1
|
Cancer Stem Cell Signaling during Repopulation in Head and Neck Cancer. Stem Cells Int 2016; 2016:1894782. [PMID: 26880935 PMCID: PMC4736761 DOI: 10.1155/2016/1894782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/07/2015] [Accepted: 11/15/2015] [Indexed: 12/18/2022] Open
Abstract
The aim of the study was to investigate cancer stem signaling during the repopulation response of a head and neck squamous cell cancer (HNSCC) xenograft after radiation treatment. Xenografts were generated from low passage HNSCC cells and were treated with either sham radiation or 15 Gy in one fraction. At different time points, days 0, 3, and 10 for controls and days 4, 7, 12, and 21, after irradiation, 3 tumors per group were harvested for global gene expression, pathway analysis, and immunohistochemical evaluation. 316 genes were identified that were associated with a series of stem cell-related genes and were differentially expressed (p ≤ 0.01 and 1.5-fold) at a minimum of one time point in UT-SCC-14 xenografts after radiation. The largest network of genes that showed significant changes after irradiation was associated with CD44, NOTCH1, and MET. c-MET and ALDH1A3 staining correlated with the changes in gene expression. A clear pattern emerged that was consistent with the growth inhibition data in that genes associated with stem cell pathways were most active at day 7 and day 12 after irradiation. The MET/CD44 axis seemed to be an important component of the repopulation response.
Collapse
|
2
|
Network Comparison of Inflammation in Colorectal Cancer and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:205247. [PMID: 26273596 PMCID: PMC4529906 DOI: 10.1155/2015/205247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 11/21/2022]
Abstract
Recently, a large clinical study revealed an inverse correlation of individual risk of cancer versus Alzheimer's disease (AD). However, no explanation exists for this anticorrelation at the molecular level; however, inflammation is crucial to the pathogenesis of both diseases, necessitating a need to understand differing signaling usage during inflammatory responses distinct to both diseases. Using a subpathway analysis approach, we identified numerous well-known and previously unknown pathways enriched in datasets from both diseases. Here, we present the quantitative importance of the inflammatory response in the two disease pathologies and summarize signal transduction pathways common to both diseases that are affected by inflammation.
Collapse
|
3
|
Gene Expression Characterization of HPV Positive Head and Neck Cancer to Predict Response to Chemoradiation. Head Neck Pathol 2014; 9:345-53. [PMID: 25481760 PMCID: PMC4542789 DOI: 10.1007/s12105-014-0597-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/03/2014] [Indexed: 01/13/2023]
Abstract
Human papillomavirus (HPV) has been shown to have a causal role in the development of head and neck squamous cell carcinoma. While HPV-positive head and neck cancer is associated with a better response to treatment in the majority of patients, there is a subset who does not respond favorably to current therapy. Identification of these patients could prevent unnecessary morbidity and indicate the need for alternative therapeutic options. Tissue samples were obtained from 19 patients with HPV-positive head and neck squamous carcinoma treated with chemoradiation therapy. HPV status was confirmed by polymerase chain reaction analysis through detection of HPV16 E7 in both DNA and RNA. RNA was isolated from tissue samples and subjected to microarray gene expression analysis. In addition to identification of potential genetic biomarkers (including LCE3D, KRTDAP, HMOX1, KRT19, MDK, TSPAN1), differentially expressed genes associated with genomic stability, cell cycle, and DNA damage were detected between responders and non-responders. These results were further validated with publicly available gene expression studies. This pilot study suggests prospective biomarkers that predict response to therapy. The importance of genes involved with genomic stability is highlighted in both development and progression of head and neck squamous cell carcinoma but also recurrence. Potential development of an assay may prove beneficial to clinicians, assisting them to provide alternative care sooner thus lowering morbidity.
