1
|
Dehnoei M, Ahmadi-Sangachin E, Hosseini M. Colorimetric and fluorescent dual-biosensor based on zirconium and preasodium metal-organic framework (zr/pr MOF) for miRNA-191 detection. Heliyon 2024; 10:e27757. [PMID: 38533034 PMCID: PMC10963233 DOI: 10.1016/j.heliyon.2024.e27757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
MicroRNAs (miRNAs) are associated with certain types of cancer, tumor stages, and responses to treatment, thus efficient methods are required to identify them quickly and accurately. Abnormal expression of microRNA-191 (miR-191) has been linked to particular cancers and several other health conditions, such as diabetes and Alzheimer's disease. In this study, a new dual-biosensor based on the zirconium and preasodium-based metal-organic framework (Zr/Pr MOF) was developed for the rapid, ultrasensitive, and selective detection of miRNA-191. The synthesized Zr/Pr MOF exhibited peroxidase-like activity and fluorescence properties. Our dual method involves monitoring the fluorescence and peroxidase activity of metal-organic frameworks (MOFs) in the presence of miRNAs. The Zr/Pr MOF can catalyze hydrogen peroxide (H2O2) to oxidize the chromogenic substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) to produce blue oxidized TMB (oxTMB), which exhibits ultraviolet absorption at 660 nm. However, the addition of a label-free miRNA-191 probe caused a significant change in fluorescence intensity and absorbance, indicating the binding of single-stranded miRNAs to the MOF through van der Waals interactions and π-π stacking. The presence of the target miRNA-191 caused the probe to be released from the surface of the MOF owing to hybridization, which increased the peroxidase-like activity of Zr/Pr-MOF. Both response signals showed acceptable linear relationship and low detection limits. Fluorescence and colorimetry have an LOD of 0.69 and 8.62 pM, respectively. This study demonstrates the reliability and sensitivity of miRNA identification in human serum samples.
Collapse
Affiliation(s)
- Mahsa Dehnoei
- Nanobiosensors lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Elnaz Ahmadi-Sangachin
- Nanobiosensors lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Xu X, Zhou X, Zhang J, Li H, Cao Y, Tan X, Zhu X, Yang J. MicroRNA‐191 modulates cisplatin‐induced DNA damage response by targeting RCC2. FASEB J 2020; 34:13573-13585. [PMID: 32803782 DOI: 10.1096/fj.202000945r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Xianrong Xu
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xiaofeng Zhou
- Department of Radiation Oncology The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China
| | - Jianyun Zhang
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Hongjuan Li
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Yifei Cao
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xiaohua Tan
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
| | - Xinqiang Zhu
- Laboratory Research Center The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu China
| | - Jun Yang
- Department of Preventive Medicine Hangzhou Normal University School of Medicine Hangzhou China
- Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research The Affiliated Women's Hospital Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
3
|
Pasi F, Corbella F, Baio A, Capelli E, De Silvestri A, Tinelli C, Nano R. Radiation-induced circulating miRNA expression in blood of head and neck cancer patients. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:237-244. [PMID: 32040721 DOI: 10.1007/s00411-020-00832-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
In recent years, scientists have found evidence confirming the aberrant expression of miRNAs in cancer patients compared to healthy individuals. The growing interest in the identification of non-invasive and specific diagnostic and prognostic molecular markers has identified microRNAs as potential candidates in cancer diagnosis, prognosis and treatment response. In the present study, we have analyzed the expression profile of circulating miR-21, -191 and -421 in peripheral blood of head and neck cancer patients (HNC) to investigate a possible modulation of mRNA levels by radiation and to identify the role of mRNA as biomarkers of cancer prognosis. Results showed a modulation of the microRNA expression at different time points after radiotherapy, suggesting that treatment may influence the release of circulating miRNAs depending also on the time interval elapsed since radiotherapy. The expression levels of miR-21, -191 and -421 were higher in blood of patients treated with radiotherapy alone after 6 months from the end of therapy and high levels of them seemed to correlate with the remission of the disease. The trends shown in this study confirmed that miRNAs could be useful prognosis markers and could provide preliminary data for further evaluation in predicting patients' response to radiotherapy by developing miRNA-based treatments to improve the sensitivity of cancer cells to radiotherapy.
Collapse
Affiliation(s)
- Francesca Pasi
- Radiotherapy Unit, Department of Oncohaematology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia, Italy.
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, Pavia, Italy.
| | - Franco Corbella
- Radiotherapy Unit, Department of Oncohaematology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia, Italy
| | - Ambrogia Baio
- Radiotherapy Unit, Department of Oncohaematology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, Pavia, Italy
| | - Enrica Capelli
- Department of Earth and Environmental Sciences, Laboratory of Immunology and Genetic Analysis, University of Pavia, Via Taramelli 21, Pavia, Italy
| | | | - Carmine Tinelli
- Biometry and Medical Statistics, Policlinico San Matteo di Pavia, Pavia, Italy
| | - Rosanna Nano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, Pavia, Italy
| |
Collapse
|
4
|
Zhou LY, Zhang FW, Tong J, Liu F. MiR-191-5p inhibits lung adenocarcinoma by repressing SATB1 to inhibit Wnt pathway. Mol Genet Genomic Med 2019; 8:e1043. [PMID: 31724324 PMCID: PMC6978255 DOI: 10.1002/mgg3.1043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background To investigate the function of miR‐191‐5p in lung adenocarcinoma and its possible mechanism. Methods QRT‐PCR was adopted for the detection of the expression levels of miR‐191‐5p and SATB1 (HGNC: 10541). The effects of miR‐191‐5p and SATB1 on cell proliferation and migration were examined through the CCK‐8 and Transwell assays. Subsequently, the binding relationships between miR‐191‐5p and SATB1 were confirmed by dual‐luciferase reporter gene assay. Finally, the potential mechanisms of action of miR‐191‐5p were explored through a serious of in vivo and in vitro experiments. Results Lung adenocarcinoma patients had a notably lower expression level of miR‐191‐5p than controls, patients with metastasis had a lower level than those without metastasis, and the level in patients with lung adenocarcinoma in stage III‐IV was lower than that in patients with lung adenocarcinoma in stage I‐II. Overexpression of miR‐191‐5p repressed the migration and proliferation of lung cancer A549/H1650 cells. According to the reporter gene assay, miR‐191‐5p could bind to SATB1. Besides, SATB1 was significantly overexpressed in cancer tissues of patients with lung adenocarcinoma, and SATB1 overexpression accelerated the migration and proliferation of A549/H1650 cells and reversed inhibition on cell migration and proliferation by miR‐191‐5p. Conclusion Overexpression of miR‐191‐5p is capable of blocking the migration and proliferation of lung cancer cells, and its mechanism may be through targeting SATB1 thus downregulating Wnt signaling.
