1
|
Zapater I Morales C, Carman PJ, Soffar DB, Windner SE, Dominguez R, Baylies MK. Drosophila Tropomodulin is required for multiple actin-dependent processes within developing myofibers. Development 2023; 150:dev201194. [PMID: 36806912 PMCID: PMC10112908 DOI: 10.1242/dev.201194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Proper muscle contraction requires the assembly and maintenance of sarcomeres and myofibrils. Although the protein components of myofibrils are generally known, less is known about the mechanisms by which they individually function and together synergize for myofibril assembly and maintenance. For example, it is unclear how the disruption of actin filament (F-actin) regulatory proteins leads to the muscle weakness observed in myopathies. Here, we show that knockdown of Drosophila Tropomodulin (Tmod), results in several myopathy-related phenotypes, including reduction of muscle cell (myofiber) size, increased sarcomere length, disorganization and misorientation of myofibrils, ectopic F-actin accumulation, loss of tension-mediating proteins at the myotendinous junction, and misshaped and internalized nuclei. Our findings support and extend the tension-driven self-organizing myofibrillogenesis model. We show that, like its mammalian counterpart, Drosophila Tmod caps F-actin pointed-ends, and we propose that this activity is crucial for cellular processes in different locations within the myofiber that directly and indirectly contribute to the maintenance of muscle function. Our findings provide significant insights to the role of Tmod in muscle development, maintenance and disease.
Collapse
Affiliation(s)
- Carolina Zapater I Morales
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Peter J Carman
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Stefanie E Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Roberto Dominguez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary K Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Perez-Vale KZ, Yow KD, Gurley NJ, Greene M, Peifer M. Rap1 regulates apical contractility to allow embryonic morphogenesis without tissue disruption and acts in part via Canoe-independent mechanisms. Mol Biol Cell 2023; 34:ar7. [PMID: 36287827 PMCID: PMC9816648 DOI: 10.1091/mbc.e22-05-0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 02/03/2023] Open
Abstract
Embryonic morphogenesis is powered by dramatic changes in cell shape and arrangement driven by the cytoskeleton and its connections to adherens junctions. This requires robust linkage allowing morphogenesis without disrupting tissue integrity. The small GTPase Rap1 is a key regulator of cell adhesion, controlling both cadherin-mediated and integrin-mediated processes. We have defined multiple roles in morphogenesis for one Rap1 effector, Canoe/Afadin, which ensures robust junction-cytoskeletal linkage. We now ask what mechanisms regulate Canoe and other junction-cytoskeletal linkers during Drosophila morphogenesis, defining roles for Rap1 and one of its guanine nucleotide exchange factor (GEF) regulators, Dizzy. Rap1 uses Canoe as one effector, regulating junctional planar polarity. However, Rap1 has additional roles in junctional protein localization and balanced apical constriction-in its absence, Bazooka/Par3 localization is fragmented, and cells next to mitotic cells apically constrict and invaginate, disrupting epidermal integrity. In contrast, the GEF Dizzy has phenotypes similar to but slightly less severe than Canoe loss, suggesting that this GEF regulates Rap1 action via Canoe. Taken together, these data reveal that Rap1 is a crucial regulator of morphogenesis, likely acting in parallel via Canoe and other effectors, and that different Rap1 GEFs regulate distinct functions of Rap1.
