1
|
Velez M, Arluison V. Does the Hfq Protein Contribute to RNA Cargo Translocation into Bacterial Outer Membrane Vesicles? Pathogens 2025; 14:399. [PMID: 40333199 PMCID: PMC12030562 DOI: 10.3390/pathogens14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025] Open
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) that deliver various molecules, including virulence factors, to interact with their host. Recent studies have suggested that OMVs may also serve as carriers for RNAs, particularly small regulatory noncoding RNAs (sRNAs). For these RNAs to function effectively, they typically require a protein cofactor, Hfq, known as an RNA chaperone. In previous work, using molecular imaging, Circular Dichroism CD, and InfraRed FTIR spectroscopies, we demonstrated that Hfq interacts with the bacterial inner membrane and forms pores, suggesting a possible role in translocating RNA from the cytoplasm to periplasm and then to OMVs. In this study, we expand on our previous findings and provide evidence that RNA molecules bind to the Escherichia coli inner membrane in an Hfq-dependent manner. Moreover, we show that the lipid nature, in particular the presence of a cardiolipin-rich domain, is crucial for this interaction. These results reveal a new aspect of RNA translocation through the inner membrane, for further packaging in OMVs, and underscore the importance of Hfq in this mechanism.
Collapse
Affiliation(s)
- Marisela Velez
- Instituto de Catálisis y Petroleoquímica (CSIC), c/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
2
|
Moutacharrif S, Haichar FEZ, Meyer S, Ribot C, Reverchon S, Nasser W, Hommais F. The Power Duo: How the Interplay Between Nucleoid-Associated Proteins and Small Noncoding RNAs Orchestrates the Cellular Regulatory Symphony. Mol Microbiol 2025. [PMID: 40186492 DOI: 10.1111/mmi.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
In bacteria, the regulation of gene expression involves complex networks that integrate both transcriptional and posttranscriptional mechanisms. At the transcriptional level, nucleoid-associated proteins (NAPs) such as H-NS, HU, Lrp, IHF, Fis and Hfq are key players as they not only compact bacterial DNA but also regulate transcription. Small noncoding RNAs (sRNAs), on the other hand, are known to affect bacterial gene expression posttranscriptionally by base pairing with the target mRNA, but they can also be involved in nucleoid condensation. Interestingly, certain NAPs also influence the function of sRNAs and, conversely, sRNAs themselves can modulate the activity of NAPs, creating a complex bidirectional regulatory network. Here, we summarise the current knowledge of the major NAPs, focusing on the specific role of Hfq. Examples of the regulation of NAPs by sRNAs, the regulation of sRNAs by NAPs and the role of sRNAs in nucleoid structuring are also discussed. This review focuses on the cross-talk between NAPs and sRNAs in an attempt to understand how this interplay works to orchestrate the functioning of the cell.
Collapse
Affiliation(s)
- Sara Moutacharrif
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Feth El Zahar Haichar
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sam Meyer
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Cecile Ribot
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sylvie Reverchon
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - William Nasser
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Florence Hommais
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Bloch S, Sinden RR, Wien F, Węgrzyn G, Arluison V. DNA Transactions in Bacteria and Membranes: A Place for the Hfq Protein? MEMBRANES 2025; 15:103. [PMID: 40277973 PMCID: PMC12029325 DOI: 10.3390/membranes15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
DNA metabolism consists of crucial processes occurring in all living cells. These processes include various transactions, such as DNA replication, genetic recombination, transposition, mutagenesis, and DNA repair. While it was initially assumed that these processes might occur in the cytoplasm of prokaryotic cells, subsequent reports indicated the importance of the cell membrane in various DNA transactions. Furthermore, newly identified factors play significant roles in regulating DNA-related cellular processes. One such factor is the Hfq protein, originally discovered as an RNA chaperone but later shown to be involved in several molecular mechanisms. These include DNA transactions and interaction with the cell membrane. Recent studies have suggested that Hfq plays a role in the regulation of DNA replication, mutagenesis, and recombination. In this narrative review, we will focus on the importance of membranes in DNA transactions and discuss the potential role of Hfq-mediated regulation of these processes in Escherichia coli, where the protein is the best characterized. Special attention is given to the affinity of this small protein for both DNA and membranes, which might help explain some of the findings from recent experiments.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Richard R. Sinden
- Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint Aubin, France;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
4
|
Wien F, Gragera M, Matsuo T, Moroy G, Bueno-Carrasco MT, Arranz R, Cossa A, Martel A, Bordallo HN, Rudić S, Velez M, van der Maarel JRC, Peters J, Arluison V. Amyloid-like DNA bridging: a new mode of DNA shaping. Nucleic Acids Res 2025; 53:gkaf169. [PMID: 40066879 DOI: 10.1093/nar/gkaf169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/23/2025] [Indexed: 05/13/2025] Open
Abstract
All organisms depend on specific proteins to compact and organize their genomes. In eukaryotes, histones fulfil this role, while bacterial chromosomes are shaped by nucleoid-associated proteins (NAPs). Among its pleiotropic functions, the NAP Hfq plays a pivotal role in bacterial genome organization. In this study, we characterized the structure of the C-terminal extension of Hfq, which mediates chromosomal compaction, in its DNA-bound state. Using an integrative approach that combined transmission electron microscopy, neutron scattering, site-directed mutagenesis, and molecular modeling, we identified an amyloid module formed by the C-terminal region of Hfq. This module uniquely bridges and compacts six DNA molecules, marking the first documented instance of an amyloid structure with DNA-bridging properties. Our findings redefine the functional landscape of amyloids, linking them to genome architecture and gene regulation. This result suggests that amyloid-DNA interactions may represent a conserved mechanism across biological systems, with profound implications for understanding genome organization and the regulation of gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Marcos Gragera
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Tatsuhito Matsuo
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble Cedex 9, France
- Hiroshima International University (HIU), Hiroshima 739-2695, Japan
- Université Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
| | - Gautier Moroy
- Université Paris Cité, CNRS, INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Rocío Arranz
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Antoine Cossa
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble Cedex 9, France
| | - Heloisa N Bordallo
- The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Svemir Rudić
- ISIS Neutron and Muon Source, SFTC, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Marisela Velez
- Instituto de Catálisis y Petroleoquímica (CSIC), c/Marie Curie 2, Cantoblanco, Madrid 28049, Spain
| | | | - Judith Peters
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042, Grenoble Cedex 9, France
- Université Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 75006 Paris, France
| |
Collapse
|
5
|
Kazakov EP, Kireev II, Golyshev SA. Techniques for Selective Labeling of Molecules and Subcellular Structures for Cryo-Electron Tomography. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:173-187. [PMID: 40254397 DOI: 10.1134/s0006297924604015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 04/22/2025]
Abstract
Electron microscopy (EM) is one of the most efficient methods for studying the fine structure of cells with a resolution thousands of times higher than that of visible light microscopy. The most advanced implementation of electron microscopy in biology is EM tomography of samples stabilized by freezing without water crystallization (cryoET). By circumventing the drawbacks of chemical fixation and dehydration, this technique allows investigating cellular structures in three dimensions at the molecular level, down to resolving individual proteins and their subdomains. However, the problem of efficient identification and localization of objects of interest has not yet been solved, thus limiting the range of targets to easily recognizable or abundant subcellular components. Labeling techniques provide the only way for locating the subject of investigation in microscopic images. CryoET imposes conflicting demands on the labeling system, including the need to introduce into a living cell the particles composed of substances foreign to the cellular chemistry that have to bind to the molecule of interest without disrupting its vital functions and physiology of the cell. This review examines both established and prospective methods for selective labeling of proteins and subcellular structures aimed to enable their localization in cryoET images.
Collapse
Affiliation(s)
- Evgeny P Kazakov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Igor I Kireev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sergei A Golyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Easo George J, Basak R, Yadav I, Tan CJ, van Kan JA, Wien F, Arluison V, van der Maarel JRC. Effect of base methylation on binding and mobility of bacterial protein Hfq on double-stranded DNA. LAB ON A CHIP 2024; 24:5137-5144. [PMID: 39363842 DOI: 10.1039/d4lc00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Regulation of protein mobility is a fundamental aspect of cellular processes. In this study, we examined the impact of DNA methylation on the diffusion of nucleoid associated protein Hfq. This protein is one of the most abundant proteins that shapes the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy was employed to monitor the movement of Hfq along double-stranded DNA, which was stretched due to confinement within a nanofluidic channel. The mobility of Hfq is significantly influenced by DNA methylation. Our results underscore the importance of bacterial epigenetic modifications in governing the movement of nucleoid associated proteins such as Hfq. Increased levels of methylation result in enhanced binding affinity, which in turn slows down the diffusion of Hfq on DNA. The reported control of protein mobility by DNA methylation has potential implications for the mechanisms involved in target DNA search processes and dynamic modelling of the bacterial chromosome.