Collapse
Affiliation(s)
- Lai-Yong Zhou
- Department of Cardiothoracic surgery, The People's Hospital of Bao'an Shenzhen, The Affiliated Bao'an Hospital of Southern Medical University, Shenzhen, China
| | - Fu-Wei Zhang
- Department of Cardiothoracic surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Tong
- Department of Cardiothoracic surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Pathology, The People's Hospital of Bao'an Shenzhen, The Affiliated Bao'an Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
5
|
Wang C, Tao W, Ni S, Chen Q. Circular RNA circ-Foxo3 induced cell apoptosis in urothelial carcinoma via interaction with miR-191-5p. Onco Targets Ther 2019; 12:8085-8094. [PMID: 31802888 PMCID: PMC6801568 DOI: 10.2147/ott.s215823] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a critical role in cancer. Emerging evidence has shown circ-Foxo3, a circRNA, was dysregulated in a variety of tumor types. However, the exact role of circ-Foxo3 in bladder cancer has never been studied. METHODS We measured the expression level of circ-Foxo3 in human and murine bladder cancer tissues and in various human bladder cancer cell lines. We induced bladder cancer in mice by a carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). circ-Foxo3 was overexpressed in mice by lentiviral gene transfer and in cultured cells via overexpression plasmid. The effect of circ-Foxo3 on apoptosis was examined via apoptotic marker staining, Western blot, and flow cytometry. We further characterized the interaction between circ-Foxo3 and miR-191 and its functional impact on bladder cancer cells. RESULTS circ-Foxo3 was downregulated in bladder cancer in vivo and in vitro, and was upregulated in response to apoptotic stress. Overexpression of circ-Foxo3 promoted bladder cancer cell apoptosis in BBN mice and in human bladder cancer cell lines. miR-191-5p suppressed circ-Foxo3 expression and the pro-apoptotic effect of circ-Foxo3 in bladder cancer cells via directly targeting the 3'-untranslated region (3'-UTR) of circ-Foxo3. CONCLUSION circ-Foxo3 was downregulated in bladder cancer in vivo and in vitro, and promoted bladder cancer apoptosis via direct interaction with miR-191. circ-Foxo3 could be a potential therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province150001, People’s Republic of China
| | - Weiyang Tao
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province150001, People’s Republic of China
| | - Shaobin Ni
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province150001, People’s Republic of China
| | - Qiyin Chen
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province150001, People’s Republic of China
| |
Collapse
|
6
|
Sheervalilou R, Lotfi H, Shirvaliloo M, Sharifi A, Nazemiyeh M, Zarghami N. Circulating MiR-10b, MiR-1 and MiR-30a Expression Profiles in Lung Cancer: Possible Correlation with Clinico-pathologic Characteristics and Lung Cancer Detection. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:118-129. [PMID: 32215263 DOI: 10.22088/ijmcm.bums.8.2.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/13/2019] [Indexed: 12/29/2022]
Abstract
Circulating microRNAs have been recognized as promising biomarkers for the detection of lung cancer. The objective of this study was to evaluate miR-10b, miR-1 and, miR-30a in the plasma samples of lung cancer patients to confirm any possible relevance in the early detection of lung cancer. Plasma samples from 47 non-small-cell lung cancer patients and 41 cancer-free subjects were evaluated for selected microRNAs using the real-time PCR method. To evaluate the tobacco smoking effects on microRNAs expression, the studied groups were categorized into two subgroups: never-smokers and smokers. MiR-1/miR-30a expression levels were significantly reduced in lung cancer, while the miR-10b level was significantly elevated. We found that smoking had significant effects on the levels of circulating microRNAs in the smokers of the cancer-free group (a significant up-regulation of miR-10b and significant down-regulation of miR-1/miR-30a), and lung cancer patients (a significant elevation of miR-10b). Receiver operating characteristic curve analysis showed that miR-10b with an area under the curve of 0.861, and miR-1/miR-30a with values of0.905 and 0.889 for the same parameter, could distinguish non-small-cell lung cancer patients from cancer-free subjects. Our findings demonstrated significant differences in the expression of microRNAs in lung cancer and the considerable effects of smoking on microRNAs levels. Area under curve analysis showed that miR-10b with 78% sensitivity/78% specificity, miR-1 with 95% sensitivity/80% specificity and miR-30a with 87% sensitivity/83% specificity,might be good (miR-10b/miR-30a) and excellent (miR-1) markers for lung cancer detection.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nazemiyeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
MicroRNAs as Potential Biomarkers for Chemoresistance in Adenocarcinomas of the Esophagogastric Junction. JOURNAL OF ONCOLOGY 2019; 2019:4903152. [PMID: 31467538 PMCID: PMC6701342 DOI: 10.1155/2019/4903152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Concerning adenocarcinomas of the esophagogastric junction, neoadjuvant chemotherapy is regularly implemented, but patients' response varies greatly, with some cases showing no therapeutic effect, being deemed as chemoresistant. Small, noncoding RNAs (miRNAs) have evolved as key players in biological processes, including malignant diseases, often promoting tumor growth and expansion. In addition, specific miRNAs have been implicated in the development of chemoresistance through evasion of apoptosis, cell cycle alterations, and drug target modification. We performed a retrospective study of 33 patients receiving neoadjuvant chemotherapy by measuring their miRNA expression profiles. Histologic tumor regression was evaluated using resection specimens, while miRNA profiles were prepared using preoperative biopsies without prior therapy. A preselected panel of 96 miRNAs, known to be of importance in various malignancies, was used to test for significant differences between responsive (chemosensitive) and nonresponsive (chemoresistant) cases. The cohort consisted of 12 nonresponsive and 21 responsive cases with the following 4 miRNAs differentially expressed between both the groups: hsa-let-7f-5p, hsa-miRNA-221-3p, hsa-miRNA-31-5p, and hsa-miRNA-191-5p. The former 3 showed upregulation in chemoresistant cases, while the latter showed upregulation in chemosensitive cases. In addition, significant correlation between high expression of hsa-miRNA-194-5p and prolonged survival could be demonstrated (p value <0.0001). In conclusion, we identified a panel of 3 miRNAs predicting chemoresistance and a single miRNA contributing to chemosensitivity. These miRNAs might function as prognostic biomarkers and enable clinicians to better predict the effect of one or more reliably select patients benefitting from (neoadjuvant) chemotherapy.
Collapse
|
8
|
Tian F, Yu C, Wu M, Wu X, Wan L, Zhu X. MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Prolif 2019; 52:e12635. [PMID: 31334580 PMCID: PMC6797514 DOI: 10.1111/cpr.12635] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES MicroRNAs are powerful regulators in hepatocellular carcinoma (HCC) tumorigenesis. MicoRNA-191 (miR-191) has been reported to play an important role in HCC, However, the regulatory mechanism is still unclear. In this study, we investigated the role of miR-191 in HCC and studied its underlying mechanisms of action. MATERIALS AND METHODS The expression of miR-191 in HCC tissues was determined by quantitative real-time PCR (qRT-PCR). The role of miR-191 in HCC cells was examined by using both in vitro and in vivo assays. Downstream targets of miR-191 were determined by qRT-PCR and Western blot analysis. Dual-luciferase assays were performed to validate the interaction between miR-191 and its targets. RESULTS The expression of miR-191 was significantly higher in HCC patients and a higher miR-191 expression predicted poorer prognosis. Analysis of The Cancer Genome Atlas data sets suggested that miR-191 positively correlated with cell cycle progression. Gain and loss of function assays showed that miR-191 promoted cell cycle progression and proliferation. Luciferase reporter assay showed that miR-191 directly targeted the 3'-untranslated region of KLF6 mRNA. Furthermore, circular RNA has_circ_0000204 could sponge with miR-191, resulting in inactivation of miR-191. CONCLUSIONS Our study sheds light on the novel underlying mechanism of miR-191 in HCC, which may accelerate the development of cancer therapy.
