstrated that reduced tRNA biosynthetic activity produces a selective homeostatic reduction in ribosomal subunits, thereby offering a mechanism for the suppression results. Our study uncovers an unrecognized higher-order-translation regulatory mechanism in a metazoan whereby ribosome biogenesis genes communicate with genes controlling tRNA abundance matching the global rate of protein synthesis with available resources.
Collapse
Affiliation(s)
- Omar A Itani
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - Xuefei Zhong
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Barbara A Scott
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - Jun Yi Yan
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA; Department of Anesthesiology, Central Hospital of Changdian, Dandong, Liaoning 118214, China
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Yiting Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6420, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA; Mitochondria and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| |
Collapse
|
6
|
Heimbucher T, Hog J, Gupta P, Murphy CT. PQM-1 controls hypoxic survival via regulation of lipid metabolism. Nat Commun 2020; 11:4627. [PMID: 33009389 PMCID: PMC7532158 DOI: 10.1038/s41467-020-18369-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/31/2020] [Indexed: 12/25/2022] Open
Abstract
Animals have evolved responses to low oxygen conditions to ensure their survival. Here, we have identified the C. elegans zinc finger transcription factor PQM-1 as a regulator of the hypoxic stress response. PQM-1 is required for the longevity of insulin signaling mutants, but surprisingly, loss of PQM-1 increases survival under hypoxic conditions. PQM-1 functions as a metabolic regulator by controlling oxygen consumption rates, suppressing hypoxic glycogen levels, and inhibiting the expression of the sorbitol dehydrogenase-1 SODH-1, a crucial sugar metabolism enzyme. PQM-1 promotes hypoxic fat metabolism by maintaining the expression of the stearoyl-CoA desaturase FAT-7, an oxygen consuming, rate-limiting enzyme in fatty acid biosynthesis. PQM-1 activity positively regulates fat transport to developing oocytes through vitellogenins under hypoxic conditions, thereby increasing survival rates of arrested progeny during hypoxia. Thus, while pqm-1 mutants increase survival of mothers, ultimately this loss is detrimental to progeny survival. Our data support a model in which PQM-1 controls a trade-off between lipid metabolic activity in the mother and her progeny to promote the survival of the species under hypoxic conditions. Animals respond to hypoxic stress by adjusting metabolic processes to balance survival and reproduction. Here the authors identify the transcription factor PQM-1 as a metabolic regulator that balances hypoxic lipid and carbohydrate metabolism in C. elegans to limit somatic integrity and promote progeny survival.
Collapse
Affiliation(s)
- Thomas Heimbucher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA. .,Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany.
| | - Julian Hog
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany
| | - Piyush Gupta
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
7
|
DAF-16/FoxO in Caenorhabditis elegans and Its Role in Metabolic Remodeling. Cells 2020; 9:cells9010109. [PMID: 31906434 PMCID: PMC7017163 DOI: 10.3390/cells9010109] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
DAF-16, the only forkhead box transcription factors class O (FoxO) homolog in Caenorhabditis elegans, integrates signals from upstream pathways to elicit transcriptional changes in many genes involved in aging, development, stress, metabolism, and immunity. The major regulator of DAF-16 activity is the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway, reduction of which leads to lifespan extension in worms, flies, mice, and humans. In C. elegans daf-2 mutants, reduced IIS leads to a heterochronic activation of a dauer survival program during adulthood. This program includes elevated antioxidant defense and a metabolic shift toward accumulation of carbohydrates (i.e., trehalose and glycogen) and triglycerides, and activation of the glyoxylate shunt, which could allow fat-to-carbohydrate conversion. The longevity of daf-2 mutants seems to be partially supported by endogenous trehalose, a nonreducing disaccharide that mammals cannot synthesize, which points toward considerable differences in downstream mechanisms by which IIS regulates aging in distinct groups.
