1
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Inoue Y, Suzuki H. Temporal dynamics of mildly deleterious nonsynonymous substitutions in mitochondrial gene sequences in rodents and moles. Gene 2022; 97:111-121. [PMID: 35753758 DOI: 10.1266/ggs.21-00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have previously estimated the evolutionary rate (number of substitutions/site/million years) of mitochondrial cytochrome b gene (Cytb) sequences in rodents and moles to be about 0.11 at more recent divergence times of tens of thousands of years, and to decrease rapidly to about 0.03 at more distant divergence times. Because this time dependency is thought to be caused by the removal of mildly deleterious substitutions in later generations, we focused in this study on the abundance of nonsynonymous substitutions. We collected 23 haplogroups of Cytb with signals of late Quaternary population expansion events from rodents and moles and categorized them into three groups for comparison based on predicted expansion start time: 5,000-15,000 years ago (Group I), ca. 53,000 years ago (Group II) and 130,000-230,000 years ago (Group III). We counted the numbers of nonsynonymous and synonymous substitutions in all haplogroups. The rates of nonsynonymous substitutions were lowest in Groups II and III (0.08-0.22), whereas those in Group I varied markedly. We further classified Group I into two subgroups based on high (0.29-0.43) and low (0.09-0.20) nonsynonymous substitution rates, which were likely to be associated with the start of the expansion within 10,000 years and at around 15,000 years ago, respectively. The Group II and III networks had two- or three-step star-shaped structures and tended to exhibit frequent and less frequent nonsynonymous substitutions on exterior and interior branches, respectively. Based on temporal dynamics, nonsynonymous mitochondrial DNA (mtDNA) substitutions in small mammals accounted for at most 40% of all substitutions during the early evolutionary stage and then rapidly declined, dropping to approximately 15%. The results of this study provide a good explanation of the time-dependent trend in the mtDNA evolution rate predicted in previous work.
Collapse
Affiliation(s)
- Yuta Inoue
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University
| |
Collapse
|
3
|
Fendt L, Fazzini F, Weissensteiner H, Bruckmoser E, Schönherr S, Schäfer G, Losso JL, Streiter GA, Lamina C, Rasse M, Klocker H, Kofler B, Kloss-Brandstätter A, Huck CW, Kronenberg F, Laimer J. Profiling of Mitochondrial DNA Heteroplasmy in a Prospective Oral Squamous Cell Carcinoma Study. Cancers (Basel) 2020; 12:E1933. [PMID: 32708892 PMCID: PMC7409097 DOI: 10.3390/cancers12071933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023] Open
Abstract
While a shift in energy metabolism is essential to cancers, the knowledge about the involvement of the mitochondrial genome in tumorigenesis and progression in oral squamous cell carcinoma (OSCC) is still very limited. In this study, we evaluated 37 OSCC tumors and the corresponding benign mucosa tissue pairs by deep sequencing of the complete mitochondrial DNA (mtDNA). After extensive quality control, we identified 287 variants, 137 in tumor and 150 in benign samples exceeding the 1% threshold. Variant heteroplasmy levels were significantly increased in cancer compared to benign tissues (p = 0.0002). Furthermore, pairwise high heteroplasmy frequency difference variants (∆HF% > 20) with potential functional impact were increased in the cancer tissues (p = 0.024). Fourteen mutations were identified in the protein-coding region, out of which thirteen were detected in cancer and only one in benign tissue. After eight years of follow-up, the risk of mortality was higher for patients who harbored at least one ∆HF% > 20 variant in mtDNA protein-coding regions relative to those with no mutations (HR = 4.6, (95%CI = 1.3-17); p = 0.019 in primary tumor carriers). Haplogroup affiliation showed an impact on survival time, which however needs confirmation in a larger study. In conclusion, we observed a significantly higher accumulation of somatic mutations in the cancer tissues associated with a worse prognosis.