Collapse
Affiliation(s)
- Fang Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chengtao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaoyu Wu
- Life Science and Technology Institute, China Pharmaceutical University, Nanjing, China
| | - Lingfeng Wan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuejun Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Hypoxia-induced microRNA-191 contributes to hepatic ischemia/reperfusion injury through the ZONAB/Cyclin D1 axis. Cell Death Differ 2018; 26:291-305. [PMID: 29769640 DOI: 10.1038/s41418-018-0120-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 01/30/2023] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is a common cause of morbidity and mortality in liver transplantation settings and involves severe cell death and inflammatory responses. MicroRNA-191 has recently been reported to be abnormally expressed in hepatocellular carcinoma and other liver diseases in the regulation of important cellular processes. However, little is known about its function and molecular mechanism in IRI. Here, we demonstrate that miR-191 is significantly upregulated in a cultured cell line during hypoxia/reperfusion (H/R) and in liver tissue during IRI in mice. The activation of miR-191 under hypoxic conditions is mediated by hypoxia-inducible factor-1α (HIF1α) binding to its promoter region. Global miR-191 KO mice were constructed by CRISPR/Cas9 system, and we found that miR-191 deficiency markedly reduces liver tissue damage, cell inflammatory responses and cell death in a mouse hepatic IRI model. Under the H/R condition, miR-191 overexpression promotes G0/G1 cell cycle arrest and cell apoptosis, but inhibition of miR-191 facilitates cell cycle progression and decreases cell death. Mechanistically, upon induction by hypoxia or ischemia, miR-191 suppresses expression of ZO-1-associated Y-box factor (ZONAB) and its downstream factor Cyclin D1, consequently resulting in cell death and tissue injury. Moreover, the effects of miR-191 on cell cycle arrest and cell apoptosis are abrogated by ZONAB overexpression, and vice versa. Taken together, our results indicate an important role of the HIF1α/miR-191/ZONAB signaling pathway in hepatic IRI and suggest miR-191 as a novel therapeutic target for the treatment of liver IRI.
Collapse
|
10
|
Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget 2018; 7:42683-42697. [PMID: 26967056 PMCID: PMC5173166 DOI: 10.18632/oncotarget.7977] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/20/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a severe problem throughout the world and requires identification of novel targets for its treatment. This multifactorial disease accounts for about 15% of the all diagnosed leukemia cases. Mitogen-activated protein kinase (MAPK) signaling pathway is crucial for the cell survival and its dysregulation is being implicated in various types of cancers. In here, we have discussed the potential role of various miRNAs that are found involved in regulating the proteins cascades of MAPK signaling pathway associated with CML. An emphasis has been paid to summarize the influence of various miRNAs in elevating or suppressing the expression level of significant proteins such as miR-203, miR-196a, miR-196b, miR-30a, miR-29b, miR-138 in BCR-ABL tyrosine kinase; miR-126, miR-221, miR-128, miR-15a, miR-188-5p, miR-17 in CRK family proteins; miR-155, miR-181a with SOS proteins; miR-155, miR-19a, with KRAS proteins; miR-19a with RAF1 protein; and miR-17, miR-19a, miR-17-92 cluster with MAPK/ERK proteins. In light of ever-increasing importance and ever-widening regulatory roles of miRNAs in cells, we have reviewed the recent progress in the field of miRNAs and have tried to suggest them as controlling targets for various protein cascades of MAPK signaling pathway. An understanding of the supervisory mechanism of MAPK by miRNAs might provide novel targets for treating CML.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.,Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| | - Bidhan Chandra Patra
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea.,Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Korea
| |
Collapse
|
11
|
Chen C, Yang Q, Wang D, Luo F, Liu X, Xue J, Yang P, Xu H, Lu J, Zhang A, Liu Q. MicroRNA-191, regulated by HIF-2α, is involved in EMT and acquisition of a stem cell-like phenotype in arsenite-transformed human liver epithelial cells. Toxicol In Vitro 2017; 48:128-136. [PMID: 29277653 DOI: 10.1016/j.tiv.2017.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
Inorganic arsenic is widely distributed in the environment, and epidemiologic data show a strong association between arsenic exposure and risk of liver cancer. An understanding of the mechanisms underlying development of liver cancer and metastasis would be useful in reducing the incidence and mortality of liver cancer. MicroRNAs (miRs) act as regulators in liver cancer. Here, we show that acute or chronic exposure of human liver epithelial L-02 cells to arsenite increased expression of miR-191. There were decreased levels of BASP-1 and E-cadherin and increased levels of WT-1 and N-cadherin, indicating that arsenite induced epithelial-mesenchymal transition (EMT). Moreover, arsenite increased EpCAM and CD90 mRNA levels, showing the acquisition of stem cell-like properties by these cells. Suppression of miR-191 resulted in repression of EMT and reduced expression of stem-cell markers. Further, a miR-191 inhibitor blocked spheroid formation and production of side population cells. Luciferase reporter assays indicated that miR-191 was a target of HIF-2α, and inhibition of miR-191 decreased the neoplastic and metastatic properties of arsenite-transformed L-02 cells. Thus, in arsenite-transformed liver epithelial cells, transcriptional activation of the miR-191 promoter by HIF-2α is involved in EMT and in the acquisition of a stem cell-like phenotype.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qianlei Yang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Ping Yang
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic of China
| | - Hui Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jiachun Lu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China.
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Al-Qahtani AA, Al-Anazi MR, Nazir N, Wani K, Abdo AA, Sanai FM, Khan MQ, Al-Ashgar HI, Albenmousa A, Al-Hamoudi WK, Alswat KA, Al-Ahdal MN. Association of single nucleotide polymorphisms in microRNAs with susceptibility to hepatitis B virus infection and HBV-related liver complications: A study in a Saudi Arabian population. J Viral Hepat 2017; 24:1132-1142. [PMID: 28685993 DOI: 10.1111/jvh.12749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the association of 10 SNPs in different microRNAs (miRNAs) with susceptibility to hepatitis B virus (HBV) infection, HBV clearance, persistence of chronic HBV infection, and progression to liver cirrhosis and hepatocellular carcinoma (HCC). Patients were categorized into the following groups: inactive HBV carrier, active HBV carrier, HBV-cleared subject and cirrhosis+HCC. Samples were analysed for 10 SNPs in microRNAs using either PCR-based genotyping or the TaqMan assay. We found that rs1358379 was associated with susceptibility to HBV infection, HBV clearance, persistent chronic HBV infection and liver cirrhosis+HCC. In addition, we found that rs2292832 and rs11614913 were associated with risk of HBV infection, viral clearance and cirrhosis+HCC, whereas rs2910164 was associated with proneness to HBV infection, and ability to clear the virus. There was evidence of associations between rs6505162 and HBV clearance and the development of liver disease, whereas a single association was found between rs2289030 and HBV clearance. Similarly, rs7372209 and rs4919510 were specifically associated with the development of HBV-induced liver complications. SNPs in miRNAs affect the susceptibility, clearance and progression of HBV infection in Saudi Arabian patients. We found, using Gene Ontology or pathway analyses, that these genes may contribute to the pathophysiology of HBV infection and related liver complications. However, differences in the association of examined SNPs with various clinical stages indicate variations in the respective functional roles of these polymorphisms and their miRNAs, and thus, further investigation to fully explore their therapeutic potential is warranted.