Collapse
|
4
|
Wilson GD, Thibodeau BJ, Fortier LE, Pruetz BL, Galoforo S, Akervall J, Marples B, Huang J. Gene expression changes during repopulation in a head and neck cancer xenograft. Radiother Oncol 2014; 113:139-45. [PMID: 25245558 DOI: 10.1016/j.radonc.2014.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 08/17/2014] [Indexed: 02/09/2023]
Abstract
BACKGROUND/PURPOSE To investigate temporal changes in global gene expression and pathways involved in the response to irradiation during phases of growth inhibition, recovery and repopulation in a human head and neck squamous cell cancer (HNSCC) xenograft. METHODS AND MATERIALS Low passage head and neck squamous cancer cells (UT-14-SCC) were injected into the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm3, they were treated with either sham RT or 15Gy in one fraction. At different time points, days 0, 3, and 10 for controls and days 4, 7, 12, and 21 after irradiation, the tumors were harvested for global gene expression analysis and pathway analysis. RESULTS The tumors showed growth inhibition through days 4-7 and began the transition to regrowth around the day 12 time point. When comparing the pooled controls to each day of treatment, there were 22, 119, 125, and 25 differentially expressed genes on days 4, 7, 12, and 21 respectively using a p⩽0.01 and a 2-fold cut-off. Gene Ontology (GO), gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) identified different biological processes, cell process pathways and expression targets to be active on each time point after irradiation. An important observation was that the molecular events on day 12 which represented the transition from growth inhibition to regrowth identified interferon and cytokine related genes and signaling pathways as the most prominent. CONCLUSION The findings in this study compliment research which has identified components of interferon-related signaling pathways to be involved in radioresistance. Further work will be required to understand the significance of these genes in both radioresistance and treatment response leading to new therapeutic strategies and prognostic tools.
Collapse
Affiliation(s)
- George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, USA; Beaumont BioBank, William Beaumont Hospital, Royal OakUSA.
| | | | | | | | - Sandra Galoforo
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, USA
| | - Jan Akervall
- Beaumont BioBank, William Beaumont Hospital, Royal OakUSA; Department of Otolaryngology, William Beaumont Hospital, Royal Oak, USA
| | - Brian Marples
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, USA
| | - Jiayi Huang
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
5
|
Zamani Babgohari M, Ebrahimie E, Niazi A. In silico analysis of high affinity potassium transporter (HKT) isoforms in different plants. AQUATIC BIOSYSTEMS 2014; 10:9. [PMID: 25279141 PMCID: PMC4181754 DOI: 10.1186/2046-9063-10-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 09/10/2014] [Indexed: 05/31/2023]
Abstract
BACKGROUND High affinity potassium transporters (HKTs) are located in the plasma membrane of the vessels and have significant influence on salt tolerance in some plants. They exclude Na(+) from the parenchyma cells to reduce Na(+) concentration. Despite many studies, the underlying regulatory mechanisms and the exact functions of HKTs within different genomic backgrounds are relatively unknown. In this study, various bioinformatics techniques, including promoter analysis, identification of HKT-surrounding genes, and construction of gene networks, were applied to investigate the HKT regulatory mechanism. RESULTS Promoter analysis showed that rice HKTs carry ABA response elements. Additionally, jasmonic acid response elements were detected on promoter region of TmHKT1;5. In silico synteny highlighted several unknown and new loci near rice, Arabidopsis thaliana and Physcomitrella patent HKTs, which may play a significant role in salt stress tolerance in concert with HKTs. Gene network prediction unravelled that crosstalk between jasmonate and ethylene reduces AtHKT1;1 expression. Furthermore, antiporter and transferase proteins were found in AtHKT1;1 gene network. Interestingly, regulatory elements on the promoter region of HKT in wild genotype (TmHKT1;5) were more frequent and variable than the ones in cultivated wheat (TaHKT1;5) which provides the possibility of rapid response and better understanding of environmental conditions for wild genotype. CONCLUSION Detecting ABA and jasmonic acid response elements on promoter regions of HKTs provide valuable clues on underlying regulatory mechanisms of HKTs. In silico synteny and pathway discovery indicated several candidates which act in concert with HKTs in stress condition. We highlighted different arrangement of regulatory elements on promoter region of wild wheat (TmHKT1;5) compared to bread wheat (TaHKT1;5) in this study.