Collapse
Affiliation(s)
- Liane Fendt
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Federica Fazzini
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Emanuel Bruckmoser
- Oral and Maxillofacial Surgeon, Private Practice, A-5020 Salzburg, Austria;
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Georg Schäfer
- Institute for Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Jamie Lee Losso
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Gertraud A. Streiter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Michael Rasse
- University Hospital for Craniomaxillofacial and Oral Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
- Clinic for Maxillofacial Surgery, Sechenov University, Trubetskaya Str. 8 b.2, 119992 Moscow, Russia
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Barbara Kofler
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria;
| | - Anita Kloss-Brandstätter
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
- Carinthia University of Applied Sciences, A-9524 Villach, Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold Franzens University Innsbruck, A-6020 Innsbruck, Austria;
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (L.F.); (F.F.); (H.W.); (S.S.); (J.L.L.); (G.A.S.); (C.L.); (A.K.-B.); (F.K.)
| | - Johannes Laimer
- University Hospital for Craniomaxillofacial and Oral Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
4
|
Lalis A, Mona S, Stoetzel E, Bonhomme F, Souttou K, Ouarour A, Aulagnier S, Denys C, Nicolas V. Out of Africa: demographic and colonization history of the Algerian mouse (Mus spretus Lataste). Heredity (Edinb) 2018; 122:150-171. [PMID: 29795180 DOI: 10.1038/s41437-018-0089-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 11/09/2022] Open
Abstract
North Africa is now recognized as a major area for the emergence and dispersal of anatomically modern humans from at least 315 kya. The Mediterranean Basin is thus particularly suited to study the role of climate versus human-mediated changes on the evolutionary history of species. The Algerian mouse (Mus spretus Lataste) is an endemic species from this basin, with its distribution restricted to North Africa (from Libya to Morocco), Iberian Peninsula and South of France. A rich paleontological record of M. spretus exists in North Africa, suggesting hypotheses concerning colonization pathways, and the demographic and morphologic history of this species. Here we combined genetic (3 mitochondrial DNA loci and 18 microsatellites) and climatic niche modeling data to infer the evolutionary history of the Algerian mouse. We collected 646 new individuals in 51 localities. Our results are consistent with an anthropogenic translocation of the Algerian mouse from North Africa to the Iberian Peninsula via Neolithic navigators, probably from the Tingitane Peninsula. Once arrived in Spain, suitable climatic conditions would then have favored the dispersion of the Algerian mice to France. The morphological differentiation observed between Spanish, French and North African populations could be explained by a founder effect and possibly local adaptation. This article helps to better understand the role of climate versus human-mediated changes on the evolutionary history of mammal species in the Mediterranean Basin.
Collapse
Affiliation(s)
- Aude Lalis
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Paris, France
| | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Paris, France.,EPHE, PSL Research University, Paris, France
| | - Emmanuelle Stoetzel
- Histoire Naturelle de l'Homme Préhistorique, HNHP-UMR 7194-CNRS, MNHN, UPVD, Sorbonne Universités, Paris, France
| | - François Bonhomme
- Institut des Sciences de l'Evolution, ISEM-UMR 4554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Karim Souttou
- Department of Agronomy, Faculty of Natural Science and Life, University Ziane Achour, Djelfa, Algeria
| | - Ali Ouarour
- Laboratoire de Biologie et Santé, Faculté des Sciences, Université Abdelmalek Essâadi, Tétouan, Morocco
| | - Stéphane Aulagnier
- Institut National de la Recherche Agronomique, UR35 Comportement et Ecologie de la Faune Sauvage, Caytanet-Tolosan, France
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Paris, France
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Paris, France.