Collapse
Affiliation(s)
- A A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - M R Al-Anazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - N Nazir
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - K Wani
- Biomarkers Research Program, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Abdo
- Gastroenterology Section, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - F M Sanai
- Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia.,Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - M Q Khan
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - H I Al-Ashgar
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - A Albenmousa
- Department of Gastroenterology & Hepatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - W K Al-Hamoudi
- Gastroenterology Section, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - K A Alswat
- Gastroenterology Section, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | - M N Al-Ahdal
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Sharma S, Nagpal N, Ghosh PC, Kulshreshtha R. P53-miR-191- SOX4 regulatory loop affects apoptosis in breast cancer. RNA (NEW YORK, N.Y.) 2017; 23:1237-1246. [PMID: 28450532 PMCID: PMC5513068 DOI: 10.1261/rna.060657.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
miRNAs have emerged as key participants of p53 signaling pathways because they regulate or are regulated by p53. Here, we provide the first study demonstrating direct regulation of an oncogenic miRNA, miR-191-5p, by p53 and existence of a regulatory feedback loop. Using a combination of qRT-PCR, promoter-luciferase, and chromatin-immunoprecipitation assays, we show that p53 brings about down-regulation of miR-191-5p in breast cancer. miR-191-5p overexpression brought about inhibition of apoptosis in breast cancer cell lines (MCF7 and ZR-75) as demonstrated by reduction in annexin-V stained cells and caspase 3/7 activity, whereas miR-191-5p down-regulation showed the opposite. We further unveiled that SOX4 was a direct target of miR-191-5p. SOX4 overexpression was shown to increase p53 protein levels in MCF7 cells. miR-191-5p overexpression brought about down-regulation of SOX4 and thus p53 levels, suggesting the existence of a regulatory feedback loop. Breast cancer treatment by doxorubicin, an anti-cancer drug, involves induction of apoptosis by p53; we thus wanted to check whether miR-191-5p affects doxorubicin sensitivity. Interestingly, Anti-miR-191 treatment significantly decreased the IC50 of the doxorubicin drug and thus sensitized breast cancer cells to doxorubicin treatment by promoting apoptosis. Overall, this work highlights the importance of the p53-miR-191-SOX4 axis in the regulation of apoptosis and drug resistance in breast cancer and offers a preclinical proof-of-concept for use of an Anti-miR-191 and doxorubicin combination as a rational approach to pursue for better breast cancer treatment.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Neha Nagpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Prahlad C Ghosh
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
14
|
Zhang XF, Tu R, Li K, Ye P, Cui X. Tumor Suppressor PTPRJ Is a Target of miR-155 in Colorectal Cancer. J Cell Biochem 2017; 118:3391-3400. [PMID: 28316102 DOI: 10.1002/jcb.25995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 01/02/2023]
Abstract
PTPRJ is known for its antiproliferative role. Loss of heterozygosity (LOH) of PTPRJ has frequently been observed in various human cancers including colorectal cancer (CRC), lung cancer, and breast cancer. However, the function and mechanism of PTPRJ in CRC are not well understood. At the present study, we show that ectopic expression of PTPRJ inhibits cell growth, migration, and invasiveness in CRC cell line HCT116. Moreover, PTPRJ inhibits the tumorigenecity of HCT116 in a xenograft tumor model. MiR-155, the well-known oncomiR in CRC, is identified as an upstream factor of PTPRJ. MiR-155 directly binds to the 3' untranslated region of PTPRJ mRNA and suppresses the mRNA and protein levels of PTPRJ. Furthermore, the growth-promoting and AKT signaling activation effect of miR-155 was abrogated by PTPRJ overexpression, and vice versa. Our study reveals the crucial role of miR-155/PTPRJ/AKT axis in proliferation and migration of CRC cells and suggests a therapeutic potential of PTPRJ. J. Cell. Biochem. 118: 3391-3400, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430072, P. R. China
| | - Rongfu Tu
- College of Life Sciences, Wuhan University, Wuhan 430070, P. R. China
| | - Keke Li
- College of Life Sciences, Wuhan University, Wuhan 430070, P. R. China
| | - Pengxiang Ye
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430072, P. R. China
| | - Xiaofeng Cui
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430072, P. R. China
| |
Collapse
|
15
|
Sheervalilou R, Khamaneh AM, Sharifi A, Nazemiyeh M, Taghizadieh A, Ansarin K, Zarghami N. Using miR-10b, miR-1 and miR-30a expression profiles of bronchoalveolar lavage and sputum for early detection of non-small cell lung cancer. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Ma Y, Feng J, Xing X, Zhou B, Li S, Zhang W, Jiang J, Zhang J, Qiao Z, Sun L, Ma Z, Kong R. miR-1908 Overexpression Inhibits Proliferation, Changing Akt Activity and p53 Expression in Hypoxic NSCLC Cells. Oncol Res 2017; 24:9-15. [PMID: 27178817 PMCID: PMC7838668 DOI: 10.3727/096504016x14570992647168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ribosomal protein (RP)-p53 pathway has been shown to play a key role in apoptosis and senescence of cancer cells. miR-1908 is a newly found miRNA that was reported to have prognostic potential in melanoma. However, its role and mechanism in the progression of non-small cell lung cancer (NSCLC) are largely unknown. In this study, we found that expression of miR-1908 was significantly downregulated in human NSCLC cell lines, including SK-MES-1, A549, and NCI-H460. Then the role of miR-1908 in NSCLC cell proliferation was explored. The miR-1908 mimic was transfected into NSCLC cell lines, and their proliferation was detected. MTT and Cell Titer-Blue H analyses showed that the cell proliferation was notably reduced by the miR-1908 mimic transfection. Moreover, we found the RP-p53 pathway was activated by miR-1908 mimic. Moreover, the miR-1908 inhibitor transfection had a completely opposite effect on the NSCLC cell proliferation than that of miR-1908 mimic. To explore the underlying mechanism of that, TargetScan bioinformatics server and 3'-UTR luciferase reporter assay were applied to identify the targets of miR-1908. Our results showed that AKT1 substrate 1 (AKT1S1), a newly proven suppressor of the RP-p53 pathway, was a target of miR-1908, suggesting a probable mechanism for miR-191 suppressing NSCLC cell proliferation. Our findings provide a novel molecular target for the regulation of NSCLC cell proliferation.