Collapse
Affiliation(s)
- Kia Z. Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristi D. Yow
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Melissa Greene
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
3
|
Madi JR, Outa AA, Ghannam M, Hussein HM, Shehab M, Hasan ZAKH, Fayad AA, Shirinian M, Rahal EA. Drosophila melanogaster as a Model System to Assess the Effect of Epstein-Barr Virus DNA on Inflammatory Gut Diseases. Front Immunol 2021; 12:586930. [PMID: 33828545 PMCID: PMC8019809 DOI: 10.3389/fimmu.2021.586930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
The Epstein-Barr virus (EBV) commonly infects humans and is highly associated with different types of cancers and autoimmune diseases. EBV has also been detected in inflamed gastrointestinal mucosa of patients suffering from prolonged inflammation of the digestive tract such as inflammatory bowel disease (IBD) with no clear role identified yet for EBV in the pathology of such diseases. Since we have previously reported immune-stimulating capabilities of EBV DNA in various models, in this study we investigated whether EBV DNA may play a role in exacerbating intestinal inflammation through innate immune and regeneration responses using the Drosophila melanogaster model. We have generated inflamed gastrointestinal tracts in adult fruit flies through the administration of dextran sodium sulfate (DSS), a sulfated polysaccharide that causes human ulcerative colitis- like pathologies due to its toxicity to intestinal cells. Intestinal damage induced by inflammation recruited plasmatocytes to the ileum in fly hindguts. EBV DNA aggravated inflammation by enhancing the immune deficiency (IMD) pathway as well as further increasing the cellular inflammatory responses manifested upon the administration of DSS. The study at hand proposes a possible immunostimulatory role of the viral DNA exerted specifically in the fly hindgut hence further developing our understanding of immune responses mounted against EBV DNA in the latter intestinal segment of the D. melanogaster gut. These findings suggest that EBV DNA may perpetuate proinflammatory processes initiated in an inflamed digestive system. Our findings indicate that D. melanogaster can serve as a model to further understand EBV-associated gastroinflammatory pathologies. Further studies employing mammalian models may validate the immunogenicity of EBV DNA in an IBD context and its role in exacerbating the disease through inflammatory mediators.
Collapse
Affiliation(s)
- Joelle R Madi
- Department of Experimental Pathology and Immunology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amani Al Outa
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Mirna Ghannam
- Department of Experimental Pathology and Immunology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hadi M Hussein
- Department of Experimental Pathology and Immunology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Marwa Shehab
- Department of Experimental Pathology and Immunology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Zeinab Al Kobra Haj Hasan
- Department of Experimental Pathology and Immunology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Antoine Abou Fayad
- Department of Experimental Pathology and Immunology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology and Immunology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
4
|
Identification of the Wallenda JNKKK as an Alk suppressor reveals increased competitiveness of Alk-expressing cells. Sci Rep 2020; 10:14954. [PMID: 32917927 PMCID: PMC7486895 DOI: 10.1038/s41598-020-70890-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Anaplastic lymphoma kinase (Alk) is a receptor tyrosine kinase of the insulin receptor super-family that functions as oncogenic driver in a range of human cancers such as neuroblastoma. In order to investigate mechanisms underlying Alk oncogenic signaling, we conducted a genetic suppressor screen in Drosophila melanogaster. Our screen identified multiple loci important for Alk signaling, including members of Ras/Raf/ERK-, Pi3K-, and STAT-pathways as well as tailless (tll) and foxo whose orthologues NR2E1/TLX and FOXO3 are transcription factors implicated in human neuroblastoma. Many of the identified suppressors were also able to modulate signaling output from activated oncogenic variants of human ALK, suggesting that our screen identified targets likely relevant in a wide range of contexts. Interestingly, two misexpression alleles of wallenda (wnd, encoding a leucine zipper bearing kinase similar to human DLK and LZK) were among the strongest suppressors. We show that Alk expression leads to a growth advantage and induces cell death in surrounding cells. Our results suggest that Alk activity conveys a competitive advantage to cells, which can be reversed by over-expression of the JNK kinase kinase Wnd.