Collapse
|
8
|
Fuellen G, Jansen L, Cohen AA, Luyten W, Gogol M, Simm A, Saul N, Cirulli F, Berry A, Antal P, Köhling R, Wouters B, Möller S. Health and Aging: Unifying Concepts, Scores, Biomarkers and Pathways. Aging Dis 2019; 10:883-900. [PMID: 31440392 PMCID: PMC6675520 DOI: 10.14336/ad.2018.1030] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Despite increasing research efforts, there is a lack of consensus on defining aging or health. To understand the underlying processes, and to foster the development of targeted interventions towards increasing one's health, there is an urgent need to find a broadly acceptable and useful definition of health, based on a list of (molecular) features; to operationalize features of health so that it can be measured; to identify predictive biomarkers and (molecular) pathways of health; and to suggest interventions, such as nutrition and exercise, targeted at putative causal pathways and processes. Based on a survey of the literature, we propose to define health as a state of an individual characterized by the core features of physiological, cognitive, physical and reproductive function, and a lack of disease. We further define aging as the aggregate of all processes in an individual that reduce its wellbeing, that is, its health or survival or both. We define biomarkers of health by their attribute of predicting future health better than chronological age. We define healthspan pathways as molecular features of health that relate to each other by belonging to the same molecular pathway. Our conceptual framework may integrate diverse operationalizations of health and guide precision prevention efforts.
Collapse
Affiliation(s)
- Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany.
| | - Ludger Jansen
- Institute of Philosophy, University of Rostock, Germany.
| | - Alan A Cohen
- Department of Family Medicine, University of Sherbrooke, Sherbrooke, Canada.
| | - Walter Luyten
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.
| | - Manfred Gogol
- Institute of Gerontology, University Heidelberg, Germany.
| | - Andreas Simm
- Department of Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Nadine Saul
- Humboldt-University of Berlin, Institute of Biology, Berlin, Germany.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Italy.
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Italy.
| | - Peter Antal
- Budapest University of Technology and Economics, Budapest, Hungary.
- Abiomics Europe Ltd., Hungary.
| | - Rüdiger Köhling
- Rostock University Medical Center, Institute for Physiology, Rostock, Germany.
| | | | - Steffen Möller
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany.
| |
Collapse
|
9
|
Iranon NN, Jochim BE, Miller DL. Fasting prevents hypoxia-induced defects of proteostasis in C. elegans. PLoS Genet 2019; 15:e1008242. [PMID: 31246952 PMCID: PMC6619831 DOI: 10.1371/journal.pgen.1008242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/10/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Low oxygen conditions (hypoxia) can impair essential physiological processes and cause cellular damage and death. We have shown that specific hypoxic conditions disrupt protein homeostasis in C. elegans, leading to protein aggregation and proteotoxicity. Here, we show that nutritional cues regulate this effect of hypoxia on proteostasis. Animals fasted prior to hypoxic exposure develop dramatically fewer polyglutamine protein aggregates compared to their fed counterparts, indicating that the effect of hypoxia is abrogated. Fasting also reduced the hypoxia-induced exaggeration of proteostasis defects in animals that express Aβ1–42 and in animals with a temperature-sensitive mutation in dyn-1, suggesting that this effect was not specific to polyglutamine proteins. Our data also demonstrate that the nutritional environment experienced at the onset of hypoxia dictates at least some aspects of the physiological response to hypoxia. We further demonstrate that the insulin/IGF-like signaling pathway plays a role in mediating the protective effects of fasting in hypoxia. Animals with mutations in daf-2, the C. elegans insulin-like receptor, display wild-type levels of hypoxia-induced protein aggregation upon exposure to hypoxia when fed, but are not protected by fasting. DAF-2 acts independently of the FOXO transcription factor, DAF-16, to mediate the protective effects of fasting. These results suggest a non-canonical role for the insulin/IGF-like signaling pathway in coordinating the effects of hypoxia and nutritional state on proteostasis. When blood flow to various parts of the body becomes restricted, those tissues suffer from a lack of oxygen, a condition called hypoxia. Hypoxia can cause cellular damage and death, as in stroke and cardiovascular disease. We have found that in the model organism C. elegans (a roundworm) specific concentrations of hypoxia cause aggregation of polyglutamine proteins–the same kind of proteins that are found in an aggregated state in the neurodegenerative disorder Huntington’s disease. Here, we show that that worms can be protected from hypoxia-induced protein aggregation if they are fasted (removed from their food source) prior to experiencing hypoxia. Furthermore, we show that the insulin receptor is required for this protection. The insulin receptor is responsible for detecting insulin, a hormone that is released after feeding. Worms with a nonfunctional version of the insulin receptor displayed hypoxia-induced protein aggregation despite being fasted before the hypoxic exposure. Our results highlight a new role for the insulin signaling pathway in coordinating the effects of both hypoxia and nutritional state on protein aggregation.