Collapse
Affiliation(s)
- Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A novel pathway in NSCLC cells: miR‑191, targeting NFIA, is induced by chronic hypoxia, and promotes cell proliferation and migration. Mol Med Rep 2017; 15:1319-1325. [PMID: 28075452 DOI: 10.3892/mmr.2017.6100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/25/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRs) have emerged as being important in cancer biology. miR‑191 is a conserved miRNA, which has been investigated in detail and is reported to be induced by hypoxia-inducible factor (HIF)‑1α and has an contributory action in the progression of breast, hepatic and pancreatic cancer. However, the effects of miR‑191 in the progression of lung cancer are a subject of debate. In the present study, it was found that the expression of miR-191 was significantly upregulated in non‑small cell lung cancer (NSCLC) cells in patients in vivo. However, the levels of miR‑191 remained unchanged in SK‑MES‑1, A549 and NCI‑H460 NSCLC cell lines, compared with the level in the normal HBE lung cell line, however, the levels were markedly upregulated in these NSCLC cell lines under conditions of chronic hypoxia. Subsequently, an miR‑191 mimic was transfected into the NSCLC cell lines to examine its effect on the progression of the NSCLC cells in vitro. The data obtained using MTT and Cell counting kit‑8 assays revealed that miR‑191 had no effect on the proliferation of the cells under normal condition, however, their proliferation was promoted under mild hypoxic conditions. In addition, the results of a Transwell migration assay showed that miR‑191 had a promoting effect on NSCLC cell migration under the conditions of chronic hypoxia. Furthermore, the TargetScan bioinformatics server and 3'-untranslated region luciferase reporter assay indicated that the transcription factor, nuclear factor 1α (NFIA) was a target of miR‑191. Subsequent western blot analysis showed that, in chronic‑hypoxia, the protein levels of NFIA and the tumor suppressor, CCAAT-enhancer-binding protein α, were sharply reduced in A549 cells. In conclusion, miR‑191 was induced by chronic hypoxia and promoted the proliferation and migration of NSCLC cells under chronic hypoxic conditions. This promotion may be associated with its targeting of NFIA. The present findings may provide a potential molecular target for the therapeutic treatment of NSCLC.
Collapse
|
18
|
Wang H. Predicting MicroRNA Biomarkers for Cancer Using Phylogenetic Tree and Microarray Analysis. Int J Mol Sci 2016; 17:E773. [PMID: 27213352 PMCID: PMC4881592 DOI: 10.3390/ijms17050773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are shown to be involved in the initiation and progression of cancers in the literature, and the expression of miRNAs is used as an important cancer prognostic tool. The aim of this study is to predict high-confidence miRNA biomarkers for cancer. We adopt a method that combines miRNA phylogenetic structure and miRNA microarray data analysis to discover high-confidence miRNA biomarkers for colon, prostate, pancreatic, lung, breast, bladder and kidney cancers. There are 53 miRNAs selected through this method that either have potential to involve a single cancer's development or to involve several cancers' development. These miRNAs can be used as high-confidence miRNA biomarkers of these seven investigated cancers for further experiment validation. miR-17, miR-20, miR-106a, miR-106b, miR-92, miR-25, miR-16, miR-195 and miR-143 are selected to involve a single cancer's development in these seven cancers. They have the potential to be useful miRNA biomarkers when the result can be confirmed by experiments.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
19
|
Yuan Y, Zheng S, Li Q, Xiang X, Gao T, Ran P, Sun L, Huang Q, Xie F, Du J, Xiao C. Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting EYA2. Acta Biochim Biophys Sin (Shanghai) 2016; 48:220-8. [PMID: 26837415 DOI: 10.1093/abbs/gmv139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs and closely related to the pathogenesis of cancers. Increasing evidence indicates that miR-30a plays a profound role during the development of cancers. However, the functions of miR-30a in non-small-cell lung cancer (NSCLC) are still ambiguous. Here we found that miR-30a was decreased in lung adenocarcinoma A549 cells and in tissue samples from 14 patients by qRT-PCR, and also found that overexpression of miR-30a in A549 cells inhibited migration and invasion but not cell proliferation and cell cycle progression by wound-healing assay, matrigel invasion assay, MTS-based cell proliferation assay, and flow cytometry-based cell cycle analysis, respectively. We further explored the potential mechanism of miR-30a-mediated gene regulation in lung adenocarcinoma cell lines. EYA2 is a predicted target of miR-30a, and it has been found that EYA2 expression is inhibited by miR-30a in breast cancer cells. We demonstrated that EYA2 is a direct target of miR-30a by using the dual-luciferase reporter assay in A549 cells and showed that EYA2 protein levels are inversely correlated with miR-30a expression in A549 and BEAS-2B cells. In addition, we also confirmed the rescue effects of EYA2 overexpression in A549 cells by cotransfection with EYA2 expression vector and miR-30a mimics. Taken together, our results demonstrate that overexpression of miR-30a in lung adenocarcinoma A549 cells can inhibit cell migration and invasion, which is partially attributed to the decrease of EYA2 expression. Our findings suggest that miR-30a may be used as a new potential target for the treatment of lung adenocarcinoma in the future.