| |
Collapse
|
5
|
Origin and spread of human mitochondrial DNA haplogroup U7. Sci Rep 2017; 7:46044. [PMID: 28387361 PMCID: PMC5384202 DOI: 10.1038/srep46044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 01/17/2023] Open
Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
Collapse
|
6
|
Cavadas B, Soares P, Camacho R, Brandão A, Costa MD, Fernandes V, Pereira JB, Rito T, Samuels DC, Pereira L. Fine Time Scaling of Purifying Selection on Human Nonsynonymous mtDNA Mutations Based on the Worldwide Population Tree and Mother-Child Pairs. Hum Mutat 2015; 36:1100-11. [DOI: 10.1002/humu.22849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Bruno Cavadas
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Department of Biology; CBMA (Centre of Molecular and Environmental Biology); University of Minho; Braga 4704-553 Portugal
| | - Rui Camacho
- INESC TEC; Porto 4200-465 Portugal
- Departamento de Engenharia Informática; Faculdade de Engenharia da Universidade do Porto; Porto 4200-465 Portugal
| | - Andreia Brandão
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS); Porto 4050-313 Portugal
| | - Marta D. Costa
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Verónica Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Joana B. Pereira
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - Teresa Rito
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
| | - David C. Samuels
- Vanderbilt Genetics Institute; Department of Molecular Physiology and Biophysics; Vanderbilt University Medical Center; Nashville Tennessee 37232-0700
| | - Luisa Pereira
- Instituto de Investigação e Inovação em Saúde (i3S); Universidade do Porto; Porto 4200-135 Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP); Porto 4200-465 Portugal
- Faculdade de Medicina da Universidade do Porto; Porto 4200-319 Portugal
| |
Collapse
|
7
|
Palanichamy MG, Mitra B, Zhang CL, Debnath M, Li GM, Wang HW, Agrawal S, Chaudhuri TK, Zhang YP. West Eurasian mtDNA lineages in India: an insight into the spread of the Dravidian language and the origins of the caste system. Hum Genet 2015; 134:637-47. [PMID: 25832481 DOI: 10.1007/s00439-015-1547-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/25/2015] [Indexed: 11/28/2022]
Abstract
There is no indication from the previous mtDNA studies that west Eurasian-specific subclades have evolved within India and played a role in the spread of languages and the origins of the caste system. To address these issues, we have screened 14,198 individuals (4208 from this study) and analyzed 112 mitogenomes (41 new sequences) to trace west Eurasian maternal ancestry. This has led to the identification of two autochthonous subhaplogroups--HV14a1 and U1a1a4, which are likely to have originated in the Dravidian-speaking populations approximately 10.5-17.9 thousand years ago (kya). The carriers of these maternal lineages might have settled in South India during the time of the spread of the Dravidian language. In addition to this, we have identified several subsets of autochthonous U7 lineages, including U7a1, U7a2b, U7a3, U7a6, U7a7, and U7c, which seem to have originated particularly in the higher-ranked caste populations in relatively recent times (2.6-8.0 kya with an average of 5.7 kya). These lineages have provided crucial clues to the differentiation of the caste system that has occurred during the recent past and possibly, this might have been influenced by the Indo-Aryan migration. The remaining west Eurasian lineages observed in the higher-ranked caste groups, like the Brahmins, were found to cluster with populations who possibly arrived from west Asia during more recent times.