Collapse
Affiliation(s)
- Jijo Easo George
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Rajib Basak
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Indresh Yadav
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Chuan Jie Tan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du vivant, Université Paris Cité, 75006 Paris, France
| | | |
Collapse
|
7
|
Sachse M, de Castro IF, Tenorio R, Risco C. Molecular mapping of virus-infected cells with immunogold and metal-tagging transmission electron microscopy. Mol Microbiol 2024; 121:688-695. [PMID: 37864540 DOI: 10.1111/mmi.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Transmission electron microscopy (TEM) has been essential to study virus-cell interactions. The architecture of viral replication factories, the principles of virus assembly and the components of virus egress pathways are known thanks to the contribution of TEM methods. Specially, when studying viruses in cells, methodologies for labeling proteins and other macromolecules are important tools to correlate morphology with function. In this review, we present the most widely used labeling method for TEM, immunogold, together with a lesser known technique, metal-tagging transmission electron microscopy (METTEM) and how they can contribute to study viral infections. Immunogold uses the power of antibodies and electron dense, colloidal gold particles while METTEM uses metallothionein (MT), a metal-binding protein as a clonable tag. MT molecules build gold nano-clusters inside cells when these are incubated with gold salts. We describe the necessary controls to confirm that signals are specific, the advantages and limitations of both methods, and show some examples of immunogold and METTEM of cells infected with viruses.
Collapse
Affiliation(s)
- Martin Sachse
- Centro Nacional de Microbiología/ISCIII, Madrid, Spain
| | | | - Raquel Tenorio
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
8
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Turbant F, Machiels Q, Waeytens J, Wien F, Arluison V. The Amyloid Assembly of the Bacterial Hfq Is Lipid-Driven and Lipid-Specific. Int J Mol Sci 2024; 25:1434. [PMID: 38338713 PMCID: PMC10855545 DOI: 10.3390/ijms25031434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Under specific conditions, some proteins can self-assemble into fibrillar structures called amyloids. Initially, these proteins were associated with neurodegenerative diseases in eucaryotes. Nevertheless, they have now been identified in the three domains of life. In bacteria, they are involved in diverse biological processes and are usually useful for the cell. For this reason, they are classified as "functional amyloids". In this work, we focus our analysis on a bacterial functional amyloid called Hfq. Hfq is a pleiotropic regulator that mediates several aspects of genetic expression, mainly via the use of small noncoding RNAs. Our previous work showed that Hfq amyloid-fibrils interact with membranes. This interaction influences Hfq amyloid structure formation and stability, but the specifics of the lipid on the dynamics of this process is unknown. Here, we show, using spectroscopic methods, how lipids specifically drive and modulate Hfq amyloid assembly or, conversely, its disassembly. The reported effects are discussed in light of the consequences for bacterial cell life.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France;
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Quentin Machiels
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, 1050 Bruxelles, Belgium; (Q.M.); (J.W.)
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, 1050 Bruxelles, Belgium; (Q.M.); (J.W.)
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France;
- SDV Department, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
10
|
Berbon M, Martinez D, Morvan E, Grélard A, Kauffmann B, Waeytens J, Wien F, Arluison V, Habenstein B. Hfq C-terminal region forms a β-rich amyloid-like motif without perturbing the N-terminal Sm-like structure. Commun Biol 2023; 6:1075. [PMID: 37865695 PMCID: PMC10590398 DOI: 10.1038/s42003-023-05462-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Hfq is a pleitropic actor that serves as stress response and virulence factor in the bacterial cell. To execute its multiple functions, Hfq assembles into symmetric torus-shaped hexamers. Extending outward from the hexameric core, Hfq presents a C-terminal region, described as intrinsically disordered in solution. Many aspects of the role and the structure of this region remain unclear. For instance, in its truncated form it can promote amyloid-like filament assembly. Here, we show that a minimal 11-residue motif at the C-terminal end of Hfq assembles into filaments with amyloid characteristics. Our data suggest that the full-length Hfq in its filamentous state contains a similar molecular fingerprint than that of the short β-strand peptide, and that the Sm-core structure is not affected by filament formation. Hfq proteins might thus co-exist in two forms in vivo, either as isolated, soluble hexamers or as self-assembled hexamers through amyloid-reminiscent interactions, modulating Hfq cellular functions.
Collapse
Affiliation(s)
- Mélanie Berbon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Denis Martinez
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgique
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191, Gif-sur-Yvette, France.
- Université de Paris Cité, UFR SDV, 75013, Paris, France.
| | - Birgit Habenstein
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France.
| |
Collapse
|
11
|
Ferrelli ML, Pidre ML, García-Domínguez R, Alberca LN, Del Saz-Navarro DM, Santana-Molina C, Devos DP. Prokaryotic membrane coat - like proteins: An update. J Struct Biol 2023; 215:107987. [PMID: 37343709 DOI: 10.1016/j.jsb.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Membrane coat proteins are essential players in the eukaryotic endomembrane traffic system. Previous work identified proteins with the membrane-coat architecture in prokaryotes, specifically in the Planctomycetes, Verrucomicrobia and Chlamydiae (PVC) superphylum, bacteria that display the most developed prokaryotic endomembrane system. Hence, the membrane coat-like (MCL) proteins are predicted to play a central role in this system but their actual function is still unknown. In this work we strengthened previous structure predictions for these prokaryotic MCL proteins. We also detected new putative MCL proteins in the Planctomycete Gemmata obscuriglobus. Structural analysis of these revealed the presence of additional domains apart from the β-propeller and α-solenoid combination, characteristic of the membrane-coat architecture. Functions associated with these domains include some related to carbohydrate or membrane/lipid binding. Using homology-based methods, we found MCL proteins in other bacterial phyla, but the most abundant hits are still restricted to Planctomycetes and Verrucomicrobia. Detailed inspection of neighbouring genes of MCL in G. obscuriglobus supports the idea that the function of these proteins is related to membrane manipulation. No significant hits were found in Archaea, including Asgard archaea. More than 10 years after their original detection, PVC bacteria are still uniquely linked to eukaryotes through the structure of the MCL proteins sustaining their endomembrane system.
Collapse
Affiliation(s)
- M Leticia Ferrelli
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Matías L Pidre
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Ruben García-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Lucas N Alberca
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - DMaría Del Saz-Navarro
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain.
| |
Collapse
|
12
|
Turbant F, Waeytens J, Blache A, Esnouf E, Raussens V, Węgrzyn G, Achouak W, Wien F, Arluison V. Interactions and Insertion of Escherichia coli Hfq into Outer Membrane Vesicles as Revealed by Infrared and Orientated Circular Dichroism Spectroscopies. Int J Mol Sci 2023; 24:11424. [PMID: 37511182 PMCID: PMC10379585 DOI: 10.3390/ijms241411424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The possible carrier role of Outer Membrane Vesicles (OMVs) for small regulatory noncoding RNAs (sRNAs) has recently been demonstrated. Nevertheless, to perform their function, these sRNAs usually need a protein cofactor called Hfq. In this work we show, by using a combination of infrared and circular dichroism spectroscopies, that Hfq, after interacting with the inner membrane, can be translocated into the periplasm, and then be exported in OMVs, with the possibility to be bound to sRNAs. Moreover, we provide evidence that Hfq interacts with and is inserted into OMV membranes, suggesting a role for this protein in the release of sRNA outside the vesicle. These findings provide clues to the mechanism of host-bacteria interactions which may not be defined solely by protein-protein and protein-outer membrane contacts, but also by the exchange of RNAs, and in particular sRNAs.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Anaïs Blache
- Lab of Microbial Ecology of the Rhizosphere, (LEMiRE), BIAM, CEA, CNRS, Aix Marseille University, 13115 Saint Paul Lez Durance, France
| | - Emeline Esnouf
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Vincent Raussens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Wafa Achouak
- Lab of Microbial Ecology of the Rhizosphere, (LEMiRE), BIAM, CEA, CNRS, Aix Marseille University, 13115 Saint Paul Lez Durance, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
13
|
Blake MJ, Castillo HB, Curtis AE, Calhoun TR. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophys J 2023; 122:1735-1747. [PMID: 37041744 PMCID: PMC10209030 DOI: 10.1016/j.bpj.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The first barrier that a small molecule must overcome before trespassing into a living cell is the lipid bilayer surrounding the intracellular content. It is imperative, therefore, to understand how the structure of a small molecule influences its fate in this region. Through the use of second harmonic generation, we show how the differing degrees of ionic headgroups, conjugated system, and branched hydrocarbon tail disparities of a series of four styryl dye molecules influence the propensity to "flip-flop" or to be further organized in the outer leaflet by the membrane. We show here that initial adsorption experiments match previous studies on model systems; however, more complex dynamics are observed over time. Aside from probe molecule structure, these dynamics also vary between cell species and can deviate from trends reported based on model membranes. Specifically, we show here that the membrane composition is an important factor to consider for headgroup-mediated small-molecule dynamics. Overall, the findings presented here on how structural variability of small molecules impacts their initial adsorption and eventual destinations within membranes in the context of living cells could have practical applications in antibiotic and drug adjuvant design.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Hannah B Castillo
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Anna E Curtis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
14
|
Tanner H, Sherwin O, Verkade P. Labelling strategies for correlative light electron microscopy. Microsc Res Tech 2023. [PMID: 36846978 DOI: 10.1002/jemt.24304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 03/01/2023]
Abstract
Imaging is one of the key technologies underpinning discoveries in biomedical research. Each imaging technique however usually only provides a specific type of information. For instance, live-cell imaging using fluorescent tags can show us the dynamics of a system. On the other hand, electron microscopy (EM) gives us better resolution combined with the structural reference space. By applying a combination of light and electron microscopy modalities to a single sample one can exploit the advantages of both techniques in correlative light electron microscopy (CLEM). Although CLEM approaches can generate additional insights into the sample that cannot be gained by either technique in isolation, the visualization of the object of interest via markers or probes is still one of the bottlenecks in a Correlative Microscopy workflow. Whereas fluorescence is not directly visible in a standard electron microscope, gold particles, as the most common choice of probe for EM can also only be visualized using specialized light microscopes. In this review we will discuss some of the latest developments of probes for CLEM and some strategies how to choose a probe, discussing pros and cons of specific probes, and ensuring that they function as a dual modality marker.