Collapse
Affiliation(s)
- Nicole N. Iranon
- Graduate Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, United States of America
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States of America
| | - Bailey E. Jochim
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States of America
| | - Dana L. Miller
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ng LF, Ng LT, van Breugel M, Halliwell B, Gruber J. Mitochondrial DNA Damage Does Not Determine C. elegans Lifespan. Front Genet 2019; 10:311. [PMID: 31031801 PMCID: PMC6473201 DOI: 10.3389/fgene.2019.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/21/2019] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial free radical theory of aging (mFRTA) proposes that accumulation of oxidative damage to macromolecules in mitochondria is a causative mechanism for aging. Accumulation of mitochondrial DNA (mtDNA) damage may be of particular interest in this context. While there is evidence for age-dependent accumulation of mtDNA damage, there have been only a limited number of investigations into mtDNA damage as a determinant of longevity. This lack of quantitative data regarding mtDNA damage is predominantly due to a lack of reliable assays to measure mtDNA damage. Here, we report adaptation of a quantitative real-time polymerase chain reaction (qRT-PCR) assay for the detection of sequence-specific mtDNA damage in C. elegans and apply this method to investigate the role of mtDNA damage in the aging of nematodes. We compare damage levels in old and young animals and also between wild-type animals and long-lived mutant strains or strains with modifications in ROS detoxification or production rates. We confirm an age-dependent increase in mtDNA damage levels in C. elegans but found that there is no simple relationship between mtDNA damage and lifespan. MtDNA damage levels were high in some mutants with long lifespan (and vice versa). We next investigated mtDNA damage, lifespan and healthspan effects in nematode subjected to exogenously elevated damage (UV- or γ-radiation induced). We, again, observed a complex relationship between damage and lifespan in such animals. Despite causing a significant elevation in mtDNA damage, γ-radiation did not shorten the lifespan of nematodes at any of the doses tested. When mtDNA damage levels were elevated significantly using UV-radiation, nematodes did suffer from shorter lifespan at the higher end of exposure tested. However, surprisingly, we also found hormetic lifespan and healthspan benefits in nematodes treated with intermediate doses of UV-radiation, despite the fact that mtDNA damage in these animals was also significantly elevated. Our results suggest that within a wide physiological range, the level of mtDNA damage does not control lifespan in C. elegans.
Collapse
Affiliation(s)
- Li Fang Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Li Theng Ng
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Michiel van Breugel
- Environmental Science Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Altintas O, Park S, Lee SJV. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 2016; 49:81-92. [PMID: 26698870 PMCID: PMC4915121 DOI: 10.5483/bmbrep.2016.49.2.261] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 01/08/2023] Open
Abstract
Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates
aging in many organisms, ranging from simple invertebrates to mammals, including
humans. Many seminal discoveries regarding the roles of IIS in aging and
longevity have been made by using the roundworm Caenorhabditis
elegans and the fruit fly Drosophila melanogaster. In this
review, we describe the mechanisms by which various IIS components regulate
aging in C. elegans and D. melanogaster. We
also cover systemic and tissue-specific effects of the IIS components on the
regulation of lifespan. We further discuss IIS-mediated physiological processes
other than aging and their effects on human disease models focusing on
C. elegans studies. As both C. elegans and
D. melanogaster have been essential for key findings
regarding the effects of IIS on organismal aging in general, these invertebrate
models will continue to serve as workhorses to help our understanding of
mammalian aging. [BMB Reports 2016; 49(2): 81-92]