Collapse
Affiliation(s)
- Malliya Gounder Palanichamy
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, 650 091, Yunnan, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Aiewsakun P, Katzourakis A. Endogenous viruses: Connecting recent and ancient viral evolution. Virology 2015; 479-480:26-37. [PMID: 25771486 DOI: 10.1016/j.virol.2015.02.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/15/2014] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
Abstract
The rapid rates of viral evolution allow us to reconstruct the recent history of viruses in great detail. This feature, however, also results in rapid erosion of evolutionary signal within viral molecular data, impeding studies of their deep history. Thus, the further back in time, the less accurate the inference becomes. Furthermore, reconstructing complex histories of transmission can be challenging, especially where extinct viral lineages are concerned. This problem has been partially solved by the discovery of viruses embedded in host genomes, known as endogenous viral elements (EVEs). Some of these endogenous viruses are derived from ancient relatives of extant viruses, allowing us to better examine ancient viral host range, geographical distribution and transmission routes. Moreover, our knowledge of viral evolutionary timescales and rate dynamics has also been greatly improved by their discovery, thereby bridging the gap between recent and ancient viral evolution.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
9
|
Maternal ancestry and population history from whole mitochondrial genomes. INVESTIGATIVE GENETICS 2015; 6:3. [PMID: 25798216 PMCID: PMC4367903 DOI: 10.1186/s13323-015-0022-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
Abstract
MtDNA has been a widely used tool in human evolutionary and population genetic studies over the past three decades. Its maternal inheritance and lack of recombination have offered the opportunity to explore genealogical relationships among individuals and to study the frequency differences of matrilineal clades among human populations at continental and regional scales. The whole mtDNA genome sequencing delivers molecular resolution that is sufficient to distinguish patterns that have arisen over thousands of years. However, mutation rate is highly variable among the functional and non-coding domains of mtDNA which makes it challenging to obtain accurate split dates of the mitochondrial clades. Due to the shallow coalescent time of mitochondrial TMRCA at approximately 100 to 200 thousand years (ky), mtDNA data have only limited power to inform us about the more distant past and the early stages of human evolutionary history. The variation shared by mitochondrial genomes of individuals drawn from different continents outside Africa has been used to illuminate the details of the colonization process of the Old World, whereas regional patterns of variation have been at the focus of studies addressing questions of a more recent time scale. In the era of whole nuclear genome sequencing, mitochondrial genomes are continuing to be informative as a unique tool for the assessment of female-specific aspects of the demographic history of human populations.
Collapse
|
10
|
Pennarun E, Kivisild T, Metspalu E, Metspalu M, Reisberg T, Moisan JP, Behar DM, Jones SC, Villems R. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa. BMC Evol Biol 2012. [PMID: 23206491 PMCID: PMC3582464 DOI: 10.1186/1471-2148-12-234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. Results We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Conclusions Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa.
Collapse
Affiliation(s)
- Erwan Pennarun
- Estonian Biocentre and Department of Evolutionary Biology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Palsbøll PJ, Zachariah Peery M, Olsen MT, Beissinger SR, Bérubé M. Inferring recent historic abundance from current genetic diversity. Mol Ecol 2012. [PMID: 23181682 DOI: 10.1111/mec.12094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent historic abundance is an elusive parameter of great importance for conserving endangered species and understanding the pre-anthropogenic state of the biosphere. The number of studies that have used population genetic theory to estimate recent historic abundance from contemporary levels of genetic diversity has grown rapidly over the last two decades. Such assessments often yield unexpectedly large estimates of historic abundance. We review the underlying theory and common practices of estimating recent historic abundance from contemporary genetic diversity, and critically evaluate the potential issues at various estimation steps. A general issue of mismatched spatio-temporal scales between the estimation itself and the objective of the estimation emerged from our assessment; genetic diversity-based estimates of recent historic abundance represent long-term averages, whereas the objective typically is an estimate of recent abundance for a specific population. Currently, the most promising approach to estimate the difference between recent historic and contemporary abundance requires that genetic data be collected from samples of similar spatial and temporal duration. Novel genome-enabled inference methods may be able to utilize additional information of dense genome-wide distributions of markers, such as of identity-by-descent tracts, to infer recent historic abundance from contemporary samples only.
