1
|
Yin J, Li J, Xie H, Wang Y, Zhao J, Wang L, Wu L. Unveiling cold Code: Acinetobacter calcoaceticus TY1's adaptation strategies and applications in nitrogen treatment. BIORESOURCE TECHNOLOGY 2024; 413:131449. [PMID: 39244103 DOI: 10.1016/j.biortech.2024.131449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Overcoming low nitrogen removal efficiency at low temperatures is a challenge in biological treatment. This study investigated the cold-tolerant heterotrophic nitrification-aerobic denitrification by Acinetobacter calcoaceticus TY1. Transcriptomic and biochemical analyses indicated that strain TY1 upregulated genes for energy production, assimilation, cell motility, and antioxidant enzyme production under cold stress, maintaining functions such as energy supply, nitrogen utilization, and oxidative defense. Increasing the synthesis of extracellular polysaccharides, unsaturated fatty acids, and medium-chain fatty acids and secreting large amounts of antioxidant enzymes ensured cell membrane flexibility while enhancing the antioxidant system. Immobilization experiments showed that biofilms accelerated the removal of nitrogen pollutants and demonstrated good stability, with carriers being reusable to five times, maintaining high ammonia nitrogen (63.90 %) and total nitrogen (50.66 %) removal rates. These findings reveal the cold tolerance mechanisms of strain TY1 and its excellent practical potential as a candidate for wastewater treatment in cold regions.
Collapse
Affiliation(s)
- Jiahui Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Junyi Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Hongliang Xie
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Yongman Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Jialin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Hohhot 010021, PR China.
| |
Collapse
|
2
|
Mittal P, Sinha AK, Pandiyan A, Kumari L, Ray MK, Pavankumar TL. A type II toxin-antitoxin system is responsible for the cell death at low temperature in Pseudomonas syringae Lz4W lacking RNase R. J Biol Chem 2024; 300:107600. [PMID: 39059490 PMCID: PMC11375266 DOI: 10.1016/j.jbc.2024.107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
RNase R (encoded by the rnr gene) is a highly processive 3' → 5' exoribonuclease essential for the growth of the psychrotrophic bacterium Pseudomonas syringae Lz4W at low temperature. The cell death of a rnr deletion mutant at low temperature has been previously attributed to processing defects in 16S rRNA, defective ribosomal assembly, and inefficient protein synthesis. We recently showed that RNase R is required to protect P. syringae Lz4W from DNA damage and oxidative stress, independent of its exoribonuclease activity. Here, we show that the processing defect in 16S rRNA does not cause cell death of the rnr mutant of P. syringae at low temperature. Our results demonstrate that the rnr mutant of P. syringae Lz4W, complemented with a RNase R deficient in exoribonuclease function (RNase RD284A), is defective in 16S rRNA processing but can grow at 4 °C. This suggested that the processing defect in ribosomal RNAs is not a cause of the cold sensitivity of the rnr mutant. We further show that the rnr mutant accumulates copies of the indigenous plasmid pLz4W that bears a type II toxin-antitoxin (TA) system (P. syringae antitoxin-P. syringae toxin). This phenotype was rescued by overexpressing antitoxin psA in the rnr mutant, suggesting that activation of the type II TA system leads to cold sensitivity of the rnr mutant of P. syringae Lz4W. Here, we report a previously unknown functional relationship between the cold sensitivity of the rnr mutant and a type II TA system in P. syringae Lz4W.
Collapse
Affiliation(s)
- Pragya Mittal
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India; Celtic Renewables Ltd, Edinburgh Napier University, Edinburgh, UK.
| | - Anurag K Sinha
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India; National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Apuratha Pandiyan
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Leela Kumari
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Malay K Ray
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Theetha L Pavankumar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India; Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA; Department of Molecular and Cellular Biology, University of California, Davis, California, USA.
| |
Collapse
|
3
|
Pavankumar TL. RNase R vs. PNPase: selecting the best-suited exoribonuclease for environmental adaptation. Extremophiles 2024; 28:35. [PMID: 39052080 DOI: 10.1007/s00792-024-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
3' → 5' exoribonucleases play a critical role in many aspects of RNA metabolism. RNase R, PNPase, and RNase II are the major contributors to RNA processing, maturation, and quality control in bacteria. Bacteria don't seem to have dedicated RNA degradation machineries to process different classes of RNAs. Under different environmental and physiological conditions, their roles can be redundant and sometimes overlapping. Here, I discuss why PNPase and RNase R may have switched their physiological roles in some bacterial species to adapt to environmental conditions, despite being biochemically distinct exoribonucleases.