Collapse
Affiliation(s)
- Hugh Tanner
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK.,Department of Chemistry, KBC Building, Umeå University, Umeå, Sweden
| | - Olivia Sherwin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Paul Verkade
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
15
|
Cossa A, Trépout S, Wien F, Groen J, Le Brun E, Turbant F, Besse L, Pereiro E, Arluison V. Cryo soft X-ray tomography to explore Escherichia coli nucleoid remodeling by Hfq master regulator. J Struct Biol 2022; 214:107912. [PMID: 36283630 DOI: 10.1016/j.jsb.2022.107912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.
Collapse
Affiliation(s)
- Antoine Cossa
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Sylvain Trépout
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia.
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Johannes Groen
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Eva Pereiro
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Université Paris Cité, UFR Sciences du vivant, 75006 Paris cedex, France.
| |
Collapse
|
16
|
Synchrotron Radiation Circular Dichroism, a New Tool to Probe Interactions between Nucleic Acids Involved in the Control of ColE1-Type Plasmid Replication. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Hfq is a bacterial master regulator which promotes the pairing of nucleic acids. Due to the high molecular weight of the complexes formed between nucleic acids and the amyloid form of the protein, it is difficult to analyze solely by a gel shift assay the complexes formed, as they all migrate at the same position in the gel. In addition, precise kinetics measurements are not possible using a gel shift assay. Here, we used a synchrotron-based biophysical approach, synchrotron radiation circular dichroism (SRCD), to probe the interaction of the Escherichia coli Hfq C-terminal amyloid region with nucleic acids involved in the control of ColE1-like plasmid replication. We observed that this C-terminal region of Hfq has an unexpected and significant effect on the annealing of nucleic acids involved in this process and, more importantly, on their alignment. Functional consequences of this newly discovered property of the Hfq amyloid region are discussed in terms of the biological significance of Hfq in the ColE1-type plasmid replication process and antibiotic resistance.
Collapse
|
17
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
18
|
Sandt C, Partouche D, Arluison V. Direct, Rapid, and Simple Evaluation of the Expression and Conformation of Beta-Amyloid in Bacterial Cells by FTIR Spectroscopy. Methods Mol Biol 2022; 2538:235-260. [PMID: 35951304 DOI: 10.1007/978-1-0716-2529-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The expression and conformation of bacterial proteins and peptides can be monitored in situ by Fourier transform infrared spectroscopy (FTIR), provided that the concentration of the protein of interest is sufficient. Here, we describe a simple protocol to analyze the conformation adopted by a specific amyloid protein in Escherichia coli cells, the pleiotropic regulator Hfq.E. coli cells expressing Hfq under an inducible promoter are analyzed. The change in protein conformation is analyzed by comparing the different populations versus controls (i.e., Δhfq cells, totally devoid of the Hfq protein) by difference spectroscopy, second derivation, curve-fitting, and principal component analysis. All the analyses were performed in the free, open-source software Quasar. We describe the detailed protocol for analyzing the data in Quasar. We show that the specific absorption of the β-amyloid conformation can be easily detected in the WT-Hfq, with bands at 1624 cm-1 and 1693 cm-1 indicating the presence of both parallel and antiparallel β-sheets. Furthermore, we show that FTIR spectroscopy is sensitive enough to probe the conformation of an amyloid protein backbone in vivo and to analyze its conformation in situ, directly in bacterial cells, without the need for protein purification.
Collapse
Affiliation(s)
- Christophe Sandt
- SMIS beamline, Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France.
| | - David Partouche
- SMIS beamline, Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
- Université de Paris Cité, Paris, France
| |
Collapse
|
19
|
Katsuya-Gaviria K, Paris G, Dendooven T, Bandyra KJ. Bacterial RNA chaperones and chaperone-like riboregulators: behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol 2021; 19:419-436. [PMID: 35438047 PMCID: PMC9037510 DOI: 10.1080/15476286.2022.2048565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/26/2022] [Indexed: 11/02/2022] Open
Abstract
In all domains of life, RNA chaperones safeguard and guide the fate of the cellular RNA pool. RNA chaperones comprise structurally diverse proteins that ensure proper folding, stability, and ribonuclease resistance of RNA, and they support regulatory activities mediated by RNA. RNA chaperones constitute a topologically diverse group of proteins that often present an unstructured region and bind RNA with limited nucleotide sequence preferences. In bacteria, three main proteins - Hfq, ProQ, and CsrA - have been shown to regulate numerous complex processes, including bacterial growth, stress response and virulence. Hfq and ProQ have well-studied activities as global chaperones with pleiotropic impact, while CsrA has a chaperone-like role with more defined riboregulatory function. Here, we describe relevant novel insights into their common features, including RNA binding properties, unstructured domains, and interplay with other proteins important to RNA metabolism.
Collapse
Affiliation(s)
- Kai Katsuya-Gaviria
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CambridgeCB2 1GA, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CambridgeCB2 1GA, UK
| | - Tom Dendooven
- Department of Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Katarzyna J. Bandyra
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 02-089Warsaw, Poland
| |
Collapse
|
20
|
Development of a highly sensitive luciferase-based reporter system to study two-step protein secretion in cyanobacteria. J Bacteriol 2021; 204:e0050421. [PMID: 34898262 DOI: 10.1128/jb.00504-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria, ubiquitous oxygenic photosynthetic bacteria, interact with the environment and their surrounding microbiome through the secretion of a variety of small molecules and proteins. The release of these compounds is mediated by sophisticated multi-protein complexes, also known as secretion systems. Genomic analyses indicate that protein and metabolite secretion systems are widely found in cyanobacteria; however little is known regarding their function, regulation and secreted effectors. One such system, the type IVa pilus system (T4aPS), is responsible for the assembly of dynamic cell surface appendages, type IVa pili (T4aP), that mediate ecologically relevant processes such as phototactic motility, natural competence and adhesion. Several studies have suggested that the T4aPS can also act as a two-step protein secretion system in cyanobacteria akin to the homologous type II secretion system in heterotrophic bacteria. To determine whether the T4aP are involved in two-step secretion of non-pilin proteins, we developed a NanoLuc-based quantitative secretion reporter for the model cyanobacterium Synechocystis sp. PCC 6803. The NLuc reporter presented a wide dynamic range with at least one order of magnitude more sensitivity than traditional immunoblotting. Application of the reporter to a collection of Synechocystis T4aPS mutants demonstrated that the two-step secretion of NLuc is independent of T4aP. In addition, our data suggest that secretion differences typically observed in T4aPS mutants are likely due to a disruption of cell envelope homeostasis. This study opens the door to explore protein secretion in cyanobacteria further. Importance Protein secretion allows bacteria to interact and communicate with the external environment. Secretion is also biotechnologically relevant, where it is often beneficial to target proteins to the extracellular space. Due to a shortage of quantitative assays, many aspects of protein secretion are not understood. Here we introduce a NanoLuc (NLuc)-based secretion reporter in cyanobacteria. NLuc is highly sensitive and can be assayed rapidly and in small volumes. The NLuc reporter allowed us to clarify the role of type IVa pili in protein secretion and identify mutations that increase secretion yield. This study expands our knowledge on cyanobacterial secretion and offers a valuable tool for future studies of protein secretion systems in cyanobacteria.