Collapse
Affiliation(s)
- Yuncang Yuan
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Shangyong Zheng
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Qian Li
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Xudong Xiang
- Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Tangxin Gao
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Pengzhan Ran
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Lijuan Sun
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Qionglin Huang
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Fei Xie
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Jing Du
- School of Medicine, Yunnan University, Kunming 650091, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming 650091, China
| |
Collapse
|
20
|
Zhang XF, Li KK, Gao L, Li SZ, Chen K, Zhang JB, Wang D, Tu RF, Zhang JX, Tao KX, Wang G, Zhang XD. miR-191 promotes tumorigenesis of human colorectal cancer through targeting C/EBPβ. Oncotarget 2016; 6:4144-58. [PMID: 25784653 PMCID: PMC4414178 DOI: 10.18632/oncotarget.2864] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/07/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNA-191 (miR-191), a small non-coding RNA, is involved in disease development and cancer diagnosis and prognosis. However, how miR-191 functions in colorectal cancer remains largely unclear. In this study, we show that miR-191 is highly expressed in colon tumor tissues, and that inhibition of miR-191 leads to decreased cell growth, proliferation and tumorigenicity in a xenograft model. Overexpression of miR-191 in colorectal cancer cell lines alters cell cycle progression and cell resistance to 5-Fu induced cell apoptosis. Mechanistic studies demonstrated that miR-191 directly binds to the 3′UTR of the C/EBPβ mRNA and mediates a decrease in the mRNA and protein expression of C/EBPβ. We further showed that C/EBPβ induces growth arrest in a colorectal cancer cell line and that its expression is negatively correlated with the miR-191 level in patient samples. Our findings suggest that miR-191 may be a potential gene therapy target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ke-ke Li
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lu Gao
- Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Shang-Ze Li
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ke Chen
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Jun-Bin Zhang
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Di Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Rong-Fu Tu
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jin-Xiang Zhang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Kai-Xiong Tao
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Guobin Wang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Xiao-Dong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
21
|
Xu W, Luo F, Sun B, Ye H, Li J, Shi L, Liu Y, Lu X, Wang B, Wang Q, Liu Q, Zhang A. HIF-2α, acting via miR-191, is involved in angiogenesis and metastasis of arsenite-transformed HBE cells. Toxicol Res (Camb) 2016; 5:66-78. [PMID: 30090327 PMCID: PMC6060623 DOI: 10.1039/c5tx00225g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested that hypoxia-inducible factors (HIFs) and microRNAs (miRNAs) are involved in human lung cancer; however, their molecular mechanisms that causally contribute to arsenite-caused malignant transformation of cells remain unclear. To elucidate the mechanisms of angiogenesis and metastasis of lung cancer caused by arsenite, we investigated the role of HIF-2α regulation of miRNA-191 (miR-191) in the angiogenic and metastatic properties of human bronchial epithelial (HBE) cells transformed by arsenite. In HBE cells, HIF-2α binds to the hypoxia response element (HRE) in the promoter region of miR-191 and initiates transcription of miR-191. Blocking of HIF-2α with siRNA inhibited the up-regulation of miR-191, Wilms' tumor 1 (WT1) protein, matrix metalloproteinase 9 (MMP-9), vascular endothelial growth factor (VEGF), and the down-regulation of brain acid-soluble protein 1 (BASP1). In arsenite-transformed HBE (T-HBE) cells, down-regulation of HIF-2α by siRNA blocked the process of angiogenesis and decreased their neoplastic properties and metastatic capacity, which were reversed by over-expression of miR-191 or by up-regulating WT1. Thus, HIF-2α up-regulates WT1 via miR-191, both of which are involved in the angiogenesis and metastasis of T-HBE cells. The results present a better understanding of the processes involved in lung cancer caused by arsenite exposure.
Collapse
Affiliation(s)
- Wenchao Xu
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China . ; ; Tel: +86-25-8686-8424
| | - Fei Luo
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China . ; ; Tel: +86-25-8686-8424
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , School of Public Health , Guiyang Medical University , Guiyang 550025 , Guizhou , People's Republic of China . ; ; Tel: +86-851-8841-6171
| | - Hua Ye
- School of Medicine , Yangzhou University , Yangzhou 225009 , Jiangsu , People's Republic of China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , School of Public Health , Guiyang Medical University , Guiyang 550025 , Guizhou , People's Republic of China . ; ; Tel: +86-851-8841-6171
| | - Le Shi
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China . ; ; Tel: +86-25-8686-8424
| | - Yi Liu
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China . ; ; Tel: +86-25-8686-8424
| | - Xiaolin Lu
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China . ; ; Tel: +86-25-8686-8424
| | - Bairu Wang
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China . ; ; Tel: +86-25-8686-8424
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , School of Public Health , Guiyang Medical University , Guiyang 550025 , Guizhou , People's Republic of China . ; ; Tel: +86-851-8841-6171
| | - Qizhan Liu
- Institute of Toxicology , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China
- The Key Laboratory of Modern Toxicology , Ministry of Education , School of Public Health , Nanjing Medical University , Nanjing 211166 , Jiangsu , People's Republic of China . ; ; Tel: +86-25-8686-8424
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control , Ministry of Education , School of Public Health , Guiyang Medical University , Guiyang 550025 , Guizhou , People's Republic of China . ; ; Tel: +86-851-8841-6171
| |
Collapse
|
22
|
MicroRNA-191 promotes osteosarcoma cells proliferation by targeting checkpoint kinase 2. Tumour Biol 2015; 36:6095-101. [PMID: 25773391 DOI: 10.1007/s13277-015-3290-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/05/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs of 19-25 nt that can regulate gene expression at a posttranscriptional level. Increasing evidence indicates that miRNAs participate in almost every step of cellular processes and are often aberrantly expressed in human cancer. The aim of this study was to investigate the functional significance of miR-191 and to identify its possible target genes in osteosarcoma cells. Here, we found that the expression level of miR-191 was increased in osteosarcoma tissues in comparison with the adjacent normal tissues. The enforced expression of miR-191 was able to promote cell proliferation in Saos-2 and MG62 cells, while miR-191 antisense oligonucleotides blocked cell proliferation. At the molecular level, our results further revealed that expression of tumor suppressor gene, checkpoint kinase 2, was negatively regulated by miR-191. Therefore, we consider that miR-191 act as an onco-MicroRNA for osteosarcoma and it would offer a new way in molecular targeting cancer treatment.
Collapse
|
23
|
Yu G, Herazo-Maya JD, Nukui T, Romkes M, Parwani A, Juan-Guardela BM, Robertson J, Gauldie J, Siegfried JM, Kaminski N, Kass DJ. Matrix metalloproteinase-19 promotes metastatic behavior in vitro and is associated with increased mortality in non-small cell lung cancer. Am J Respir Crit Care Med 2015; 190:780-90. [PMID: 25250855 DOI: 10.1164/rccm.201310-1903oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Matrix metalloproteinases (MMPs) have been implicated in the development and progression of lung cancer, but their role in the molecular pathogenesis of lung cancer remains unclear. We have found that MMP19, a relatively novel member of the MMP family, is overexpressed in lung tumors when compared with control subjects. OBJECTIVES To test the hypothesis that MMP19 plays a significant role in the development and progression of non-small cell lung cancer (NSCLC). METHODS We have analyzed lung cancer gene expression data, immunostained lung tumors for MMP19, and performed in vitro assays to test the effects of MMP19 in NSCLC cells. MEASUREMENTS AND MAIN RESULTS We found that MMP19 gene and protein expression is increased in lung cancer tumors compared with adjacent and histologically normal lung tissues. In three independent datasets, increased MMP19 gene expression conferred a poorer prognosis in NSCLC. In vitro, we found that overexpression of MMP19 promotes epithelial-mesenchymal transition, migration, and invasiveness in multiple NSCLC cell lines. Overexpression of MMP19 with a mutation at the catalytic site did not impair epithelial-mesenchymal transition or expression of prometastasis genes. We also found that miR-30 isoforms, a microRNA family predicted to target MMP19, is markedly down-regulated in human lung cancer and regulates MMP19 expression. CONCLUSIONS Taken together, these findings suggest that MMP19 is associated with the development and progression of NSCLC and may be a potential biomarker of disease severity and outcome.