Collapse
Affiliation(s)
- Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sangsoon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Jae V Lee
- School of Interdisciplinary Bioscience and Bioengineering, Department of Life Sciences, and Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
12
|
Mao XR, Kaufman DM, Crowder CM. Nicotinamide mononucleotide adenylyltransferase promotes hypoxic survival by activating the mitochondrial unfolded protein response. Cell Death Dis 2016; 7:e2113. [PMID: 26913604 PMCID: PMC4849163 DOI: 10.1038/cddis.2016.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/18/2015] [Accepted: 12/27/2015] [Indexed: 02/04/2023]
Abstract
Gain-of-function mutations in the mouse nicotinamide mononucleotide adenylyltransferase type 1 (Nmnat1) produce two remarkable phenotypes: protection against traumatic axonal degeneration and reduced hypoxic brain injury. Despite intensive efforts, the mechanism of Nmnat1 cytoprotection remains elusive. To develop a new model to define this mechanism, we heterologously expressed a mouse Nmnat1 non-nuclear-localized gain-of-function mutant gene (m-nonN-Nmnat1) in the nematode Caenorhabditis elegans and show that it provides protection from both hypoxia-induced animal death and taxol-induced axonal pathology. Additionally, we find that m-nonN-Nmnat1 significantly lengthens C. elegans lifespan. Using the hypoxia-protective phenotype in C. elegans, we performed a candidate screen for genetic suppressors of m-nonN-Nmnat1 cytoprotection. Loss of function in two genes, haf-1 and dve-1, encoding mitochondrial unfolded protein response (mitoUPR) factors were identified as suppressors. M-nonN-Nmnat1 induced a transcriptional reporter of the mitoUPR gene hsp-6 and provided protection from the mitochondrial proteostasis toxin ethidium bromide. M-nonN-Nmnat1 was also protective against axonal degeneration in C. elegans induced by the chemotherapy drug taxol. Taxol markedly reduced basal expression of a mitoUPR reporter; the expression was restored by m-nonN-Nmnat1. Taken together, these data implicate the mitoUPR as a mechanism whereby Nmnat1 protects from hypoxic and axonal injury.
Collapse
Affiliation(s)
- X R Mao
- Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - D M Kaufman
- Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA
| | - C M Crowder
- Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA
- Department of Genome Sciences, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA
| |
Collapse
|
13
|
Ivanov DK, Escott-Price V, Ziehm M, Magwire MM, Mackay TFC, Partridge L, Thornton JM. Longevity GWAS Using the Drosophila Genetic Reference Panel. J Gerontol A Biol Sci Med Sci 2015; 70:1470-8. [PMID: 25922346 PMCID: PMC4631106 DOI: 10.1093/gerona/glv047] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
We used 197 Drosophila melanogaster Genetic Reference Panel (DGRP) lines to perform a genome-wide association analysis for virgin female lifespan, using ~2M common single nucleotide polymorphisms (SNPs). We found considerable genetic variation in lifespan in the DGRP, with a broad-sense heritability of 0.413. There was little power to detect signals at a genome-wide level in single-SNP and gene-based analyses. Polygenic score analysis revealed that a small proportion of the variation in lifespan (~4.7%) was explicable in terms of additive effects of common SNPs (≥2% minor allele frequency). However, several of the top associated genes are involved in the processes previously shown to impact ageing (eg, carbohydrate-related metabolism, regulation of cell death, proteolysis). Other top-ranked genes are of unknown function and provide promising candidates for experimental examination. Genes in the target of rapamycin pathway (TOR; Chrb, slif, mipp2, dredd, RpS9, dm) contributed to the significant enrichment of this pathway among the top-ranked 100 genes (p = 4.79×10(-06)). Gene Ontology analysis suggested that genes involved in carbohydrate metabolism are important for lifespan; including the InterPro term DUF227, which has been previously associated with lifespan determination. This analysis suggests that our understanding of the genetic basis of natural variation in lifespan from induced mutations is incomplete.