Collapse
|
21
|
Troung SF, Sukhodolets MV. The bacterial protein Hfq: Stable modifications and growth phase-dependent changes in SPAM profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1183:122958. [PMID: 34628185 DOI: 10.1016/j.jchromb.2021.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
In bacteria transcription is coupled to translation, and while it is broadly accepted that transcription-translation complexes (TTCs) are formed in growing bacterial cells, the exact spatial organization of these macromolecular assemblies is not known with certainty. Recent studies indicated the formation of orderly cytosolic superstructures in growing E. coli cells. The bacterial nucleic acid (NA)-binding protein Hfq has been shown to function at the interface of RNA synthesis-degradation machinery; multiple, independent studies link Hfq to orderly cytosolic assemblies. In this work, using fast cell lysis/2D-PAGE and in vitro reconstitution analyses we studied the Hfq modifications and small protein-associated molecules (SPAM). We demonstrate that native Hfq carries stable modifications and simulate 2D patterns of native Hfq-SPAM complexes in reconstitution experiments with purified Hfq and synthetic NA probes. We also demonstrate that genetically engineered Hfq lacking the conserved arginine residues positioned near the rim of the disc formed by the subunits' N-terminal domains binds DNA with a reduced affinity in comparison with wild-type Hfq. These results are consistent with the proposed Hfq-mediated DNA remodeling and point to the involvement of this patch of conserved arginines in interactions with DNA.
Collapse
Affiliation(s)
- Stanley F Troung
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, United States
| | - Maxim V Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, United States.
| |
Collapse
|
22
|
Park S, Prévost K, Heideman EM, Carrier MC, Azam MS, Reyer MA, Liu W, Massé E, Fei J. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells. eLife 2021; 10:64207. [PMID: 33616037 PMCID: PMC7987339 DOI: 10.7554/elife.64207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins play myriad roles in regulating RNAs and RNA-mediated functions. In bacteria, the RNA chaperone Hfq is an important post-transcriptional gene regulator. Using live-cell super-resolution imaging, we can distinguish Hfq binding to different sizes of cellular RNAs. We demonstrate that under normal growth conditions, Hfq exhibits widespread mRNA-binding activity, with the distal face of Hfq contributing mostly to the mRNA binding in vivo. In addition, sRNAs can either co-occupy Hfq with the mRNA as a ternary complex, or displace the mRNA from Hfq in a binding face-dependent manner, suggesting mechanisms through which sRNAs rapidly access Hfq to induce sRNA-mediated gene regulation. Finally, our data suggest that binding of Hfq to certain mRNAs through its distal face can recruit RNase E to promote turnover of these mRNAs in a sRNA-independent manner, and such regulatory function of Hfq can be decoyed by sRNA competitors that bind strongly at the distal face. Messenger RNAs or mRNAs are molecules that the cell uses to transfer the information stored in the cell’s DNA so it can be used to make proteins. Bacteria can regulate their levels of mRNA molecules, and they can therefore control how many proteins are being made, by producing a different type of RNA called small regulatory RNAs or sRNAs. Each sRNA can bind to several specific mRNA targets, and lead to their degradation by an enzyme called RNase E. Certain bacterial RNA-binding proteins, such as Hfq, protect sRNAs from being degraded, and help them find their mRNA targets. Hfq is abundant in bacteria. It is critical for bacterial growth under harsh conditions and it is involved in the process through which pathogenic bacteria infect cells. However, it is outnumbered by the many different RNA molecules in the cell, which compete for binding to the protein. It is not clear how Hfq prioritizes the different RNAs, or how binding to Hfq alters RNA regulation. Park, Prévost et al. imaged live bacterial cells to see how Hfq binds to RNA strands of different sizes. The experiments revealed that, when bacteria are growing normally, Hfq is mainly bound to mRNA molecules, and it can recruit RNase E to speed up mRNA degradation without the need for sRNAs. Park, Prévost et al. also showed that sRNAs could bind to Hfq by either replacing the bound mRNA or co-binding alongside it. The sRNA molecules that strongly bind Hfq can compete against mRNA for binding, and thus slow down the degradation of certain mRNAs. Hfq could be a potential drug target for treating bacterial infections. Understanding how it interacts with other molecules in bacteria could provide help in the development of new therapeutics. These findings suggest that a designed RNA that binds strongly to Hfq could disrupt its regulatory roles in bacteria, killing them. This could be a feasible drug design opportunity to counter the emergence of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Seongjin Park
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Karine Prévost
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Emily M Heideman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Marie-Claude Carrier
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Muhammad S Azam
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Matthew A Reyer
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Eric Massé
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Canada
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
| |
Collapse
|
23
|
Turbant F, Hamoui OE, Partouche D, Sandt C, Busi F, Wien F, Arluison V. Identification and characterization of the Hfq bacterial amyloid region DNA interactions. BBA ADVANCES 2021; 1:100029. [PMID: 37082015 PMCID: PMC10074921 DOI: 10.1016/j.bbadva.2021.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid amyloid proteins interactions have been observed in the past few years. These interactions often promote protein aggregation. Nevertheless, molecular basis and physiological consequences of these interactions are still poorly understood. Additionally, it is unknown whether the nucleic acid promotes the formation of self-assembly due to direct interactions or indirectly via sequences surrounding the amyloid region. Here we focus our attention on a bacterial amyloid, Hfq. This protein is a pleiotropic bacterial regulator that mediates many aspects of nucleic acids metabolism. The protein notably mediates mRNA stability and translation efficiency by using stress-related small non coding regulatory RNA. In addition, Hfq, thanks to its amyloid C-terminal region, binds and compacts DNA. A combination of experimental methodologies, including synchrotron radiation circular dichroism (SRCD), gel shift assay and infrared (FTIR) spectroscopy have been used to probe the interaction of Hfq C-terminal region with DNA. We clearly identify important amino acids in this region involved in DNA binding and polymerization properties. This allows to understand better how this bacterial amyloid interacts with DNA. Possible functional consequence to answer to stresses are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Omar El Hamoui
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - David Partouche
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florent Busi
- Université de Paris, UFR Sciences du vivant, 75006 Paris cedex, France
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
- Corresponding author.
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Université de Paris, UFR Sciences du vivant, 75006 Paris cedex, France
- Corresponding author.
| |
Collapse
|
24
|
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors. Microorganisms 2020; 8:microorganisms8101622. [PMID: 33096715 PMCID: PMC7588896 DOI: 10.3390/microorganisms8101622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
Collapse
|
25
|
Irastortza-Olaziregi M, Amster-Choder O. RNA localization in prokaryotes: Where, when, how, and why. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1615. [PMID: 32851805 DOI: 10.1002/wrna.1615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Only recently has it been recognized that the transcriptome of bacteria and archaea can be spatiotemporally regulated. All types of prokaryotic transcripts-rRNAs, tRNAs, mRNAs, and regulatory RNAs-may acquire specific localization and these patterns can be temporally regulated. In some cases bacterial RNAs reside in the vicinity of the transcription site, but in many others, transcripts show distinct localizations to the cytoplasm, the inner membrane, or the pole of rod-shaped species. This localization, which often overlaps with that of the encoded proteins, can be achieved either in a translation-dependent or translation-independent fashion. The latter implies that RNAs carry sequence-level features that determine their final localization with the aid of RNA-targeting factors. Localization of transcripts regulates their posttranscriptional fate by affecting their degradation and processing, translation efficiency, sRNA-mediated regulation, and/or propensity to undergo RNA modifications. By facilitating complex assembly and liquid-liquid phase separation, RNA localization is not only a consequence but also a driver of subcellular spatiotemporal complexity. We foresee that in the coming years the study of RNA localization in prokaryotes will produce important novel insights regarding the fundamental understanding of membrane-less subcellular organization and lead to practical outputs with biotechnological and therapeutic implications. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
El Hamoui O, Yadav I, Radiom M, Wien F, Berret JF, van der Maarel JRC, Arluison V. Interactions between DNA and the Hfq Amyloid-like Region Trigger a Viscoelastic Response. Biomacromolecules 2020; 21:3668-3677. [PMID: 32786728 DOI: 10.1021/acs.biomac.0c00747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular transport of biomolecules plays a pivotal role in the machinery of life. Yet, this role is poorly understood due the lack of quantitative information. Here, the role and properties of the C-terminal region of Escherichia coli Hfq is reported, involved in controlling the flow of a DNA solution. A combination of experimental methodologies has been used to probe the interaction of Hfq with DNA and to measure the rheological properties of the complex. A physical gel with a temperature reversible elasticity modulus is formed due to the formation of noncovalent cross-links. The mechanical response of the complexes shows that they are inhomogeneous soft solids. Our experiments indicate that the Hfq C-terminal region could contribute to the genome's mechanical response. The reported viscoelasticity of the DNA-protein complex might have implications for cellular processes involving molecular transport of DNA or segments thereof.