Collapse
|
5
|
Dlugos CP, Picciotto C, Lepa C, Krakow M, Stöber A, Eddy ML, Weide T, Jeibmann A, P Krahn M, Van Marck V, Klingauf J, Ricker A, Wedlich-Söldner R, Pavenstädt H, Klämbt C, George B. Nephrin Signaling Results in Integrin β1 Activation. J Am Soc Nephrol 2019; 30:1006-1019. [PMID: 31097607 DOI: 10.1681/asn.2018040362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients with certain mutations in the gene encoding the slit diaphragm protein Nephrin fail to develop functional slit diaphragms and display severe proteinuria. Many adult-onset glomerulopathies also feature alterations in Nephrin expression and function. Nephrin signals from the podocyte slit diaphragm to the Actin cytoskeleton by recruiting proteins that can interact with C3G, a guanine nucleotide exchange factor of the small GTPase Rap1. Because Rap activity affects formation of focal adhesions, we hypothesized that Nephrin transmits signals to the Integrin receptor complex, which mediates podocyte adhesion to the extracellular matrix. METHODS To investigate Nephrin's role in transmitting signals to the Integrin receptor complex, we conducted genetic studies in Drosophila nephrocytes and validated findings from Drosophila in a cultured human podocyte model. RESULTS Drosophila nephrocytes form a slit diaphragm-like filtration barrier and express the Nephrin ortholog Sticks and stones (Sns). A genetic screen identified c3g as necessary for nephrocyte function. In vivo, nephrocyte-specific gene silencing of sns or c3g compromised nephrocyte filtration and caused nephrocyte diaphragm defects. Nephrocytes with impaired Sns or C3G expression displayed an altered localization of Integrin and the Integrin-associated protein Talin. Furthermore, gene silencing of c3g partly rescued nephrocyte diaphragm defects of an sns overexpression phenotype, pointing to genetic interaction of sns and c3g in nephrocytes. We also found that activated Nephrin recruited phosphorylated C3G and resulted in activation of Integrin β1 in cultured podocytes. CONCLUSIONS Our findings suggest that Nephrin can mediate a signaling pathway that results in activation of Integrin β1 at focal adhesions, which may affect podocyte attachment to the extracellular matrix.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christian Klämbt
- Neurobiology, Westfälische-Wilhelms University Münster, Münster, Germany
| | | |
Collapse
|
6
|
Camp D, Haage A, Solianova V, Castle WM, Xu QA, Lostchuck E, Goult BT, Tanentzapf G. Direct binding of Talin to Rap1 is required for cell-ECM adhesion in Drosophila. J Cell Sci 2018; 131:jcs.225144. [PMID: 30446511 DOI: 10.1242/jcs.225144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Attachment of cells to the extracellular matrix (ECM) via integrins is essential for animal development and tissue maintenance. The cytoplasmic protein Talin (encoded by rhea in flies) is necessary for linking integrins to the cytoskeleton, and its recruitment is a key step in the assembly of the adhesion complex. However, the mechanisms that regulate Talin recruitment to sites of adhesion in vivo are still not well understood. Here, we show that Talin recruitment to, and maintenance at, sites of integrin-mediated adhesion requires a direct interaction between Talin and the GTPase Rap1. A mutation that blocks the direct binding of Talin to Rap1 abolished Talin recruitment to sites of adhesion and the resulting phenotype phenocopies that seen with null alleles of Talin. Moreover, we show that Rap1 activity modulates Talin recruitment to sites of adhesion via its direct binding to Talin. These results identify the direct Talin-Rap1 interaction as a key in vivo mechanism for controlling integrin-mediated cell-ECM adhesion.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - William M Castle
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Qinyuan A Xu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| |
Collapse
|
7
|
Sawant K, Chen Y, Kotian N, Preuss KM, McDonald JA. Rap1 GTPase promotes coordinated collective cell migration in vivo. Mol Biol Cell 2018; 29:2656-2673. [PMID: 30156466 PMCID: PMC6249841 DOI: 10.1091/mbc.e17-12-0752] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During development and in cancer, cells often move together in small to large collectives. To move as a unit, cells within collectives need to stay coupled together and coordinate their motility. How cell collectives remain interconnected and migratory, especially when moving through in vivo environments, is not well understood. The genetically tractable border cell group undergoes a highly polarized and cohesive cluster-type migration in the Drosophila ovary. Here we report that the small GTPase Rap1, through activation by PDZ-GEF, regulates border cell collective migration. We find that Rap1 maintains cell contacts within the cluster, at least in part by promoting the organized distribution of E-cadherin at specific cell-cell junctions. Rap1 also restricts migratory protrusions to the front of the border cell cluster and promotes the extension of protrusions with normal dynamics. Further, Rap1 is required in the outer migratory border cells but not in the central nonmigratory polar cells. Such cell specificity correlates well with the spatial distribution of the inhibitory Rapgap1 protein, which is higher in polar cells than in border cells. We propose that precisely regulated Rap1 activity reinforces connections between cells and polarizes the cluster, thus facilitating the coordinated collective migration of border cells.