Collapse
Affiliation(s)
- Dobril K Ivanov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Valentina Escott-Price
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Matthias Ziehm
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. Department of Genetics Evolution and Environment, The Institute of Healthy Ageing, University College London, UK
| | - Michael M Magwire
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh. Syngenta, Research Triangle Park, North Carolina
| | - Trudy F C Mackay
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh
| | - Linda Partridge
- Department of Genetics Evolution and Environment, The Institute of Healthy Ageing, University College London, UK. Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
14
|
Glycogen Fuels Survival During Hyposmotic-Anoxic Stress in Caenorhabditis elegans. Genetics 2015; 201:65-74. [PMID: 26116152 PMCID: PMC4566277 DOI: 10.1534/genetics.115.179416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Oxygen is an absolute requirement for multicellular life. Animals that are deprived of oxygen for sufficient periods of time eventually become injured and die. This is largely due to the fact that, without oxygen, animals are unable to generate sufficient quantities of energy. In human diseases triggered by oxygen deprivation, such as heart attack and stroke, hyposmotic stress and cell swelling (edema) arise in affected tissues as a direct result of energetic failure. Edema independently enhances tissue injury in these diseases by incompletely understood mechanisms, resulting in poor clinical outcomes. Here, we present investigations into the effects of osmotic stress during complete oxygen deprivation (anoxia) in the genetically tractable nematode Caenorhabditis elegans. Our findings demonstrate that nematode survival of a hyposmotic environment during anoxia (hyposmotic anoxia) depends on the nematode’s ability to engage in glycogen metabolism. We also present results of a genome-wide screen for genes affecting glycogen content and localization in the nematode, showing that nematode survival of hyposmotic anoxia depends on a large number of these genes. Finally, we show that an inability to engage in glycogen synthesis results in suppression of the enhanced survival phenotype observed in daf-2 insulin-like pathway mutants, suggesting that alterations in glycogen metabolism may serve as a basis for these mutants’ resistance to hyposmotic anoxia.
Collapse
|
15
|
Zheng X, Zhai B, Koivunen P, Shin SJ, Lu G, Liu J, Geisen C, Chakraborty AA, Moslehi JJ, Smalley DM, Wei X, Chen X, Chen Z, Beres JM, Zhang J, Tsao JL, Brenner MC, Zhang Y, Fan C, DePinho RA, Paik J, Gygi SP, Kaelin WG, Zhang Q. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev 2014; 28:1429-44. [PMID: 24990963 PMCID: PMC4083087 DOI: 10.1101/gad.242131.114] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The three EglN prolyl hydroxylases (EglN1, EglN2, and EglN3) regulate the stability of the HIF transcription factor. We recently showed that loss of EglN2, however, also leads to down-regulation of Cyclin D1 and decreased cell proliferation in a HIF-independent manner. Here we report that EglN2 can hydroxylate FOXO3a on two specific prolyl residues in vitro and in vivo. Hydroxylation of these sites prevents the binding of USP9x deubiquitinase, thereby promoting the proteasomal degradation of FOXO3a. FOXO transcription factors can repress Cyclin D1 transcription. Failure to hydroxylate FOXO3a promotes its accumulation in cells, which in turn suppresses Cyclin D1 expression. These findings provide new insights into post-transcriptional control of FOXO3a and provide a new avenue for pharmacologically altering Cyclin D1 activity.
Collapse
Affiliation(s)
- Xingnan Zheng
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Sandra J Shin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Gang Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jiayun Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Christoph Geisen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Abhishek A Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Javid J Moslehi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - David M Smalley
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Xin Wei
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Zhengming Chen
- Department of Public Health, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Justine M Beres
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jen Lan Tsao
- Fibrogen, Incorporated, San Francisco, California 94158, USA
| | | | - Yuqing Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
16
|
Leiser SF, Fletcher M, Begun A, Kaeberlein M. Life-span extension from hypoxia in Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J Gerontol A Biol Sci Med Sci 2013; 68:1135-44. [PMID: 23419779 DOI: 10.1093/gerona/glt016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stabilization of the hypoxia-inducible factor (HIF-1) protein extends longevity in Caenorhabditis elegans. However, stabilization of mammalian HIF-1α has been implicated in tumor growth and cancer development. Consequently, for the hypoxic response to benefit mammalian health, we must determine the components of the response that contribute to longevity, and separate them from those that cause harm in mammals. Here, we subject adult worms to low oxygen environments. We find that growth in hypoxia increases longevity in wild-type worms but not in animals lacking HIF-1 or DAF-16. Conversely, hypoxia shortens life span in combination with overexpression of the antioxidant stress response protein SKN-1. When combined with mutations in other longevity pathways or dietary restriction, hypoxia extends life span but to varying extents. Collectively, our results show that hypoxia modulates longevity in a complex manner, likely involving components in addition to HIF-1.