Collapse
Affiliation(s)
- Per J Palsbøll
- Marine Evolution and Conservation, Centre of Evolutionary and Ecological Studies, University of Groningen, PO Box 11103 CC, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Population genetic structure and origins of Native Hawaiians in the multiethnic cohort study. PLoS One 2012; 7:e47881. [PMID: 23144833 PMCID: PMC3492381 DOI: 10.1371/journal.pone.0047881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/18/2012] [Indexed: 01/31/2023] Open
Abstract
The population genetic structure of Native Hawaiians has yet to be comprehensively studied, and the ancestral origins of Polynesians remain in question. In this study, we utilized high-resolution genome-wide SNP data and mitochondrial genomes of 148 and 160 Native Hawaiians, respectively, to characterize their population structure of the nuclear and mitochondrial genomes, ancestral origins, and population expansion. Native Hawaiians, who self-reported full Native Hawaiian heritage, demonstrated 78% Native Hawaiian, 11.5% European, and 7.8% Asian ancestry with 99% belonging to the B4 mitochondrial haplogroup. The estimated proportions of Native Hawaiian ancestry for those who reported mixed ancestry (i.e. 75% and 50% Native Hawaiian heritage) were found to be consistent with their self-reported heritage. A significant proportion of Melanesian ancestry (mean = 32%) was estimated in 100% self-reported Native Hawaiians in an ADMIXTURE analysis of Asian, Melanesian, and Native Hawaiian populations of K = 2, where K denotes the number of ancestral populations. This notable proportion of Melanesian admixture supports the “Slow-Boat” model of migration of ancestral Polynesian populations from East Asia to the Pacific Islands. In addition, approximately 1,300 years ago a single, strong expansion of the Native Hawaiian population was estimated. By providing important insight into the underlying population structure of Native Hawaiians, this study lays the foundation for future genetic association studies of this U.S. minority population.
Collapse
|
13
|
Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A. Time-dependent rates of molecular evolution. Mol Ecol 2011; 20:3087-101. [PMID: 21740474 DOI: 10.1111/j.1365-294x.2011.05178.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events.
Collapse
Affiliation(s)
- Simon Y W Ho
- Centre for Macroevolution and Macroecology, Evolution Ecology & Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Peng MS, He JD, Liu HX, Zhang YP. Tracing the legacy of the early Hainan Islanders--a perspective from mitochondrial DNA. BMC Evol Biol 2011; 11:46. [PMID: 21324107 PMCID: PMC3048540 DOI: 10.1186/1471-2148-11-46] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/15/2011] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Hainan Island is located around the conjunction of East Asia and Southeast Asia, and during the Last Glacial Maximum (LGM) was connected with the mainland. This provided an opportunity for the colonization of Hainan Island by modern human in the Upper Pleistocene. Whether the ancient dispersal left any footprints in the contemporary gene pool of Hainan islanders is debatable. RESULTS We collected samples from 285 Li individuals and analyzed mitochondrial DNA (mtDNA) variations of hypervariable sequence I and II (HVS-I and II), as well as partial coding regions. By incorporating previously reported data, the phylogeny of Hainan islanders was reconstructed. We found that Hainan islanders showed a close relationship with the populations in mainland southern China, especially from Guangxi. Haplotype sharing analyses suggested that the recent gene flow from the mainland might play important roles in shaping the maternal pool of Hainan islanders. More importantly, haplogroups M12, M7e, and M7c1* might represent the genetic relics of the ancient population that populated this region; thus, 14 representative complete mtDNA genomes were further sequenced. CONCLUSIONS The detailed phylogeographic analyses of haplogroups M12, M7e, and M7c1* indicated that the early peopling of Hainan Island by modern human could be traced back to the early Holocene and/or even the late Upper Pleistocene, around 7-27 kya. These results correspond to both Y-chromosome and archaeological studies.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | | | | | | |
Collapse
|
15
|
Peng MS, Palanichamy MG, Yao YG, Mitra B, Cheng YT, Zhao M, Liu J, Wang HW, Pan H, Wang WZ, Zhang AM, Zhang W, Wang D, Zou Y, Yang Y, Chaudhuri TK, Kong QP, Zhang YP. Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a'b. BMC Biol 2011; 9:2. [PMID: 21219640 PMCID: PMC3027199 DOI: 10.1186/1741-7007-9-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/10/2011] [Indexed: 12/18/2022] Open
Abstract