Collapse
Affiliation(s)
- Ketki Sawant
- Division of Biology, Kansas State University, Manhattan, KS 66506.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Yujun Chen
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Nirupama Kotian
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Kevin M Preuss
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | | |
Collapse
|
8
|
Begum Z, Varalakshmi C, Sriram D, Radha V. Development and characterization of a novel monoclonal antibody that recognizes an epitope in the central protein interaction domain of RapGEF1 (C3G). Mol Biol Rep 2018; 45:1809-1819. [DOI: 10.1007/s11033-018-4327-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 11/29/2022]
|
9
|
Sasi Kumar K, Ramadhas A, Nayak S, Kaniyappan S, Dayma K, Radha V. C3G (RapGEF1), a regulator of actin dynamics promotes survival and myogenic differentiation of mouse mesenchymal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2629-39. [DOI: 10.1016/j.bbamcr.2015.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/17/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
|
10
|
Spahn P, Ott A, Reuter R. The PDZ-GEF protein Dizzy regulates the establishment of adherens junctions required for ventral furrow formation in Drosophila. J Cell Sci 2012; 125:3801-12. [PMID: 22553205 DOI: 10.1242/jcs.101196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The PDZ-GEF protein Dizzy (Dzy) and its downstream GTPase Rap1 have pleiotropic roles during development of the Drosophila embryo. Here, we show that maternally provided Dzy and Rap1 first function during ventral furrow formation (VFF) where they are critical to guarantee rapid apical cell constrictions. Contraction of the apical actomyosin filament system occurs independently of Dzy and Rap1, but loss of Dzy results in a delayed establishment of the apical adherens junction (AJ) belt, whereas in the absence of Rap1 only a fragmentary apical AJ belt is formed in the epithelium. The timely establishment of apical AJs appears to be essential for coupling actomyosin contractions to cell shape change and to assure completion of the ventral furrow. Immediately after VFF, the downregulation of Dzy and Rap1 is necessary to allow normal mesodermal development to continue after the epithelial-to-mesenchymal transition, as overexpression of Dzy or of constitutively active Rap1 compromises mesodermal migration and monolayer formation. We propose that Dzy and Rap1 are crucial factors regulating the dynamics of AJs during gastrulation.
Collapse
Affiliation(s)
- Philipp Spahn
- Interfakultäres Institut für Zellbiologie, Abteilung Genetik der Tiere, Fachbereich für Biologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
11
|
Signalling to actin: role of C3G, a multitasking guanine-nucleotide-exchange factor. Biosci Rep 2011; 31:231-44. [PMID: 21366540 DOI: 10.1042/bsr20100094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor) is a ubiquitously expressed member of a class of molecules called GEFs (guanine-nucleotide-exchange factor) that activate small GTPases and is involved in pathways triggered by a variety of signals. It is essential for mammalian embryonic development and many cellular functions in adult tissues. C3G participates in regulating functions that require cytoskeletal remodelling such as adhesion, migration, maintenance of cell junctions, neurite growth and vesicle traffic. C3G is spatially and temporally regulated to act on Ras family GTPases Rap1, Rap2, R-Ras, TC21 and Rho family member TC10. Increased C3G protein levels are associated with differentiation of various cell types, indicating an important role for C3G in cellular differentiation. In signalling pathways, C3G serves functions dependent on catalytic activity as well as protein interaction and can therefore integrate signals necessary for the execution of more than one cellular function. This review summarizes our current knowledge of the biology of C3G with emphasis on its role as a transducer of signals to the actin cytoskeleton. Deregulated C3G may also contribute to pathogenesis of human disorders and therefore could be a potential therapeutic target.
Collapse
|