Collapse
Affiliation(s)
- Theetha L Pavankumar
- Department of Microbiology and Molecular Genetics, and Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Pavankumar TL, Wong C, Wong YK, Spies M, Kowalczykowski S. Trans-complementation by the RecB nuclease domain of RecBCD enzyme reveals new insight into RecA loading upon χ recognition. Nucleic Acids Res 2024; 52:2578-2589. [PMID: 38261972 PMCID: PMC10954480 DOI: 10.1093/nar/gkae007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
The loading of RecA onto ssDNA by RecBCD is an essential step of RecBCD-mediated homologous recombination. RecBCD facilitates RecA-loading onto ssDNA in a χ-dependent manner via its RecB nuclease domain (RecBn). Before recognition of χ, RecBn is sequestered through interactions with RecBCD. It was proposed that upon χ-recognition, RecBn undocks, allowing RecBn to swing out via a contiguous 70 amino acid linker to reveal the RecA-loading surface, and then recruit and load RecA onto ssDNA. We tested this hypothesis by examining the interactions between RecBn (RecB928-1180) and truncated RecBCD (RecB1-927CD) lacking the nuclease domain. The reconstituted complex of RecB1-927CD and RecBn is functional in vitro and in vivo. Our results indicate that despite being covalently severed from RecB1-927CD, RecBn can still load RecA onto ssDNA, establishing that RecBn does not function while only remaining tethered to the RecBCD complex via the linker. Instead, RecBCD undergoes a χ-induced intramolecular rearrangement to reveal the RecA-loading surface.
Collapse
Affiliation(s)
- Theetha L Pavankumar
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - C Jason Wong
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Yun Ka Wong
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Mittal P, Sipani R, Pandiyan A, Sulthana S, Sinha AK, Hussain A, Ray MK, Pavankumar TL. Exoribonuclease RNase R protects Antarctic Pseudomonas syringae Lz4W from DNA damage and oxidative stress. Appl Environ Microbiol 2023; 89:e0116823. [PMID: 37905926 PMCID: PMC10686088 DOI: 10.1128/aem.01168-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Bacterial exoribonucleases play a crucial role in RNA maturation, degradation, quality control, and turnover. In this study, we have uncovered a previously unknown role of 3'-5' exoribonuclease RNase R of Pseudomonas syringae Lz4W in DNA damage and oxidative stress response. Here, we show that neither the exoribonuclease function of RNase R nor its association with the RNA degradosome complex is essential for this function. Interestingly, in P. syringae Lz4W, hydrolytic RNase R exhibits physiological roles similar to phosphorolytic 3'-5' exoribonuclease PNPase of E. coli. Our data suggest that during the course of evolution, mesophilic E. coli and psychrotrophic P. syringae have apparently swapped these exoribonucleases to adapt to their respective environmental growth conditions.
Collapse
Affiliation(s)
- Pragya Mittal
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Rashmi Sipani
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Apuratha Pandiyan
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Shaheen Sulthana
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Anurag K. Sinha
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Ashaq Hussain
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Malay K. Ray
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Theetha L. Pavankumar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| |
Collapse
|
6
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
7
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
8
|
Luo K, Chen L, Du L, Zhao Y, Chen Q. Response of the aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 to low temperature and zinc oxide nanoparticles stress. BIORESOURCE TECHNOLOGY 2022; 354:127162. [PMID: 35429594 DOI: 10.1016/j.biortech.2022.127162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Performance and molecular changes of an aerobic denitrifying phosphorus accumulating bacteria Pseudomonas psychrophila HA-2 have been investigated under different temperatures and ZnO nanoparticles (NPs) exposures. Strain HA-2 removed 95.7% of total nitrogen (TN) and 24.6% of phosphorus at 10 °C, which was attributed to the joint up-regulation of intracellular energy metabolism and ribosome. Moreover, with the increase of ZnO NPs from 0 to 100 mg/L, TN and phosphurs removal efficiencies decreased from 95.7% to 44.5% and 24.6% to 6.8% at 10 °C, respectively, whereas phosphorus removal rate increased from 10.5% to 24.5% at 20 °C. Further transcriptomics and proteomics revealed that significant down-regulation of purine and amino acid metabolisms was the main reason for the inhibitory effect at 10 °C, while the up-regulation of antioxidant pathways and functional genes expressions was responsible for the promoted phosphorus accumulation at 20 °C. This study provides a potential solution for improving biological nutrients removal processes in winter months.