Background Archaeological studies have revealed a series of cultural changes around the Last Glacial Maximum in East Asia; whether these changes left any signatures in the gene pool of East Asians remains poorly indicated. To achieve deeper insights into the demographic history of modern humans in East Asia around the Last Glacial Maximum, we extensively analyzed mitochondrial DNA haplogroup M9a'b, a specific haplogroup that was suggested to have some potential for tracing the migration around the Last Glacial Maximum in East Eurasia. Results A total of 837 M9a'b mitochondrial DNAs (583 from the literature, while the remaining 254 were newly collected in this study) pinpointed from over 28,000 subjects residing across East Eurasia were studied here. Fifty-nine representative samples were further selected for total mitochondrial DNA sequencing so we could better understand the phylogeny within M9a'b. Based on the updated phylogeny, an extensive phylogeographic analysis was carried out to reveal the differentiation of haplogroup M9a'b and to reconstruct the dispersal histories. Conclusions Our results indicated that southern China and/or Southeast Asia likely served as the source of some post-Last Glacial Maximum dispersal(s). The detailed dissection of haplogroup M9a'b revealed the existence of an inland dispersal in mainland East Asia during the post-glacial period. It was this dispersal that expanded not only to western China but also to northeast India and the south Himalaya region. A similar phylogeographic distribution pattern was also observed for haplogroup F1c, thus substantiating our proposition. This inland post-glacial dispersal was in agreement with the spread of the Mesolithic culture originating in South China and northern Vietnam.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ottoni C, Primativo G, Hooshiar Kashani B, Achilli A, Martínez-Labarga C, Biondi G, Torroni A, Rickards O. Mitochondrial haplogroup H1 in north Africa: an early holocene arrival from Iberia. PLoS One 2010; 5:e13378. [PMID: 20975840 PMCID: PMC2958834 DOI: 10.1371/journal.pone.0013378] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/22/2010] [Indexed: 12/12/2022] Open
Abstract
The Tuareg of the Fezzan region (Libya) are characterized by an extremely high frequency (61%) of haplogroup H1, a mitochondrial DNA (mtDNA) haplogroup that is common in all Western European populations. To define how and when H1 spread from Europe to North Africa up to the Central Sahara, in Fezzan, we investigated the complete mitochondrial genomes of eleven Libyan Tuareg belonging to H1. Coalescence time estimates suggest an arrival of the European H1 mtDNAs at about 8,000–9,000 years ago, while phylogenetic analyses reveal three novel H1 branches, termed H1v, H1w and H1x, which appear to be specific for North African populations, but whose frequencies can be extremely different even in relatively close Tuareg villages. Overall, these findings support the scenario of an arrival of haplogroup H1 in North Africa from Iberia at the beginning of the Holocene, as a consequence of the improvement in climate conditions after the Younger Dryas cold snap, followed by in situ formation of local H1 sub-haplogroups. This process of autochthonous differentiation continues in the Libyan Tuareg who, probably due to isolation and recent founder events, are characterized by village-specific maternal mtDNA lineages.
Collapse
Affiliation(s)
- Claudio Ottoni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Forensic Genetics and Molecular Archaeology, Universitaire Ziekenhuizen, Leuven, Belgium
- Center for Archaeological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | - Alessandro Achilli
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Perugia, Italy
| | | | - Gianfranco Biondi
- Dipartimento di Scienze Ambientali, Università dell'Aquila, L'Aquila, Italy
| | - Antonio Torroni
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | - Olga Rickards
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| |
Collapse
|
17
|
Palanichamy MG, Zhang CL, Mitra B, Malyarchuk B, Derenko M, Chaudhuri TK, Zhang YP. Mitochondrial haplogroup N1a phylogeography, with implication to the origin of European farmers. BMC Evol Biol 2010; 10:304. [PMID: 20939899 PMCID: PMC2964711 DOI: 10.1186/1471-2148-10-304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tracing the genetic origin of central European farmer N1a lineages can provide a unique opportunity to assess the patterns of the farming technology spread into central Europe in the human prehistory. Here, we have chosen twelve N1a samples from modern populations which are most similar with the farmer N1a types and performed the complete mitochondrial DNA genome sequencing analysis. To assess the genetic and phylogeographic relationship, we performed a detailed survey of modern published N1a types from Eurasian and African populations. RESULTS The geographic origin and expansion of farmer lineages related N1a subclades have been deduced from combined analysis of 19 complete sequences with 166 N1a haplotypes. The phylogeographic analysis revealed that the central European farmer lineages have originated from different sources: from eastern Europe, local central Europe, and from the Near East via southern Europe. CONCLUSIONS The results obtained emphasize that the arrival of central European farmer lineages did not occur via a single demic diffusion event from the Near East at the onset of the Neolithic spread of agriculture into Europe. Indeed these results indicate that the Neolithic transition process was more complex in central Europe and possibly the farmer N1a lineages were a result of a 'leapfrog' colonization process.
