1
|
Liu J, Yao L, Huang S, Wang B, Li L, Li L, Gu W, Xiao S, Liu G. AMG487 inhibits PRRSV replication and ameliorates lung injury in pig lung xenografts by down-regulating the expression of ANXA2. Antiviral Res 2022; 202:105314. [DOI: 10.1016/j.antiviral.2022.105314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022]
|
2
|
Weng T, Wu P, Zhang W, Zheng Y, Li Q, Jin R, Chen H, You C, Guo S, Han C, Wang X. Regeneration of skin appendages and nerves: current status and further challenges. J Transl Med 2020; 18:53. [PMID: 32014004 PMCID: PMC6996190 DOI: 10.1186/s12967-020-02248-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-engineered skin (TES), as an analogue of native skin, is promising for wound repair and regeneration. However, a major drawback of TES products is a lack of skin appendages and nerves to enhance skin healing, structural integrity and skin vitality. Skin appendages and nerves are important constituents for fully functional skin. To date, many studies have yielded remarkable results in the field of skin appendages reconstruction and nerve regeneration. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients’ quality of life. Current strategies to create skin appendages and sensory nerve regeneration are mainly based on different types of seeding cells, scaffold materials, bioactive factors and involved signaling pathways. This article provides a comprehensive overview of different strategies for, and advances in, skin appendages and sensory nerve regeneration, which is an important issue in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Yurong Zheng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qiong Li
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Tang X, Qin H, Gu X, Fu X. China’s landscape in regenerative medicine. Biomaterials 2017; 124:78-94. [DOI: 10.1016/j.biomaterials.2017.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
4
|
Zhang C, Chen Y, Fu X. Sweat gland regeneration after burn injury: is stem cell therapy a new hope? Cytotherapy 2014; 17:526-35. [PMID: 25533933 DOI: 10.1016/j.jcyt.2014.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022]
Abstract
Stem cells are the seeds of tissue repair and regeneration and a promising source for novel therapies. The skin of patients with an extensive deep burn injury is repaired by a hypertrophic scar without regeneration of sweat glands and therefore loses the function of perspiration. Stem cell therapy provides the possibility of sweat gland regeneration. In particular, recent studies have reported the reprogramming of mesenchymal stromal cells into sweat gland-like (SGL) cells. We present an overview of recent researches into sweat gland regeneration with stem cells. Difficulties of sweat gland regeneration after deep burns have been elaborated. The advantage and disadvantage of several stem cell types in sweat gland regeneration have been discussed. Additionally, the possible mechanisms for reprogramming stem cells to SGL cells are summarized. A brief discussion on clinical application of stem cell-derived SGL cells is also presented. This review may possibly provide some implications for sweat gland regeneration.
Collapse
Affiliation(s)
- Cuiping Zhang
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, PR China.
| | - Yan Chen
- Department of Pharmacy, General Hospital of Beijing Military Region, Beijing, PR China
| | - Xiaobing Fu
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, PR China
| |
Collapse
|
5
|
Liu K, Gao Z, Wu X, Zhou G, Zhang WJ, Yang X, Liu W. Knocking out Smad3 favors allogeneic mouse fetal skin development in adult wounds. Wound Repair Regen 2014; 22:265-71. [PMID: 24635177 DOI: 10.1111/wrr.12143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/12/2013] [Indexed: 01/26/2023]
Abstract
Fetal skin development represents a process of the interaction between skin progenitor cells and their unique extracellular matrix niche, which is also important for the mechanism study of skin progenitor cell differentiation and fetal scarless wound healing. Thus, a change in the niche environment, such as altered expression levels of growth factors or cytokines, may also change the outcome of fetal skin development. This study tested the hypothesis that deletion of mouse Smad3 creates a favorable environment for fetal skin development in adult wounds. Fetal skin of green fluorescent protein mouse (C57BL/B6) of gestational day 16.5 was respectively transplanted to the wound beds of wild-type (WT), heterozygous (HT), and homologous (KO) Smad3 deletion mice (C57BL/B6 × 129SV). The results showed that green fluorescent protein fetal mouse skin after its transplantation developed much better into hair follicle containing skin in KO or HT wound beds than in WT wound beds with significant differences in the number of follicles per mm(2) among the three groups at 1, 2, and 3 weeks posttransplantation (p < 0.05). In addition, less fibrosis was observed in KO wounds than in HT and WT wounds with significant difference in the wound bed thickness among the three groups at 3 weeks posttransplantation (p < 0.05). Interestingly, there was a delayed graft rejection in the KO group when compared with the HT and WT groups. In conclusion, deletion of Smad3 in a wound bed creates a better environment for skin progenitor cell differentiation and fetal skin development. Translation of such a concept to the creation of a wound environment that is favorable for adult stem cell differentiation and skin appendage formation may become an important strategy for the regeneration of wounded skin.
Collapse
Affiliation(s)
- Ke Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Research Institute of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Significant progress has been made over the years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin or for the establishment of human-based in vitro skin models. This review summarizes these advances in in vivo and in vitro applications of tissue-engineered skin. We further highlight novel efforts in the design of complex disease-in-a-dish models for studies ranging from disease etiology to drug development and screening.
Collapse
|
7
|
Skin tissue engineering--in vivo and in vitro applications. Adv Drug Deliv Rev 2011; 63:352-66. [PMID: 21241756 DOI: 10.1016/j.addr.2011.01.005] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/19/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022]
Abstract
Significant progress has been made over the years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin or for the establishment of human-based in vitro skin models. This review summarizes these advances in in vivo and in vitro applications of tissue-engineered skin. We further highlight novel efforts in the design of complex disease-in-a-dish models for studies ranging from disease etiology to drug development and screening.
Collapse
|