Collapse
Affiliation(s)
- Scott F Leiser
- Department of Pathology, University of Washington, Seattle, WA 98195.
| | | | | | | |
Collapse
|
17
|
Iranon NN, Miller DL. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front Genet 2012; 3:257. [PMID: 23233860 PMCID: PMC3516179 DOI: 10.3389/fgene.2012.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/04/2012] [Indexed: 12/19/2022] Open
Abstract
The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O(2) (hypoxia) to maintain O(2) homeostasis, and consider interactions between hypoxia responses, nutritional status, and H(2)S signaling. O(2) is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O(2) available. Animals must sense declining O(2) availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H(2)S) protects against cellular damage and death in hypoxia. These results suggest that H(2)S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H(2)S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals.
Collapse
Affiliation(s)
- Nicole N Iranon
- Department of Biochemistry, University of Washington School of Medicine Seattle, WA, USA ; Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine Seattle, WA, USA
| | | |
Collapse
|
18
|
FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J 2012; 30:4554-70. [PMID: 21915097 DOI: 10.1038/emboj.2011.323] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 08/15/2011] [Indexed: 12/23/2022] Open
Abstract
Exposure of metazoan organisms to hypoxia engages a metabolic switch orchestrated by the hypoxia-inducible factor 1 (HIF-1). HIF-1 mediates induction of glycolysis and active repression of mitochondrial respiration that reduces oxygen consumption and inhibits the production of potentially harmful reactive oxygen species (ROS). Here, we show that FoxO3A is activated in hypoxia downstream of HIF-1 and mediates the hypoxic repression of a set of nuclear-encoded mitochondrial genes. FoxO3A is required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production and promotes cell survival in hypoxia. FoxO3A is recruited to the promoters of nuclear-encoded mitochondrial genes where it directly antagonizes c-Myc function via a mechanism that does not require binding to the consensus FoxO recognition element. Furthermore, we show that FoxO3A is activated in human hypoxic tumour tissue in vivo and that FoxO3A short-hairpin RNA (shRNA)-expressing xenograft tumours are decreased in size and metabolically changed. Our findings define a novel mechanism by which FoxO3A promotes metabolic adaptation and stress resistance in hypoxia.
Collapse
|
19
|
Hand SC, Menze MA, Borcar A, Patil Y, Covi JA, Reynolds JA, Toner M. Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:584-94. [PMID: 21335009 PMCID: PMC3104064 DOI: 10.1016/j.jinsphys.2011.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 05/21/2023]
Abstract
Many life history stages of animals that experience environmental insults enter developmental arrested states that are characterized by reduced cellular proliferation, with or without a concurrent reduction in overall metabolism. In the case of the most profound metabolic arrest reported in invertebrates, i.e., anaerobic quiescence in Artemia franciscana embryos, acidification of the intracellular milieu is a major factor governing catabolic and anabolic downregulation. Release of ions from intracellular compartments is the source for approximately 50% of the proton equivalents needed for the 1.5 unit acidification that is observed. Recovery from the metabolic arrest requires re-sequestration of the protons with a vacuolar-type ATPase (V-ATPase). The remarkable facet of this mechanism is the ability of embryonic cells to survive the dissipation of intracellular ion gradients. Across many diapause-like states, the metabolic reduction and subsequent matching of energy demand is accomplished by shifting energy metabolism from oxidative phosphorylation to aerobic glycolysis. Molecular pathways that are activated to induce these resilient hypometabolic states include stimulation of the AMP-activated protein kinase (AMPK) and insulin signaling via suite of daf (dauer formation) genes for diapause-like states in nematodes and insects. Contributing factors for other metabolically depressed states involve hypoxia-inducible factor-1 and downregulation of the pyruvate dehydrogenase complex. Metabolic similarities between natural states of stasis and some cancer phenotypes are noteworthy. Reduction of flux through oxidative phosphorylation helps prevent cell death in certain cancer types, similar to the way it increases viability of dauer stages in Caenorhabditis elegans. Mechanisms that underlie natural stasis are being used to pre-condition mammalian cells prior to cell biostabilization and storage.