Collapse
Affiliation(s)
- Guoying Yu
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nagpal N, Kulshreshtha R. miR-191: an emerging player in disease biology. Front Genet 2014; 5:99. [PMID: 24795757 PMCID: PMC4005961 DOI: 10.3389/fgene.2014.00099] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/22/2022] Open
Abstract
Specific microRNAs have emerged as key players in disease biology by playing crucial role in disease development and progression. This review draws attention to one such microRNA, miR-191 that has been recently reported to be abnormally expressed in several cancers (>20) and various other diseases like diabetes-type 2, Crohn' s, pulmonary hypertension, and Alzheimer' s. It regulates important cellular processes such as cell proliferation, differentiation, apoptosis, and migration by targeting important transcription factors, chromatin remodelers, and cell cycle associated genes. Several studies have demonstrated it to be an excellent biomarker for cancer diagnosis and prognosis leading to two patents already in its kitty. In this first review we summarize the current knowledge of the regulation, functions and targets of miR-191 and discuss its potential as a promising disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Neha Nagpal
- RNA-II Lab, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi, India
| | - Ritu Kulshreshtha
- RNA-II Lab, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi, India
| |
Collapse
|
25
|
Zhang HH, Zhang ZY, Che CL, Mei YF, Shi YZ. Array analysis for potential biomarker of gemcitabine identification in non-small cell lung cancer cell lines. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1734-1746. [PMID: 24040438 PMCID: PMC3759480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Gemcitabine is one of the most widely used drugs for the treatment of advanced Non-small cell lung cancer (NSCLC), but modest objective response rate of patients to gemcitabine makes it necessary to identify novel biomarkers for patients who can benefit from gemcitabine-based therapy and to improve the effect of clinical therapy. In this work, 3 NSCLC cell lines displaying different sensitivities to gemcitabine were applied for mRNA and microRNA (miR) expression chips to figure out the biomarkers for gemcitabine sensitivity. Genes whose expression increased dramatically in sensitive cell lines were mainly enriched in cell adhesion (NRP2, CXCR3, CDK5R1, IL32 and CDH2) and secretory granule (SLC11A1, GP5, CD36 and IGF1), while genes with significantly upregulated expression in resistant cell line were mainly clustered in methylation modification (HIST1H2BF, RAB23 and TP53) and oxidoreductase (TP53I3, CYP27B1 and SOD3). The most intriguing is the activation of Wnt/β-catenin signaling in gemcitabine resistant NSCLC cell lines. The miR-155, miR-10a, miR-30a, miR-24-2* and miR-30c-2* were upregulated in sensitive cell lines, while expression of miR-200c, miR-203, miR-885-5p, miR-195 and miR-25* was increased in resistant cell line. Genes with significantly altered expression and putatively mediated by the expression-changed miRs were mainly enriched in chromatin assembly (MAF, HLF, BCL2, and IGSF3), anti-apoptosis (BCL2, IGF1 and IKBKB), protein kinase (NRP2, PAK7 and CDK5R1) (all the above genes were upregulated in sensitive cells) and small GTPase mediated signal transduction (GNA13, RAP2A, ARHGAP5 and RAB23, down-regulated in sensitive cells). Our results might provide potential biomarkers for gemcitabine sensitivity prediction and putative targets to overcome gemcitabine resistance in NSCLC patients.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Regulatory Networks/drug effects
- Genotype
- Humans
- Inhibitory Concentration 50
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- MicroRNAs/metabolism
- Oligonucleotide Array Sequence Analysis
- Patient Selection
- Phenotype
- RNA, Messenger/metabolism
- Gemcitabine
Collapse
Affiliation(s)
- Hai-Hong Zhang
- Department of rheumatism and immunology, First Clinical Medical College affiliated to Harbin Medical UniversityHarbin, China
| | - Zhi-Yi Zhang
- Department of rheumatism and immunology, First Clinical Medical College affiliated to Harbin Medical UniversityHarbin, China
| | - Chun-Li Che
- Department of respiratory medicine, First Clinical Medical College affiliated to Harbin Medical UniversityHarbin, China
| | - Yi-Fang Mei
- Department of respiratory medicine, First Clinical Medical College affiliated to Harbin Medical UniversityHarbin, China
| | - Yu-Zhi Shi
- Department of respiratory medicine, First Clinical Medical College affiliated to Harbin Medical UniversityHarbin, China
| |
Collapse
|
26
|
Stewart CE, Sayers I. Urokinase receptor orchestrates the plasminogen system in airway epithelial cell function. Lung 2013; 191:215-25. [PMID: 23408042 DOI: 10.1007/s00408-013-9450-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/10/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE The plasminogen system plays many roles in normal epithelial cell function, and components are elevated in diseases, such as cancer and asthma. The relative contribution of each component to epithelial function is unclear. We characterized normal cell function in airway epithelial cells with increased expression of selected pathway components. METHODS BEAS-2B R1 bronchial epithelial cells stably overexpressing membrane urokinase plasminogen activator receptor (muPAR), soluble spliced uPAR (ssuPAR), the ligand (uPA) or inhibitors (PAI1 or PAI2), were characterized for pathway expression. Cell function was examined using proliferation, apoptosis, and scratch wound assays. A549 alveolar epithelial cells overexpressing muPAR were similarly characterized and downstream plasmin activity, MMP-1, and MMP-9 measured. RESULTS Elevated expression of individual components led to changes in the plasminogen system expression profile, indicating coordinated regulation of the pathway. Increased muPAR expression augmented wound healing rate in BEAS-2B R1 and attenuated repair in A549 cells. Elevated expression of other system components had no effect on cell function in BEAS-2B R1 cells. This is the first study to investigate activity of the splice variant ssuPAR, with results suggesting that this variant plays a limited role in epithelial cell function in this model. CONCLUSIONS Our data highlight muPAR as the critical molecule orchestrating effects of the plasminogen system on airway epithelial cell function. These data have implications for diseases, such as cancer and asthma, and suggest uPAR as the key therapeutic target for the pathway in approaches to alter epithelial cell function.
Collapse
Affiliation(s)
- Ceri E Stewart
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
27
|
Liu Y, Song Y, Ma W, Zheng W, Yin H. Decreased microRNA-30a levels are associated with enhanced ABL1 and BCR-ABL1 expression in chronic myeloid leukemia. Leuk Res 2013; 37:349-56. [PMID: 23287430 DOI: 10.1016/j.leukres.2012.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 01/20/2023]
Abstract
Chronic myeloid leukemia (CML) is associated with overexpression of BCR-ABL1, a nonreceptor tyrosine kinase critical for malignant transformation. We investigated whether non-coding microRNAs (miRNAs) targeting BCR-ABL1 mRNA contribute to the pathogenesis of CML. Indeed, miR-30a targeted BCR-ABL1 and was underexpressed in bone marrow from CML patients. In K562 leukemia cells, overexpression of miR-30a reduced ABL1 and BCR-ABL1 protein expression, decreased proliferation, and arrested cell cycle progression between G1 and S. These findings strongly suggest that miR-30a acts as a tumor suppressor by downregulating ABL1 and BCR-ABL1 expression. Upregulation of miR-30a in hematopoietic cells may have therapeutic efficacy against CML.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
28
|
Hu H, Zhang Y, Cai XH, Huang JF, Cai L. Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett 2012; 4:1037-1042. [PMID: 23162647 DOI: 10.3892/ol.2012.866] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/06/2012] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, particularly in adolescents and young adults. Early diagnosis remains a significant problem in the clinical treatment of OS as we remain far from a comprehensive understanding of the molecular genetic mechanisms and the biology involved. In addition, microRNAs (miRNAs or miRs), a large family of small non-coding RNAs, may provide a greater understanding of OS as they play a complex role in gene expression regulation in vitro and in vivo. In the current study, the differential expression profiles of miRNAs between OS and osteoblast cell lines were investigated by miRNA microarrays and real-time quantitative PCR (RT-qPCR). A total of 268 miRNAs were identified that were significantly dysregulated in OS compared with the osteoblast cell line, including miR-9, miR-99, miR-195, miR-148a and miR-181a, which had been validated as overexpressed, and miR-143, miR-145, miR-335 and miR-539, which were confirmed to be downregulated. This differential expression may aid future OS diagnosis and prognosis prediction and illustration of the potential mechanisms in the oncogenesis, development and metastasis of OS. Bioinformatic research on these differentially expressed miRNAs suggests that they are able to regulate the biological behaviors of OS in a complex and effective manner. Further study on the function of these miRNAs is likely to provide new insights into OS biology and treatment.