Collapse
Affiliation(s)
| | - Esmaeil Ebrahimie
- Department of Crop Production & Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, Australia
| | - Ali Niazi
- Biotechnology Institute, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Gene expression differences predict treatment outcome of merkel cell carcinoma patients. J Skin Cancer 2014; 2014:596459. [PMID: 24634783 PMCID: PMC3929072 DOI: 10.1155/2014/596459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022] Open
Abstract
Due to the rarity of Merkel cell carcinoma (MCC), prospective clinical trials have not been practical. This study aimed to identify biomarkers with prognostic significance. While sixty-two patients were identified who were treated for MCC at our institution, only seventeen patients had adequate formalin-fixed paraffin-embedded archival tissue and followup to be included in the study. Patients were stratified into good, moderate, or poor prognosis. Laser capture microdissection was used to isolate tumor cells for subsequent RNA isolation and gene expression analysis with Affymetrix GeneChip Human Exon 1.0 ST arrays. Among the 191 genes demonstrating significant differential expression between prognostic groups, keratin 20 and neurofilament protein have previously been identified in studies of MCC and were significantly upregulated in tumors from patients with a poor prognosis. Immunohistochemistry further established that keratin 20 was overexpressed in the poor prognosis tumors. In addition, novel genes of interest such as phospholipase A2 group X, kinesin family member 3A, tumor protein D52, mucin 1, and KIT were upregulated in specimens from patients with poor prognosis. Our pilot study identified several gene expression differences which could be used in the future as prognostic biomarkers in MCC patients.
Collapse
|
7
|
Unraveling DNA damage response-signaling networks through systems approaches. Arch Toxicol 2013; 87:1635-48. [DOI: 10.1007/s00204-013-1106-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
8
|
Abstract
OBJECTIVES The diagnosis of high-grade intraductal papillary mucinous neoplasm (IPMN) is difficult to distinguish from low-grade IPMN. The aim of this study was to identify potential markers for the discrimination of high-grade and invasive (HgInv) IPMN from low- and moderate-grade dysplasia IPMN. METHODS Laser capture microdissection was used to isolate distinct foci of low-grade, moderate-grade, high-grade, and invasive IPMN from paraffin-embedded archival tissue from 14 patients who underwent resection for IPMN. Most samples included multiple grades in the same specimen. Affymetrix Human Exon microarrays were used to compare low- and moderate-grade dysplasia IPMN with HgInv IPMN. RESULTS Sixty-two genes were identified as showing significant changes in expression (P ≤ 0.05 and a 2-fold cutoff), including up-regulation of 41 in HgInv IPMN. Changes in gene expression are associated with biological processes related to malignant behavior including cell motion, cell proliferation, response to hypoxia, and epithelial-to-mesenchymal transition. In addition, altered signaling in several transforming growth factor β-related pathways was exhibited in the progression of IPMN to malignancy. CONCLUSIONS This study identifies a set of genes associated with the progression of IPMN to malignancy. These genes are potential markers that could be used to identify IPMN requiring surgical resection.