Collapse
Affiliation(s)
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Milad Radiom
- Matière et Systèmes Complexes, UMR 7057 CNRS Université de Paris, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Jean-Francois Berret
- Matière et Systèmes Complexes, UMR 7057 CNRS Université de Paris, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, F-75205 Paris, France
| | | | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France.,Université de Paris, F-75006 Paris, France
| |
Collapse
|
27
|
Wien F, Martinez D, Le Brun E, Jones NC, Vrønning Hoffmann S, Waeytens J, Berbon M, Habenstein B, Arluison V. The Bacterial Amyloid-Like Hfq Promotes In Vitro DNA Alignment. Microorganisms 2019; 7:microorganisms7120639. [PMID: 31816864 PMCID: PMC6956100 DOI: 10.3390/microorganisms7120639] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
The Hfq protein is reported to be involved in environmental adaptation and virulence of several bacteria. In Gram-negative bacteria, Hfq mediates the interaction between regulatory noncoding RNAs and their target mRNAs. Besides these RNA-related functions, Hfq is also associated with DNA and is a part of the bacterial chromatin. Its precise role in DNA structuration is, however, unclear and whether Hfq plays a direct role in DNA-related processes such as replication or recombination is controversial. In previous works, we showed that Escherichia coli Hfq, or more precisely its amyloid-like C-terminal region (CTR), induces DNA compaction into a condensed form. In this paper, we evidence a new property for Hfq; precisely we show that its CTR influences double helix structure and base tilting, resulting in a strong local alignment of nucleoprotein Hfq:DNA fibers. The significance of this alignment is discussed in terms of chromatin structuration and possible functional consequences on evolutionary processes and adaptation to environment.
Collapse
Affiliation(s)
- Frank Wien
- Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); (V.A.); Tel.: +33-(0)1-69-35-96-65 (F.W.); +33-(0)1-69-08-32-82 (V.A.)
| | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Nykola C. Jones
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, B1050 Bruxelles, Belgique;
- Laboratoire de Chimie Physique d’Orsay, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay 91400 Orsay, France
| | - Melanie Berbon
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN UMR5248 CNRS Université de Bordeaux INP, 33607 Pessac, France; (D.M.); (M.B.); (B.H.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- Université de Paris, UFR Sciences du vivant, 35 rue Hélène Brion, 75205 Paris cedex, France
- Correspondence: (F.W.); (V.A.); Tel.: +33-(0)1-69-35-96-65 (F.W.); +33-(0)1-69-08-32-82 (V.A.)
| |
Collapse
|
28
|
Langlete P, Krabberød AK, Winther-Larsen HC. Vesicles From Vibrio cholerae Contain AT-Rich DNA and Shorter mRNAs That Do Not Correlate With Their Protein Products. Front Microbiol 2019; 10:2708. [PMID: 31824470 PMCID: PMC6883915 DOI: 10.3389/fmicb.2019.02708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles secreted by Gram-negative bacteria have proven to be important in bacterial defense, communication and host–pathogen relationships. They resemble smaller versions of the bacterial mother cell, with similar contents of proteins, LPS, DNA, and RNA. Vesicles can elicit a protective immune response in a range of hosts, and as vaccine candidates, it is of interest to properly characterize their cargo. Genetic sequencing data is already available for vesicles from several bacterial strains, but it is not yet clear how the genetic makeup of vesicles differ from that of their parent cells, and which properties may characterize enriched genetic material. The present study provides evidence for DNA inside vesicles from Vibrio cholerae O395, and key characteristics of their genetic and proteomic content are compared to that of whole cells. DNA analysis reveals enrichment of fragments containing ToxR binding sites, as well as a positive correlation between AT-content and enrichment. Some mRNAs were highly enriched in the vesicle fraction, such as membrane protein genes ompV, ompK, and ompU, DNA-binding protein genes hupA, hupB, ihfB, fis, and ssb, and a negative correlation was found between mRNA enrichment and transcript length, suggesting mRNA inclusion in vesicles may be a size-dependent process. Certain non-coding and functional RNAs were found to be enriched, such as VrrA, GcvB, tmRNA, RNase P, CsrB2, and CsrB3. Mass spectrometry revealed enrichment of outer membrane proteins, known virulence factors, phage components, flagella and extracellular proteins in the vesicle fraction, and a low, negative correlation was found between transcript-, and protein enrichment. This result opposes the hypothesis that a significant degree of protein translation occurs in vesicles after budding. The abundance of viral-, and flagellar proteins in the vesicle fraction underlines the importance of purification during vesicle isolation.
Collapse
Affiliation(s)
- Petter Langlete
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anders Kristian Krabberød
- Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway.,Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hanne Cecilie Winther-Larsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Centre for Integrative Microbial Evolution (CIME), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Identification of protein-protein and ribonucleoprotein complexes containing Hfq. Sci Rep 2019; 9:14054. [PMID: 31575967 PMCID: PMC6773851 DOI: 10.1038/s41598-019-50562-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/06/2019] [Indexed: 11/08/2022] Open
Abstract
Hfq is a RNA-binding protein that plays a pivotal role in the control of gene expression in bacteria by stabilizing sRNAs and facilitating their pairing with multiple target mRNAs. It has already been shown that Hfq, directly or indirectly, interacts with many proteins: RNase E, Rho, poly(A)polymerase, RNA polymerase… In order to detect more Hfq-related protein-protein interactions we have used two approaches, TAP-tag combined with RNase A treatment to access the role of RNA in these complexes, and protein-protein crosslinking, which freezes protein-protein complexes formed in vivo. In addition, we have performed microscale thermophoresis to evaluate the role of RNA in some of the complexes detected and used far-western blotting to confirm some protein-protein interactions. Taken together, the results show unambiguously a direct interaction between Hfq and EF-Tu. However a very large number of the interactions of proteins with Hfq in E. coli involve RNAs. These RNAs together with the interacting protein, may play an active role in the formation of Hfq-containing complexes with previously unforeseen implications for the riboregulatory functions of Hfq.
Collapse
|
30
|
Carrier MC, Lalaouna D, Massé E. Broadening the Definition of Bacterial Small RNAs: Characteristics and Mechanisms of Action. Annu Rev Microbiol 2019; 72:141-161. [PMID: 30200848 DOI: 10.1146/annurev-micro-090817-062607] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The first report of trans-acting RNA-based regulation in bacterial cells dates back to 1984. Subsequent studies in diverse bacteria unraveled shared properties of trans-acting small regulatory RNAs, forming a clear definition of these molecules. These shared characteristics have been used extensively to identify new small RNAs (sRNAs) and their interactomes. Recently however, emerging technologies able to resolve RNA-RNA interactions have identified new types of regulatory RNAs. In this review, we present a broader definition of trans-acting sRNA regulators and discuss their newly discovered intrinsic characteristics.
Collapse
Affiliation(s)
- Marie-Claude Carrier
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada; , ,
| | - David Lalaouna
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada; , ,
| | - Eric Massé
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada; , ,
| |
Collapse
|
31
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|
32
|
Dos Santos RF, Arraiano CM, Andrade JM. New molecular interactions broaden the functions of the RNA chaperone Hfq. Curr Genet 2019; 65:1313-1319. [PMID: 31104083 DOI: 10.1007/s00294-019-00990-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
The RNA chaperone Hfq is an important bacterial post-transcriptional regulator. Most studies on Hfq are focused on the role of this protein on small non-coding RNAs (sRNAs) and messenger RNAs (mRNAs). The most well-characterized function of Hfq is its role as RNA matchmaker, promoting the base-pairing between sRNAs and their mRNA targets. However, novel substrates and previous unrecognized functions of Hfq have now been identified, which expanded the regulatory spectrum of this protein. Hfq was recently found to bind rRNA and act as a new ribosome biogenesis factor, affecting rRNA processing, ribosome assembly, translational efficiency and translational fidelity. Hfq was also found to bind tRNAs, which could provide an additional mechanism for its role on the accuracy of protein synthesis. The list of substrates does not include RNA exclusively since Hfq was shown to bind DNA, playing an important role in DNA compaction. Additionally, Hfq is also capable to establish many protein-protein interactions. Overall, the functions of the RNA-binding protein Hfq have been expanded beyond its function in small RNA-mediated regulation. The identification of additional substrates and new functions provides alternative explanations for the importance of the chaperone Hfq as a global regulator.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
33
|
In Situ Characterization of Hfq Bacterial Amyloid: A Fourier-Transform Infrared Spectroscopy Study. Pathogens 2019; 8:pathogens8010036. [PMID: 30889801 PMCID: PMC6471401 DOI: 10.3390/pathogens8010036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Hfq is a bacterial protein that regulates gene expression at the post-transcriptional level in Gram-negative bacteria. We have previously shown that Escherichia coli Hfq protein, and more precisely its C-terminal region (CTR), self-assembles into an amyloid-like structure in vitro. In the present work, we present evidence that Hfq unambiguously forms amyloid structures also in vivo. Taking into account the role of this protein in bacterial adaptation and virulence, our work opens possibilities to target Hfq amyloid self-assembly and cell location, with important potential to block bacterial adaptation and treat infections.