Collapse
Affiliation(s)
- Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological, Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Leiser SF, Begun A, Kaeberlein M. HIF-1 modulates longevity and healthspan in a temperature-dependent manner. Aging Cell 2011; 10:318-26. [PMID: 21241450 DOI: 10.1111/j.1474-9726.2011.00672.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The hypoxia-inducible factor HIF-1 has recently been identified as an important modifier of longevity in the roundworm Caenorhabditis elegans. Studies have reported that HIF-1 can function as both a positive and negative regulator of life span, and several disparate models have been proposed for the role of HIF in aging. Here, we resolve many of the apparent discrepancies between these studies. We find that stabilization of HIF-1 increases life span robustly under all conditions tested; however, deletion of hif-1 increases life span in a temperature-dependent manner. Animals lacking HIF-1 are long lived at 25°C but not at 15°C. We further report that deletion or RNAi knockdown of hif-1 impairs healthspan at lower temperatures because of an age-dependent loss of vulval integrity. Deletion of hif-1 extends life span modestly at 20°C when animals displaying the vulval integrity defect are censored from the experimental data, but fails to extend life span if these animals are included. Knockdown of hif-1 results in nuclear relocalization of the FOXO transcription factor DAF-16, and DAF-16 is required for life span extension from deletion of hif-1 at all temperatures regardless of censoring.
Collapse
Affiliation(s)
- Scott F Leiser
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
21
|
Leiser SF, Kaeberlein M. The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol Chem 2011; 391:1131-7. [PMID: 20707608 DOI: 10.1515/bc.2010.123] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the past year and a half, five studies have independently established a direct connection between the hypoxic response transcription factor, HIF-1, and aging in Caenorhabditis elegans. These studies demonstrated that HIF-1 can both promote and limit longevity via pathways that are mechanistically distinct. Here, we review the current state of knowledge regarding modulation of aging by HIF-1 and speculate on potential aspects of HIF-1 function that could be relevant for mammalian longevity and healthspan.
Collapse
Affiliation(s)
- Scott F Leiser
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
22
|
Environmental and genetic preconditioning for long-term anoxia responses requires AMPK in Caenorhabditis elegans. PLoS One 2011; 6:e16790. [PMID: 21304820 PMCID: PMC3033420 DOI: 10.1371/journal.pone.0016790] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/14/2011] [Indexed: 01/04/2023] Open
Abstract
Background Preconditioning environments or therapeutics, to suppress the cellular damage associated with severe oxygen deprivation, is of interest to our understanding of diseases associated with oxygen deprivation. Wildtype C. elegans exposed to anoxia enter into a state of suspended animation in which energy-requiring processes reversibly arrest. C. elegans at all developmental stages survive 24-hours of anoxia exposure however, the ability of adult hermaphrodites to survive three days of anoxia significantly decreases. Mutations in the insulin-like signaling receptor (daf-2) and LIN-12/Notch (glp-1) lead to an enhanced long-term anoxia survival phenotype. Methodology/Principal Findings In this study we show that the combined growth environment of 25°C and a diet of HT115 E. coli will precondition adult hermaphrodites to survive long-term anoxia; many of these survivors have normal movement after anoxia treatment. Animals fed the drug metformin, which induces a dietary-restriction like state in animals and activates AMPK in mammalian cell culture, have a higher survival rate when exposed to long-term anoxia. Mutations in genes encoding components of AMPK (aak-2, aakb-1, aakb-2, aakg-2) suppress the environmentally and genetically induced long-term anoxia survival phenotype. We further determine that there is a correlation between the animals that survive long-term anoxia and increased levels of carminic acid staining, which is a fluorescent dye that incorporates in with carbohydrates such as glycogen. Conclusions/Significance We conclude that small changes in growth conditions such as increased temperature and food source can influence the physiology of the animal thus affecting the responses to stress such as anoxia. Furthermore, this supports the idea that metformin should be further investigated as a therapeutic tool for treatment of oxygen-deprived tissues. Finally, the capacity for an animal to survive long bouts of severe oxygen deprivation is likely dependent on specific subunits of the heterotrimeric protein AMPK and energy stores such as carbohydrates.
Collapse
|
23
|
Azevedo SV, Caranton OAM, de Oliveira TL, Hartfelder K. Differential expression of hypoxia pathway genes in honey bee (Apis mellifera L.) caste development. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:38-45. [PMID: 20887729 DOI: 10.1016/j.jinsphys.2010.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 05/29/2023]
Abstract
Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIFα/Sima, HIFβ/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae.