Collapse
|
9
|
Nam S, Park T. Pathway-based evaluation in early onset colorectal cancer suggests focal adhesion and immunosuppression along with epithelial-mesenchymal transition. PLoS One 2012; 7:e31685. [PMID: 22496728 PMCID: PMC3322137 DOI: 10.1371/journal.pone.0031685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 01/13/2012] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) has one of the highest incidences among all cancers. The majority of CRCs are sporadic cancers that occur in individuals without family histories of CRC or inherited mutations. Unfortunately, whole-genome expression studies of sporadic CRCs are limited. A recent study used microarray techniques to identify a predictor gene set indicative of susceptibility to early-onset CRC. However, the molecular mechanisms of the predictor gene set were not fully investigated in the previous study. To understand the functional roles of the predictor gene set, in the present study we applied a subpathway-based statistical model to the microarray data from the previous study and identified mechanisms that are reasonably associated with the predictor gene set. Interestingly, significant subpathways belonging to 2 KEGG pathways (focal adhesion; natural killer cell-mediated cytotoxicity) were found to be involved in the early-onset CRC patients. We also showed that the 2 pathways were functionally involved in the predictor gene set using a text-mining technique. Entry of a single member of the predictor gene set triggered a focal adhesion pathway, which confers anti-apoptosis in the early-onset CRC patients. Furthermore, intensive inspection of the predictor gene set in terms of the 2 pathways suggested that some entries of the predictor gene set were implicated in immunosuppression along with epithelial-mesenchymal transition (EMT) in the early-onset CRC patients. In addition, we compared our subpathway-based statistical model with a gene set-based statistical model, MIT Gene Set Enrichment Analysis (GSEA). Our method showed better performance than GSEA in the sense that our method was more consistent with a well-known cancer-related pathway set. Thus, the biological suggestion generated by our subpathway-based approach seems quite reasonable and warrants a further experimental study on early-onset CRC in terms of dedifferentiation or differentiation, which is underscored in EMT and immunosuppression.
Collapse
Affiliation(s)
- Seungyoon Nam
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang, Korea
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon, Korea
- * E-mail: (TP); (SN)
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- * E-mail: (TP); (SN)
| |
Collapse
|
10
|
Li JY, Yang HJ, Lan TY, Wei H, Zhang HR, Chen M, Fan W, Ma YY, Zhong BX. Expression profiling and regulation of genes related to silkworm posterior silk gland development and fibroin synthesis. J Proteome Res 2011; 10:3551-64. [PMID: 21657221 DOI: 10.1021/pr200196x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The posterior silk gland (PSG) is the most important suborgan responsible for the synthesis and secretion of silk core fibroin proteins in silkworm. Here, we performed genome-scale expression profiling analysis of silkworm PSG at the fourth molting (M4) and at day 1 (V1), day 3 (V3), day 5 (V5), and wandering stage (W) of the fifth instar by microarray analysis with 22 987 probes. We found that the five genes of silk proteins secreted from PSG including fibroin heavy (H) and light (L) chains, P25, seroin 1, and seroin 2 basically showed obvious up-regulation at V3 which lasted to V5, while slight down-regulation at W. The expression of translation-related genes including ribosomal proteins and translation initiation factors generally remained stable from M4 to V5, whereas it showed clear down-regulation at W. Clustering analysis of the 643 significantly differentially expressed transcripts revealed that 43 of the important genes including seroin 1 and sugar transporter protein had co-expression patterns which were consistent with the rate changes of fibroin synthesis and PSG growth. Pathway analysis disclosed that the genes in different clusters might have co-regulations and direct interactions. These genes were supposed to be involved in the fibroin synthesis and secretion. The differential expression of several hormone-related genes also suggested their functions on the regulation of PSG development and fibroin synthesis. 2D gel-based proteomics and phosphoproteomics profiling revealed that the phosphorylated proteins accounted for no more than one-sixth of the total proteins at each stage, which was much lower than the level in normal eukaryotic cells. Changes in the phosphorylation status and levels of several proteins such as actin-depolymerizing factor 1 and enolase might be deeply involved in fibroin secretion and tissue development. Shotgun proteomic profiling combined with label-free quantification analysis on the PSG at V3, V5, and W revealed that many small heat shock proteins (sHSP) were specially expressed at W, which was substantially consistent with the results from 2-DE analysis, and implied the close correlations of sHSP with the physiological states of PSG at W. A majority of significantly up-regulated proteins at V5 were related to ribosome pathway, which was different from the microarray results, implying that the translation-level regulation of ribosomal proteins might be critical for fibroin synthesis. In contrast, the ubiquitin-proteasome pathway related proteins appeared obviously up-regulated at W, suggesting that the programmed cell death process of PSG cells might be started before cocooning.
Collapse
Affiliation(s)
- Jian-ying Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|