Collapse
Affiliation(s)
- Kongyan Luo
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Long Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Lei Du
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuanyi Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| |
Collapse
|
9
|
Pavankumar TL, Mittal P, Hallsworth JE. Molecular insights into the ecology of a psychrotolerant
Pseudomonas syringae. Environ Microbiol 2020; 23:3665-3681. [DOI: 10.1111/1462-2920.15304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Theetha L. Pavankumar
- Department of Microbiology and Molecular Genetics, Briggs Hall, One Shields Avenue University of California Davis CA USA
| | - Pragya Mittal
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine University of Edinburgh Crewe Road South, Edinburgh, EH42XU, Scotland UK
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences Queen's University Belfast 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland UK
| |
Collapse
|
10
|
Orellana-Saez M, Pacheco N, Costa JI, Mendez KN, Miossec MJ, Meneses C, Castro-Nallar E, Marcoleta AE, Poblete-Castro I. In-Depth Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and Biotechnological Potential. Front Microbiol 2019; 10:1154. [PMID: 31178851 PMCID: PMC6543543 DOI: 10.3389/fmicb.2019.01154] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
We obtained the complete genome sequence of the psychrotolerant extremophile Pseudomonas sp. MPC6, a natural Polyhydroxyalkanoates (PHAs) producing bacterium able to rapidly grow at low temperatures. Genomic and phenotypic analyses allowed us to situate this isolate inside the Pseudomonas fluorescens phylogroup of pseudomonads as well as to reveal its metabolic versatility and plasticity. The isolate possesses the gene machinery for metabolizing a variety of toxic aromatic compounds such as toluene, phenol, chloroaromatics, and TNT. In addition, it can use both C6- and C5-carbon sugars like xylose and arabinose as carbon substrates, an uncommon feature for bacteria of this genus. Furthermore, Pseudomonas sp. MPC6 exhibits a high-copy number of genes encoding for enzymes involved in oxidative and cold-stress response that allows it to cope with high concentrations of heavy metals (As, Cd, Cu) and low temperatures, a finding that was further validated experimentally. We then assessed the growth performance of MPC6 on glycerol using a temperature range from 0 to 45°C, the latter temperature corresponding to the limit at which this Antarctic isolate was no longer able to propagate. On the other hand, the MPC6 genome comprised considerably less virulence and drug resistance factors as compared to pathogenic Pseudomonas strains, thus supporting its safety. Unexpectedly, we found five PHA synthases within the genome of MPC6, one of which clustered separately from the other four. This PHA synthase shared only 40% sequence identity at the amino acid level against the only PHA polymerase described for Pseudomonas (63-1 strain) able to produce copolymers of short- and medium-chain length PHAs. Batch cultures for PHA synthesis in Pseudomonas sp. MPC6 using sugars, decanoate, ethylene glycol, and organic acids as carbon substrates result in biopolymers with different monomer compositions. This indicates that the PHA synthases play a critical role in defining not only the final chemical structure of the biosynthesized PHA, but also the employed biosynthetic pathways. Based on the results obtained, we conclude that Pseudomonas sp. MPC6 can be exploited as a bioremediator and biopolymer factory, as well as a model strain to unveil molecular mechanisms behind adaptation to cold and extreme environments.
Collapse
Affiliation(s)
- Matias Orellana-Saez
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Nicolas Pacheco
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - José I Costa
- Integrative Microbiology Group, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Matthieu J Miossec
- Computational Genomics Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Andrés E Marcoleta
- Integrative Microbiology Group, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
11
|
Zananiri R, Malik O, Rudnizky S, Gaydar V, Kreiserman R, Henn A, Kaplan A. Synergy between RecBCD subunits is essential for efficient DNA unwinding. eLife 2019; 8:e40836. [PMID: 30601118 PMCID: PMC6338465 DOI: 10.7554/elife.40836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/01/2019] [Indexed: 12/12/2022] Open
Abstract
The subunits of the bacterial RecBCD act in coordination, rapidly and processively unwinding DNA at the site of a double strand break. RecBCD is able to displace DNA-binding proteins, suggesting that it generates high forces, but the specific role of each subunit in the force generation is unclear. Here, we present a novel optical tweezers assay that allows monitoring the activity of RecBCD's individual subunits, when they are part of an intact full complex. We show that RecBCD and its subunits are able to generate forces up to 25-40 pN without a significant effect on their velocity. Moreover, the isolated RecD translocates fast but is a weak helicase with limited processivity. Experiments at a broad range of [ATP] and forces suggest that RecD unwinds DNA as a Brownian ratchet, rectified by ATP binding, and that the presence of the other subunits shifts the ratchet equilibrium towards the post-translocation state.