Collapse
Affiliation(s)
- Hao Hu
- Department of Orthopedics, Wuhan General Hospital of Guangzhou Command; ; Department of Orthopedics, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, P.R. China
| | | | | | | | | |
Collapse
|
29
|
miR-30 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun 2011; 417:1100-5. [PMID: 22227196 DOI: 10.1016/j.bbrc.2011.12.121] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/14/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) has been implicated in embryonic development and various pathological events. Snail1 is a well-known E-cadherin-transcriptional repressor that is significantly upregulated during the TGF-β1-induced EMT in hepatocyte. However, the functional involvement of microRNA during the EMT process in hepatocyte remains to be determined. Here, we revealed that while the expression of Snail1 increased during the TGF-β1-induced EMT in AML12 murine hepatocytes, the expression of miR-30 family members exhibited significant downregulation. Computational microRNA target predictions detected a conserved sequence matching to the seed region of miR-30 in the 3'UTR of Snail1 mRNA. Our results demonstrated that miR-30 could negatively regulate the expression of Snail1 by direct targeting the predicted binding site. More importantly, transfection of miR-30b mimics significantly inhibited the TGF-β1-induced EMT in AML12 cells as assessed through cell morphology changes and the expression profiles of Snail1, E-cadherin and other fibroblast markers. Finally, we demonstrated that TGF-β1-induced hepatocyte migration was greatly suppressed in cells transfected with miR-30b mimics. Our results provide a new insight into the role of miR-30 in regulating EMT, which could be of importance in understanding the related physiologic and pathologic processes.
Collapse
|
30
|
Lim QE, Zhou L, Ho YK, Wan G, Too HP. snoU6 and 5S RNAs are not reliable miRNA reference genes in neuronal differentiation. Neuroscience 2011; 199:32-43. [PMID: 22051575 DOI: 10.1016/j.neuroscience.2011.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/08/2011] [Accepted: 10/14/2011] [Indexed: 12/20/2022]
Abstract
Accurate profiling of microRNAs (miRNAs) is an essential step for understanding the functional significance of these small RNAs in both physiological and pathological processes. Quantitative real-time PCR (qPCR) has gained acceptance as a robust and reliable transcriptomic method to profile subtle changes in miRNA levels and requires reference genes for accurate normalization of gene expression. 5S and snoU6 RNAs are commonly used as reference genes in microRNA quantification. It is currently unknown if these small RNAs are stably expressed during neuronal differentiation. Panels of miRNAs have been suggested as alternative reference genes to 5S and snoU6 in various physiological contexts. To test the hypothesis that miRNAs may serve as stable references during neuronal differentiation, the expressions of eight miRNAs, 5S and snoU6 RNAs in five differentiating neuronal cell types were analyzed using qPCR. The stabilities of the expressions were evaluated using two complementary statistical approaches (geNorm and Normfinder). Expressions of 5S and snoU6 RNAs were stable under some but not all conditions of neuronal differentiation and thus are not suitable reference genes. In contrast, a combination of three miRNAs (miR-103, miR-106b and miR-26b) allowed accurate expression normalization across different models of neuronal differentiation.
Collapse
Affiliation(s)
- Q E Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | | | | | | | | |
Collapse
|
31
|
Herbert M, Coppieters N, Lasham A, Cao H, Reid G. The importance of RT-qPCR primer design for the detection of siRNA-mediated mRNA silencing. BMC Res Notes 2011; 4:148. [PMID: 21612654 PMCID: PMC3123217 DOI: 10.1186/1756-0500-4-148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 05/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of RNAi to analyse gene function in vitro is now widely applied in biological research. However, several difficulties are associated with its use in vivo, mainly relating to inefficient delivery and non-specific effects of short RNA duplexes in animal models. The latter can lead to false positive results when real-time RT-qPCR alone is used to measure target mRNA knockdown. FINDINGS We observed that detection of an apparent siRNA-mediated knockdown in vivo was dependent on the primers used for real-time RT-qPCR measurement of the target mRNA. Two siRNAs specific for RRM1 with equivalent activity in vitro were administered to A549 xenografts via intratumoural injection. In each case, apparent knockdown of RRM1 mRNA was observed only when the primer pair used in RT-qPCR flanked the siRNA cleavage site. This false-positive result was found to result from co-purified siRNA interfering with both reverse transcription and qPCR. CONCLUSIONS Our data suggest that using primers flanking the siRNA-mediated cleavage site in RT-qPCR-based measurements of mRNA knockdown in vivo can lead to false positive results. This is particularly relevant where high concentrations of siRNA are introduced, particularly via intratumoural injection, as the siRNA may be co-purified with the RNA and interfere with downstream enzymatic steps. Based on these results, using primers flanking the siRNA target site should be avoided when measuring knockdown of target mRNA by real-time RT-qPCR.
Collapse
Affiliation(s)
- Mike Herbert
- Genesis Research & Development Corporation, Ltd, PO Box 50, Auckland 1140, New Zealand.
| | | | | | | | | |
Collapse
|
32
|
Mallick R, Patnaik SK, Yendamuri S. MicroRNAs and lung cancer: Biology and applications in diagnosis and prognosis. J Carcinog 2010; 9. [PMID: 20808843 PMCID: PMC2925280 DOI: 10.4103/1477-3163.67074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are tiny non-coding RNA molecules which play important roles in the epigenetic control of cellular processes by preventing the translation of proteins from messenger RNAs (mRNAs). A single microRNA can target different mRNAs, and an mRNA can be targeted by multiple microRNAs. Such complex interplays underlie many molecular pathways in cells, and specific roles for many microRNAs in physiological as well as pathological phenomena have been identified. Changes in expression of microRNAs have been associated with a wide variety of disease conditions, and microRNA-based biomarkers are being developed for the identification and monitoring of such states. This review provides a general overview of the current state of knowledge about the biology of microRNAs, and specific information about microRNAs with regard to the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Reema Mallick
- Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA
| | | | | |
Collapse
|