Collapse
|
34
|
Abstract
Diverse mechanisms and functions of posttranscriptional regulation by small regulatory RNAs and RNA-binding proteins have been described in bacteria. In contrast, little is known about the spatial organization of RNAs in bacterial cells. In eukaryotes, subcellular localization and transport of RNAs play important roles in diverse physiological processes, such as embryonic patterning, asymmetric cell division, epithelial polarity, and neuronal plasticity. It is now clear that bacterial RNAs also can accumulate at distinct sites in the cell. However, due to the small size of bacterial cells, RNA localization and localization-associated functions are more challenging to study in bacterial cells, and the underlying molecular mechanisms of transcript localization are less understood. Here, we review the emerging examples of RNAs localized to specific subcellular locations in bacteria, with indications that subcellular localization of transcripts might be important for gene expression and regulatory processes. Diverse mechanisms for bacterial RNA localization have been suggested, including close association to their genomic site of transcription, or to the localizations of their protein products in translation-dependent or -independent processes. We also provide an overview of the state of the art of technologies to visualize and track bacterial RNAs, ranging from hybridization-based approaches in fixed cells to in vivo imaging approaches using fluorescent protein reporters and/or RNA aptamers in single living bacterial cells. We conclude with a discussion of open questions in the field and ongoing technological developments regarding RNA imaging in eukaryotic systems that might likewise provide novel insights into RNA localization in bacteria.
Collapse
|
35
|
Epigallocatechin Gallate Remodelling of Hfq Amyloid-Like Region Affects Escherichia coli Survival. Pathogens 2018; 7:pathogens7040095. [PMID: 30513780 PMCID: PMC6313410 DOI: 10.3390/pathogens7040095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Hfq is a pleiotropic regulator that has key roles in the control of genetic expression. The protein noticeably regulates translation efficiency and RNA decay in Gram-negative bacteria, due to the Hfq-mediated interaction between small regulatory noncoding RNA and mRNA. This property is of primary importance for bacterial adaptation and virulence. We have previously shown that the Hfq E. coli protein, and more precisely its C-terminal region (CTR), self-assembles into an amyloid-like structure. In the present work, we demonstrate that epigallocatechin gallate (EGCG), a major green tea polyphenol compound, targets the Hfq amyloid region and can be used as a potential antibacterial agent. We analysed the effect of this compound on Hfq amyloid fibril stability and show that EGCG both disrupts Hfq-CTR fibrils and inhibits their formation. We show that, even if EGCG affects other bacterial amyloids, it also specifically targets Hfq-CTR in vivo. Our results provide an alternative approach for the utilisation of EGCG that may be used synergistically with conventional antibiotics to block bacterial adaptation and treat infections.
Collapse
|
36
|
Malabirade A, Partouche D, El Hamoui O, Turbant F, Geinguenaud F, Recouvreux P, Bizien T, Busi F, Wien F, Arluison V. Revised role for Hfq bacterial regulator on DNA topology. Sci Rep 2018; 8:16792. [PMID: 30429520 PMCID: PMC6235962 DOI: 10.1038/s41598-018-35060-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNA. Besides these RNA-related functions, Hfq has also been described as one of the nucleoid associated proteins shaping the bacterial chromosome. Therefore, Hfq appears as a versatile nucleic acid-binding protein, which functions are probably even more numerous than those initially suggested. For instance, E. coli Hfq, and more precisely its C-terminal region (CTR), has been shown to induce DNA compaction into a condensed form. In this paper, we establish that DNA induces Hfq-CTR amyloidogenesis, resulting in a change of DNA local conformation. Furthermore, we clarify the effect of Hfq on DNA topology. Our results evidence that, even if the protein has a strong propensity to compact DNA thanks to its amyloid region, it does not affect overall DNA topology. We confirm however that hfq gene disruption influences plasmid supercoiling in vivo, indicating that the effect on DNA topology in former reports was indirect. Most likely, this effect is related to small regulatory sRNA-Hfq-based regulation of another protein that influences DNA supercoiling, possibly a nucleoid associated protein such as H-NS or Dps. Finally, we hypothesise that this indirect effect on DNA topology explains, at least partially, the previously reported effect of Hfq on plasmid replication efficiency.
Collapse
Affiliation(s)
- Antoine Malabirade
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - David Partouche
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Omar El Hamoui
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | | | | | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florent Busi
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Université Paris Diderot, 75013, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France. .,Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France.
| |
Collapse
|
37
|
Guttula D, Liu F, van Kan JA, Arluison V, van der Maarel JRC. Effect of HU protein on the conformation and compaction of DNA in a nanochannel. SOFT MATTER 2018; 14:2322-2328. [PMID: 29457176 DOI: 10.1039/c7sm02118f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of the heat unstable nucleoid structuring protein HU on the conformation of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. Pre-incubated DNA molecules contract in the longitudinal direction of the channel with increasing concentration of HU. This contraction is mainly due to HU-mediated bridging of distal DNA segments and is controlled by channel diameter as well as ionic composition and strength of the buffer. For over-threshold concentrations of HU, the DNA molecules compact into an condensed form. Divalent magnesium ions facilitate, but are not required for bridging nor condensation. The conformational response following exposure to HU was investigated with a nanofluidic device that allows an in situ change in environmental solution conditions. The stretch of the nucleoprotein complex first increases, reaches an apex in ∼20 min, and subsequently decreases to an equilibrium value pertaining to pre-incubated DNA molecules after ∼2 h. This observation is rationalised in terms of a time-dependent bending rigidity by structural rearrangement of bound HU protein followed by compaction through bridging interaction. Results are discussed in regard to previous results obtained for nucleoid associated proteins H-NS and Hfq, with important implications for protein binding related gene regulation.
Collapse
Affiliation(s)
- Durgarao Guttula
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Fan Liu
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France and Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | | |
Collapse
|
38
|
Malabirade A, Jiang K, Kubiak K, Diaz-Mendoza A, Liu F, van Kan JA, Berret JF, Arluison V, van der Maarel JRC. Compaction and condensation of DNA mediated by the C-terminal domain of Hfq. Nucleic Acids Res 2017; 45:7299-7308. [PMID: 28521053 PMCID: PMC5499573 DOI: 10.1093/nar/gkx431] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022] Open
Abstract
Hfq is a bacterial protein that is involved in several aspects of nucleic acids metabolism. It has been described as one of the nucleoid associated proteins shaping the bacterial chromosome, although it is better known to influence translation and turnover of cellular RNAs. Here, we explore the role of Escherichia coli Hfq's C-terminal domain in the compaction of double stranded DNA. Various experimental methodologies, including fluorescence microscopy imaging of single DNA molecules confined inside nanofluidic channels, atomic force microscopy, isothermal titration microcalorimetry and electrophoretic mobility assays have been used to follow the assembly of the C-terminal and N-terminal regions of Hfq on DNA. Results highlight the role of Hfq's C-terminal arms in DNA binding, change in mechanical properties of the double helix and compaction of DNA into a condensed form. The propensity for bridging and compaction of DNA by the C-terminal domain might be related to aggregation of bound protein and may have implications for protein binding related gene regulation.
Collapse
Affiliation(s)
- Antoine Malabirade
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France
| | - Kai Jiang
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Krzysztof Kubiak
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France.,Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Fan Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | | | - Véronique Arluison
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France.,Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | | |
Collapse
|
39
|
Malabirade A, Morgado-Brajones J, Trépout S, Wien F, Marquez I, Seguin J, Marco S, Velez M, Arluison V. Membrane association of the bacterial riboregulator Hfq and functional perspectives. Sci Rep 2017; 7:10724. [PMID: 28878270 PMCID: PMC5587644 DOI: 10.1038/s41598-017-11157-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022] Open
Abstract
Hfq is a bacterial RNA binding protein that carries out several roles in genetic expression regulation, mainly at the post-transcriptional level. Previous studies have shown its importance in growth and virulence of bacteria. Here, we provide the direct observation of its ability to interact with membranes. This was established by co-sedimentation assay, cryo-transmission electron (cryo-TEM) and atomic force (AFM) microscopies. Furthermore, our results suggest a role for its C-terminus amyloidogenic domain in membrane disruption. Precisely, AFM images of lipid bilayers in contact with Hfq C-terminus fibrils show the emergence of holes with a size dependent on the time of interaction. Cryo-TEM observations also show that liposomes are in contact with clusters of fibrils, with occasional deformation of the vesicles and afterward the apparition of a multitude of tiny vesicles in the proximity of the fibrils, suggesting peptide-induced breakage of the liposomes. Finally, circular dichroism spectroscopy demonstrated a change in the secondary structure of Hfq C-terminus upon interaction with liposomes. Altogether, these results show an unexpected property of Hfq and suggest a possible new role for the protein, exporting sRNA outside of the bacterial cell.