Collapse
Affiliation(s)
- Malliya Gounder Palanichamy
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, 2 North Green Lake Street, Kunming 650091, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bonhomme F, Orth A, Cucchi T, Rajabi-Maham H, Catalan J, Boursot P, Auffray JC, Britton-Davidian J. Genetic differentiation of the house mouse around the Mediterranean basin: matrilineal footprints of early and late colonization. Proc Biol Sci 2010; 278:1034-43. [PMID: 20880891 DOI: 10.1098/rspb.2010.1228] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular signatures of the recent expansion of the western house mouse, Mus musculus domesticus, around the Mediterranean basin are investigated through the study of mitochondrial D-loop polymorphism on a 1313 individual dataset. When reducing the complexity of the matrilineal network to a series of haplogroups (HGs), our main results indicate that: (i) several HGs are recognized which seem to have almost simultaneously diverged from each other, confirming a recent expansion for the whole subspecies; (ii) some HGs are geographically delimited while others are widespread, indicative of multiple introductions or secondary exchanges; (iii) mice from the western and the eastern coasts of Africa harbour largely different sets of HGs; and (iv) HGs from the two shores of the Mediterranean are more similar in the west than in the east. This pattern is in keeping with the two-step westward expansion proposed by zooarchaeological data, an early one coincident with the Neolithic progression and limited to the eastern Mediterranean and a later one, particularly evident in the western Mediterranean, related to the generalization of maritime trade during the first millennium BC and onwards. The dispersal of mice along with humans, which continues until today, has for instance left complex footprints on the long ago colonized Cyprus or more simple ones on the much more recently populated Canary Islands.
Collapse
Affiliation(s)
- François Bonhomme
- Institut des Sciences de l'Evolution, Université Montpellier 2, CNRS UMR5554, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Perego UA, Angerhofer N, Pala M, Olivieri A, Lancioni H, Hooshiar Kashani B, Carossa V, Ekins JE, Gómez-Carballa A, Huber G, Zimmermann B, Corach D, Babudri N, Panara F, Myres NM, Parson W, Semino O, Salas A, Woodward SR, Achilli A, Torroni A. The initial peopling of the Americas: a growing number of founding mitochondrial genomes from Beringia. Genome Res 2010; 20:1174-9. [PMID: 20587512 DOI: 10.1101/gr.109231.110] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pan-American mitochondrial DNA (mtDNA) haplogroup C1 has been recently subdivided into three branches, two of which (C1b and C1c) are characterized by ages and geographical distributions that are indicative of an early arrival from Beringia with Paleo-Indians. In contrast, the estimated ages of C1d--the third subset of C1--looked too young to fit the above scenario. To define the origin of this enigmatic C1 branch, we completely sequenced 63 C1d mitochondrial genomes from a wide range of geographically diverse, mixed, and indigenous American populations. The revised phylogeny not only brings the age of C1d within the range of that of its two sister clades, but reveals that there were two C1d founder genomes for Paleo-Indians. Thus, the recognized maternal founding lineages of Native Americans are at least 15, indicating that the overall number of Beringian or Asian founder mitochondrial genomes will probably increase extensively when all Native American haplogroups reach the same level of phylogenetic and genomic resolution as obtained here for C1d.
Collapse
Affiliation(s)
- Ugo A Perego
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah 84115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|