Collapse
Affiliation(s)
- Sergio Vicente Azevedo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, Brazil.
| | | | | | | |
Collapse
|
24
|
Thyagarajan B, Blaszczak AG, Chandler KJ, Watts JL, Johnson WE, Graves BJ. ETS-4 is a transcriptional regulator of life span in Caenorhabditis elegans. PLoS Genet 2010; 6:e1001125. [PMID: 20862312 PMCID: PMC2940738 DOI: 10.1371/journal.pgen.1001125] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 08/13/2010] [Indexed: 01/05/2023] Open
Abstract
Aging is a complex phenotype responsive to a plethora of environmental inputs; yet only a limited number of transcriptional regulators are known to influence life span. How the downstream expression programs mediated by these factors (or others) are coordinated into common or distinct set of aging effectors is an addressable question in model organisms, such as C. elegans. Here, we establish the transcription factor ETS-4, an ortholog of vertebrate SPDEF, as a longevity determinant. Adult worms with ets-4 mutations had a significant extension of mean life span. Restoring ETS-4 activity in the intestine, but not neurons, of ets-4 mutant worms rescued life span to wild-type levels. Using RNAi, we demonstrated that ets-4 is required post-developmentally to regulate adult life span; thus uncoupling the role of ETS-4 in aging from potential functions in worm intestinal development. Seventy ETS-4-regulated genes, identified by gene expression profiling of two distinct ets-4 alleles and analyzed by bioinformatics, were enriched for known longevity effectors that function in lipid transport, lipid metabolism, and innate immunity. Putative target genes were enriched for ones that change expression during normal aging, the majority of which are controlled by the GATA factors. Also, some ETS-4-regulated genes function downstream of the FOXO factor, DAF-16 and the insulin/IGF-1 signaling pathway. However, epistasis and phenotypic analyses indicate that ets-4 functioned in parallel to the insulin/IGF-1 receptor, daf-2 and akt-1/2 kinases. Furthermore, ets-4 required daf-16 to modulate aging, suggesting overlap in function at the level of common targets that affect life span. In conclusion, ETS-4 is a new transcriptional regulator of aging, which shares transcriptional targets with GATA and FOXO factors, suggesting that overlapping pathways direct common sets of lifespan-related genes. Animal life span is regulated in response to developmental and environmental inputs through coordinate changes in gene expression. Thus, longevity determinants include DNA-binding proteins that regulate gene expression by controlling transcription. Here, we explored the physiological role of the transcriptional regulator, ETS-4, in the roundworm Caenorhabditis elegans. Our data showed that worms that lack ETS-4 lived significantly longer, revealing ETS-4′s role in the transcription network that regulates life span. We identified 70 genes whose expression was modulated by ETS-4 that function in lipid transport, lipid metabolism and innate immunity. Some of the ETS-4-regulated genes were also controlled by two other regulators of aging, the FOXO and GATA factors. We concluded that a common set of transcriptional targets orchestrate the network of physiological factors that affect aging. ETS-4 is closely related to the human ETS protein SPDEF that exhibits aberrant expression in breast and prostate tumors. Because the genetic pathways that regulate aging are well conserved in other organisms, including humans, our findings could lead to a better understanding of SPDEF function and longevity regulation in mammals.
Collapse
Affiliation(s)
- Bargavi Thyagarajan
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Adam G. Blaszczak
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Katherine J. Chandler
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Jennifer L. Watts
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - W. Evan Johnson
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| | - Barbara J. Graves
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
25
|
Powell-Coffman JA. Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab 2010; 21:435-40. [PMID: 20335046 DOI: 10.1016/j.tem.2010.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/14/2010] [Accepted: 02/18/2010] [Indexed: 11/20/2022]
Abstract
In normal development and homeostasis and in many disease states, cells and tissues must overcome the challenge of oxygen deprivation (hypoxia). The nematode C. elegans is emerging as an increasingly powerful system in which to understand how animals adapt to moderate hypoxia and survive extreme hypoxic insults. This review provides an overview of C. elegans responses to hypoxia, ranging from adaptation and arrest to death, and highlights some of the recent studies that have provided important insights into hypoxia signaling and resistance. Many of the key genes and pathways are evolutionarily conserved, and C. elegans hypoxia research promises to inform our understanding of oxygen-sensitive signaling and survival in mammalian development and disease.
Collapse
Affiliation(s)
- Jo Anne Powell-Coffman
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|