Collapse
Affiliation(s)
- Antoine Malabirade
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Javier Morgado-Brajones
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France.,Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie, 2, Cantoblanco, E-28049, Madrid, Spain
| | - Sylvain Trépout
- Institut Curie, Research Center, PSL Research University, Chemistry, Modelisation and Imaging for Biology (CMIB) Bât 110-112, Centre Universitaire, 91405, Orsay, France.,INSERM U 1196, CNRS UMR 9187, Université Paris Saclay, Université Paris-Sud, Bât 110-112, Centre Universitaire, Rue Henri Becquerel, 91405, Orsay, France
| | - Frank Wien
- DISCO Beamline, Synchrotron SOLEIL, 91192, Gif-sur-Yvette, France
| | - Ileana Marquez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie, 2, Cantoblanco, E-28049, Madrid, Spain
| | - Jérôme Seguin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, Cedex, France
| | - Sergio Marco
- Institut Curie, Research Center, PSL Research University, Chemistry, Modelisation and Imaging for Biology (CMIB) Bât 110-112, Centre Universitaire, 91405, Orsay, France.,INSERM U 1196, CNRS UMR 9187, Université Paris Saclay, Université Paris-Sud, Bât 110-112, Centre Universitaire, Rue Henri Becquerel, 91405, Orsay, France
| | - Marisela Velez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie, 2, Cantoblanco, E-28049, Madrid, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France. .,Université Paris Diderot, 75013, Paris, France.
| |
Collapse
|
40
|
Sheng H, Stauffer WT, Hussein R, Lin C, Lim HN. Nucleoid and cytoplasmic localization of small RNAs in Escherichia coli. Nucleic Acids Res 2017; 45:2919-2934. [PMID: 28119418 PMCID: PMC5389542 DOI: 10.1093/nar/gkx023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/09/2017] [Indexed: 12/23/2022] Open
Abstract
Bacterial small RNAs (sRNAs) regulate protein production by binding to mRNAs and altering their translation and degradation. sRNAs are smaller than most mRNAs but larger than many proteins. Therefore it is uncertain whether sRNAs can enter the nucleoid to target nascent mRNAs. Here, we investigate the intracellular localization of sRNAs transcribed from plasmids in Escherichia coli using RNA fluorescent in-situ hybridization. We found that sRNAs (GlmZ, OxyS, RyhB and SgrS) have equal preference for the nucleoid and cytoplasm, and no preferential localization at the cell membrane. We show using the gfp mRNA (encoding green fluorescent protein) that non-sRNAs can be engineered to have different proportions of nucleoid and cytoplasmic localization by altering their length and/or translation. The same localization as sRNAs was achieved by decreasing gfp mRNA length and translation, which suggests that sRNAs and other RNAs may enter the densely packed DNA of the nucleoid if they are sufficiently small. We also found that the Hfq protein, which binds sRNAs, minimally affects sRNA localization. Important implications of our findings for engineering synthetic circuits are: (i) sRNAs can potentially bind nascent mRNAs in the nucleoid, and (ii) localization patterns and distribution volumes of sRNAs can differ from some larger RNAs.
Collapse
Affiliation(s)
- Huanjie Sheng
- Department of Integrative Biology, 3060 Valley Life Sciences Building, Mail code 3140, University of California, Berkeley, CA, 94720-3140, USA
| | - Weston T Stauffer
- Department of Integrative Biology, 3060 Valley Life Sciences Building, Mail code 3140, University of California, Berkeley, CA, 94720-3140, USA
| | - Razika Hussein
- Department of Integrative Biology, 3060 Valley Life Sciences Building, Mail code 3140, University of California, Berkeley, CA, 94720-3140, USA
| | - Chris Lin
- Department of Integrative Biology, 3060 Valley Life Sciences Building, Mail code 3140, University of California, Berkeley, CA, 94720-3140, USA
| | - Han N Lim
- Department of Integrative Biology, 3060 Valley Life Sciences Building, Mail code 3140, University of California, Berkeley, CA, 94720-3140, USA
| |
Collapse
|
41
|
Teimouri H, Korkmazhan E, Stavans J, Levine E. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria. Phys Biol 2017; 14:056001. [PMID: 28350301 DOI: 10.1088/1478-3975/aa69ac] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.
Collapse
Affiliation(s)
- Hamid Teimouri
- Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
| | | | | | | |
Collapse
|
42
|
Cech GM, Szalewska-Pałasz A, Kubiak K, Malabirade A, Grange W, Arluison V, Węgrzyn G. The Escherichia Coli Hfq Protein: An Unattended DNA-Transactions Regulator. Front Mol Biosci 2016; 3:36. [PMID: 27517037 PMCID: PMC4963395 DOI: 10.3389/fmolb.2016.00036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022] Open
Abstract
The Hfq protein was discovered in Escherichia coli as a host factor for bacteriophage Qβ RNA replication. Subsequent studies indicated that Hfq is a pleiotropic regulator of bacterial gene expression. The regulatory role of Hfq is ascribed mainly to its function as an RNA-chaperone, facilitating interactions between bacterial non-coding RNA and its mRNA target. Thus, it modulates mRNA translation and stability. Nevertheless, Hfq is able to interact with DNA as well. Its role in the regulation of DNA-related processes has been demonstrated. In this mini-review, it is discussed how Hfq interacts with DNA and what is the role of this protein in regulation of DNA transactions. Particularly, Hfq has been demonstrated to be involved in the control of ColE1 plasmid DNA replication, transposition, and possibly also transcription. Possible mechanisms of these Hfq-mediated regulations are described and discussed.
Collapse
Affiliation(s)
- Grzegorz M Cech
- Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| | | | - Krzysztof Kubiak
- Department of Molecular Biology, University of GdańskGdańsk, Poland; Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA SaclayGif-sur-Yvette, France; IPCMS/Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Antoine Malabirade
- Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA Saclay Gif-sur-Yvette, France
| | - Wilfried Grange
- IPCMS/Centre National de la Recherche ScientifiqueStrasbourg, France; Universite Paris Diderot, UFR Science du VivantParis, France
| | - Veronique Arluison
- Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA SaclayGif-sur-Yvette, France; Universite Paris Diderot, UFR Science du VivantParis, France
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| |
Collapse
|
43
|
Where are things inside a bacterial cell? Curr Opin Microbiol 2016; 33:83-90. [PMID: 27450542 DOI: 10.1016/j.mib.2016.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/21/2016] [Accepted: 07/06/2016] [Indexed: 01/13/2023]
Abstract
Bacterial cells are intricately organized, despite the lack of membrane-bounded organelles. The extremely crowded cytoplasm promotes macromolecular self-assembly and formation of distinct subcellular structures, which perform specialized functions. For example, the cell poles act as hubs for signal transduction complexes, thus providing a platform for the coordination of optimal cellular responses to environmental cues. Distribution of macromolecules is mostly mediated via specialized transport machineries, including the MreB cytoskeleton. Recent evidence shows that RNAs also specifically localize within bacterial cells, raising the possibility that gene expression is spatially organized. Here we review the current understanding of where things are in bacterial cells and discuss emerging questions that need to be addressed in the future.
Collapse
|
44
|
Abstract
Gram-negative and gram-positive bacteria use a variety of enzymatic pathways to degrade mRNAs. Although several recent reviews have outlined these pathways, much less attention has been paid to the regulation of mRNA decay. The functional half-life of a particular mRNA, which affects how much protein is synthesized from it, is determined by a combination of multiple factors. These include, but are not necessarily limited to, (a) stability elements at either the 5' or the 3' terminus, (b) posttranscriptional modifications, (c) ribosome density on individual mRNAs, (d) small regulatory RNA (sRNA) interactions with mRNAs, (e) regulatory proteins that alter ribonuclease binding affinities, (f) the presence or absence of endonucleolytic cleavage sites, (g) control of intracellular ribonuclease levels, and (h) physical location within the cell. Changes in physiological conditions associated with environmental alterations can significantly alter the impact of these factors in the decay of a particular mRNA.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
45
|
Abstract
Accumulating evidence indicates that RNA metabolism components assemble into supramolecular cellular structures to mediate functional compartmentalization within the cytoplasmic membrane of the bacterial cell. This cellular compartmentalization could play important roles in the processes of RNA degradation and maturation. These components include Hfq, the RNA chaperone protein, which is involved in the post-transcriptional control of protein synthesis mainly by the virtue of its interactions with several small regulatory ncRNAs (sRNA). The Escherichia coli Hfq is structurally organized into two domains. An N-terminal domain that folds as strongly bent β-sheets within individual protomers to assemble into a typical toroidal hexameric ring. A C-terminal flexible domain that encompasses approximately one-third of the protein seems intrinsically unstructured. RNA-binding function of Hfq mainly lies within its N-terminal core, whereas the function of the flexible domain remains controversial and largely unknown. In the present study, we demonstrate that the Hfq-C-terminal region (CTR) has an intrinsic property to self-assemble into long amyloid-like fibrillar structures in vitro. We show that normal localization of Hfq within membrane-associated coiled structures in vivo requires this C-terminal domain. This finding establishes for the first time a function for the hitherto puzzling CTR, with a plausible central role in RNA transactions. We showed that Hfq C-terminal region (CTR) has an intrinsic property to self-assemble into amyloid-like fibrils. This region is required for cellular assembly of Hfq into membrane-associated coiled structures. The work establishes a new function for this naturally unstructured Hfq domain.