Collapse
Affiliation(s)
- Rani Zananiri
- Faculty of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Omri Malik
- Faculty of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
- Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Sergei Rudnizky
- Faculty of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Vera Gaydar
- Faculty of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Roman Kreiserman
- Faculty of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
- Faculty of PhysicsTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Arnon Henn
- Faculty of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Ariel Kaplan
- Faculty of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
12
|
Pavankumar TL, Sinha AK, Ray MK. Biochemical characterization of RecBCD enzyme from an Antarctic Pseudomonas species and identification of its cognate Chi (χ) sequence. PLoS One 2018; 13:e0197476. [PMID: 29775464 PMCID: PMC5959072 DOI: 10.1371/journal.pone.0197476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae Lz4W RecBCD enzyme, RecBCDPs, is a trimeric protein complex comprised of RecC, RecB, and RecD subunits. RecBCD enzyme is essential for P. syringae growth at low temperature, and it protects cells from low temperature induced replication arrest. In this study, we show that the RecBCDPs enzyme displays distinct biochemical behaviors. Unlike E. coli RecBCD enzyme, the RecD subunit is indispensable for RecBCDPs function. The RecD motor activity is essential for the Chi-like fragments production in P. syringae, highlighting a distinct role for P. syringae RecD subunit in DNA repair and recombination process. Here, we demonstrate that the RecBCDPs enzyme recognizes a unique octameric DNA sequence, 5′-GCTGGCGC-3′ (ChiPs) that attenuates nuclease activity of the enzyme when it enters dsDNA from the 3′-end. We propose that the reduced translocation activities manifested by motor-defective mutants cause cold sensitivity in P. syrinage; emphasizing the importance of DNA processing and recombination functions in rescuing low temperature induced replication fork arrest.
Collapse
Affiliation(s)
- Theetha L. Pavankumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail: (TLP); (MKR)
| | - Anurag K. Sinha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Malay K. Ray
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail: (TLP); (MKR)
| |
Collapse
|
13
|
Abstract
A population of cold-tolerant Antarctic bacteria was screened for their ability to tolerate other environmental stress factors. Besides low temperature, they were predominantly found to be tolerant to alkali. Attempt was also made to postulate a genetic basis of their multistress-tolerance. Transposon mutagenesis of an isolate Pseudomonas syringae Lz4W was performed, and mutants with delayed growth at low temperature were further screened for sensitivity to some other stress factors. A number of multistress-sensitive mutants were isolated. The mutated gene in one of the mutants sensitive to low temperature, acid and alkali was found to encode citrate synthase. Possible role of citrate synthase in conferring multistress-tolerance was postulated.
Collapse
|
14
|
Moreno R, Rojo F. Features of pseudomonads growing at low temperatures: another facet of their versatility. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:417-426. [PMID: 25646532 DOI: 10.1111/1758-2229.12150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonads are a diverse and ecologically successful group of γ-proteobacteria present in many environments (terrestrial, freshwater and marine), either free living or associated with plants or animals. Their success is at least partly based on their ability to grow over a wide range of temperatures, their capacity to withstand different kinds of stress and their great metabolic versatility. Although the optimal growth temperature of pseudomonads is usually close to 25–30°C, many strains can also grow between 5°C and 10°C, and some of them even close to 0°C. Such low temperatures strongly affect the physicochemical properties of macromolecules, forcing cells to evolve traits that optimize growth and help them withstand cold-induced stresses such as increased levels of reactive oxygen species, reduced membrane fluidity and enzyme activity, cold-induced protein denaturation and the greater stability of DNA and RNA secondary structures. This review gathers the information available on the strategies used by pseudomonads to adapt to low temperature growth, and briefly describes some of the biotechnological applications that might benefit from cold-adapted bacterial strains and enzymes, e.g., biotransformation or bioremediation processes to be performed at low temperatures.
Collapse
|
15
|
Singh AK, Sad K, Singh SK, Shivaji S. Regulation of gene expression at low temperature: role of cold-inducible promoters. Microbiology (Reading) 2014; 160:1291-1296. [DOI: 10.1099/mic.0.077594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Psychrophilic micro-organisms are the most dominant flora in cold habitats. Their unique ability to survive and multiply at low temperatures (<5 °C) is based on their ability to modulate the rigidity of the membrane, to transcribe, to translate and to catalyse biochemical reactions at low temperature. A number of genes are known to be upregulated during growth at low temperature and cold-inducible promoters are known to regulate the expression of genes at low temperature. In this review, we attempted to compile promoter sequences of genes that are cold-inducible so as to identify similarities and to compare the distinct features of each type of promoter when microbes are grown in the cold.