Collapse
|
46
|
Obregon KA, Hoch CT, Sukhodolets MV. Sm-like protein Hfq: Composition of the native complex, modifications, and interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:950-66. [PMID: 25896386 DOI: 10.1016/j.bbapap.2015.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/25/2014] [Accepted: 03/02/2015] [Indexed: 01/15/2023]
Abstract
The bacterial Sm-like protein Hfq has been linked functionally to reactions that involve RNA; however, its explicit role and primary cellular localization remain elusive. We carried out a detailed biochemical characterization of native Escherichia coli Hfq obtained through methods that preserve its posttranslational modifications. ESI-MS analyses indicate modifications in 2-3 subunits/hexamer with a molecular mass matching that of an oxidized C:18 lipid. We show that the majority of cellular Hfq cannot be extracted without detergents and that purified Hfq can be retained on hydrophobic matrices. Analyses of purified Hfq and the native Hfq complexes observed in whole-cell E. coli extracts indicate the existence of dodecameric assemblies likely stabilized by interlocking C-terminal polypeptides originating from separate Hfq hexamers and/or accessory nucleic acid. We demonstrate that cellular Hfq is redistributed between transcription complexes and an insoluble fraction that includes protein complexes harboring polynucleotide phosphorylase (PNP). This distribution pattern is consistent with a function at the interface of the apparatuses responsible for synthesis and degradation of RNA. Taken together with the results of prior studies, these results suggest that Hfq could function as an anchor/coupling factor responsible for de-solubilization of RNA and its tethering to the degradosome complex.
Collapse
Affiliation(s)
- Karla A Obregon
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Connor T Hoch
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Maxim V Sukhodolets
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX 77710, USA.
| |
Collapse
|
47
|
Jiang K, Zhang C, Guttula D, Liu F, van Kan JA, Lavelle C, Kubiak K, Malabirade A, Lapp A, Arluison V, van der Maarel JRC. Effects of Hfq on the conformation and compaction of DNA. Nucleic Acids Res 2015; 43:4332-41. [PMID: 25824948 PMCID: PMC4417175 DOI: 10.1093/nar/gkv268] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/14/2022] Open
Abstract
Hfq is a bacterial pleiotropic regulator that mediates several aspects of nucleic acids metabolism. The protein notably influences translation and turnover of cellular RNAs. Although most previous contributions concentrated on Hfq's interaction with RNA, its association to DNA has also been observed in vitro and in vivo. Here, we focus on DNA-compacting properties of Hfq. Various experimental technologies, including fluorescence microscopy imaging of single DNA molecules confined inside nanofluidic channels, atomic force microscopy and small angle neutron scattering have been used to follow the assembly of Hfq on DNA. Our results show that Hfq forms a nucleoprotein complex, changes the mechanical properties of the double helix and compacts DNA into a condensed form. We propose a compaction mechanism based on protein-mediated bridging of DNA segments. The propensity for bridging is presumably related to multi-arm functionality of the Hfq hexamer, resulting from binding of the C-terminal domains to the duplex. Results are discussed in regard to previous results obtained for H-NS, with important implications for protein binding related gene regulation.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Ce Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Durgarao Guttula
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Fan Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| | - Christophe Lavelle
- Genomes Structure and Instability, Sorbonne Universities, National Museum of Natural History, Inserm U 1154, CNRS UMR 7196, 75005 Paris, France
| | - Krzysztof Kubiak
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, CEA-Saclay, Gif sur Yvette Cedex 91191, France Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Antoine Malabirade
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, CEA-Saclay, Gif sur Yvette Cedex 91191, France
| | - Alain Lapp
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, CEA-Saclay, Gif sur Yvette Cedex 91191, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, CEA-Saclay, Gif sur Yvette Cedex 91191, France Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | | |
Collapse
|
48
|
Arluison V, Taghbalout A. Cellular localization of RNA degradation and processing components in Escherichia coli. Methods Mol Biol 2015; 1259:87-101. [PMID: 25579581 DOI: 10.1007/978-1-4939-2214-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ability to study the localization and organization of proteins within the tiny cells of bacteria, such as Escherichia coli, has paved the way for a new and exciting era of prokaryotic cellular biology. Previously unrecognized levels of spatiotemporal and supramolecular organization of proteins have been revealed within the prokaryotic cell that had long been assumed as a "bag of enzymes." Immunofluorescence (IF) microscopy, which involves cellular immunostaining of native proteins with fluorescently labeled antibodies, is relatively laborious and requires cell fixation and highly specific antibodies. However, IF microscopy allows localization studies of native proteins expressed to their normal cellular levels, as opposed to labeling proteins with large fluorescent tag that can alter protein abundance dependent on changes in mRNAs and/or proteins stability, or whose detection can require overexpression of labeled proteins. In addition, when antibodies against native proteins are not available or lack specificity, epitope tags such as hemagglutinin (HA) or Flag can be used to label chromosomally expressed proteins. The short Flag- and HA-tag, eight or nine amino acids, are unlikely to interfere with the localization or function of the proteins. We describe and discuss here the use of fluorescence microscopy for determination of cellular organization of protein components of the E. coli RNA processing and degradation machinery. We present examples of cellular organization patterns visualized by light microscopy, either by IF microscopy of native and epitope-tagged proteins in fixed cells, or by fluorescence labeling of the proteins in live cells.
Collapse
|
49
|
Abstract
One of the most important discoveries in the field of microbiology in the last two decades is that bacterial cells have intricate subcellular organization. This understanding has emerged mainly from the depiction of spatial and temporal organization of proteins in specific domains within bacterial cells, e.g., midcell, cell poles, membrane and periplasm. Because translation of bacterial RNA molecules was considered to be strictly coupled to their synthesis, they were not thought to specifically localize to regions outside the nucleoid. However, the increasing interest in RNAs, including non-coding RNAs, encouraged researchers to explore the spatial and temporal localization of RNAs in bacteria. The recent technological improvements in the field of fluorescence microscopy allowed subcellular imaging of RNAs even in the tiny bacterial cells. It has been reported by several groups, including ours that transcripts may specifically localize in such cells. Here we review what is known about localization of RNA and of the pathways that determine RNA fate in bacteria, and discuss the possible cues and mechanisms underlying these distribution patterns.
Collapse
Affiliation(s)
- Avi-ad Avraam Buskila
- a Department of Microbiology and Molecular Genetics; IMRIC ; The Hebrew University Faculty of Medicine ; Israel
| | | | | |
Collapse
|
50
|
Hfq protein deficiency in Escherichia coli affects ColE1-like but not λ plasmid DNA replication. Plasmid 2014; 73:10-5. [PMID: 24811974 DOI: 10.1016/j.plasmid.2014.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 12/19/2022]
Abstract
Hfq is a nucleic acid-binding protein involved in controlling several aspects of RNA metabolism. It achieves this regulatory function by modulating the translational activity and stability of different mRNAs, generally via interactions with stress-related small regulatory sRNAs. However, besides its role in the coordination of translation of bacterial mRNA, Hfq is also a nucleoid-associated DNA-binding protein. Motivated by the above property of Hfq, we investigated if hfq gene mutation has implications for the regulation of DNA replication. Efficiency of ColE1-like (pMB1- and p15A replicons) and bacteriophage λ-derived plasmids' replication has been investigated in wild-type strain and otherwise isogenic hfq mutant of Escherichia coli. Significant differences in plasmid amount and kinetics of plasmid DNA synthesis were observed between the two tested bacterial hosts for ColE1-like replicons, but not for λ plasmid. Furthermore, ColE1-like plasmids replicated more efficiently in wild-type cells than in the hfq mutant in the early exponential phase of growth, but less efficiently in late exponential and early stationary phases. Hfq levels in the wild-type host, estimated by Western-blotting, were increased at the latter phases relative to the former one. Moreover, effects of the hfq mutation on ColE1-like plasmid replication were impaired in the absence of the rom gene, coding for a protein enhancing RNA I-RNA II interactions during the control of the replication initiation. These results are discussed in the light of a potential mechanism by which Hfq protein may influence replication of some, but not all, replicons in E. coli.
Collapse
|