Collapse
Affiliation(s)
| | - Kirti Sad
- Centre of Biotechnology (University of Allahabad), Allahabad, India
| | | | | |
Collapse
|
16
|
Sinha A, Ray M. In vitro DNA Polymerization Activity Assay Using Cell-free Extracts. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
17
|
Sinha AK, Pavankumar TL, Kamisetty S, Mittal P, Ray MK. Replication arrest is a major threat to growth at low temperature in Antarctic Pseudomonas syringae Lz4W. Mol Microbiol 2013; 89:792-810. [PMID: 23815755 DOI: 10.1111/mmi.12315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Abstract
Chromosomal damage was detected previously in the recBCD mutants of the Antarctic bacterium Pseudomonas syringae Lz4W, which accumulated linear chromosomal DNA leading to cell death and growth inhibition at 4°C. RecBCD protein generally repairs DNA double-strand breaks by RecA-dependent homologous recombination pathway. Here we show that ΔrecA mutant of P. syringae is not cold-sensitive. Significantly, inactivation of additional DNA repair genes ruvAB rescued the cold-sensitive phenotype of ΔrecBCD mutant. The ΔrecA and ΔruvAB mutants were UV-sensitive as expected. We propose that, at low temperature DNA replication encounters barriers leading to frequent replication fork (RF) arrest and fork reversal. RuvAB binds to the reversed RFs (RRFs) having Holliday junction-like structures and resolves them upon association with RuvC nuclease to cause linearization of the chromosome, a threat to cell survival. RecBCD prevents this by degrading the RRFs, and facilitates replication re-initiation. This model is consistent with our observation that low temperature-induced DNA lesions do not evoke SOS response in P. syringae. Additional studies show that two other repair genes, radA (encoding a RecA paralogue) and recF are not involved in providing cold resistance to the Antarctic bacterium.
Collapse
Affiliation(s)
- Anurag K Sinha
- Centre for Cellular and Molecular Biology Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, India
| | | | | | | | | |
Collapse
|
18
|
Garcia-Gonzalez A, Vicens L, Alicea M, Massey SE. The distribution of recombination repair genes is linked to information content in bacteria. Gene 2013; 528:295-303. [PMID: 23796800 DOI: 10.1016/j.gene.2013.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/28/2013] [Indexed: 01/07/2023]
Abstract
The concept of a 'proteomic constraint' proposes that the information content of the proteome exerts a selective pressure to reduce mutation rates, implying that larger proteomes produce a greater selective pressure to evolve or maintain DNA repair, resulting in a decrease in mutational load. Here, the distribution of 21 recombination repair genes was characterized across 900 bacterial genomes. Consistent with prediction, the presence of 17 genes correlated with proteome size. Intracellular bacteria were marked by a pervasive absence of recombination repair genes, consistent with their small proteome sizes, but also consistent with alternative explanations that reduced effective population size or lack of recombination may decrease selection pressure. However, when only non-intracellular bacteria were examined, the relationship between proteome size and gene presence was maintained. In addition, the more widely distributed (i.e. conserved) a gene, the smaller the average size of the proteomes from which it was absent. Together, these observations are consistent with the operation of a proteomic constraint on DNA repair. Lastly, a correlation between gene absence and genome AT content was shown, indicating a link between absence of DNA repair and elevated genome AT content.
Collapse
Affiliation(s)
- A Garcia-Gonzalez
- Department of Biology, PO Box 23360, University of Puerto Rico - Rio Piedras, San Juan 00931, Puerto Rico
| | | | | | | |
Collapse
|
19
|
Draft Genome Sequence of the Antarctic Psychrophilic Bacterium Pseudomonas syringae Strain Lz4W. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00377-13. [PMID: 23788547 PMCID: PMC3707596 DOI: 10.1128/genomea.00377-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The psychrophilic bacterium Pseudomonas syringae strain Lz4W was isolated from soil samples from Antarctica to decipher the mechanisms of low-temperature adaptation. We report here the 4.982-Mb draft genome sequence of P. syringae Lz4W. This sequence will provide insights into the genomic basis of the psychrophilicity of this bacterium.
Collapse
|
20
|
Chattopadhyay MK, Raghu G, Sharma YVRK, Biju AR, Rajasekharan MV, Shivaji S. Increase in oxidative stress at low temperature in an antarctic bacterium. Curr Microbiol 2010; 62:544-6. [PMID: 20730433 DOI: 10.1007/s00284-010-9742-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
Abstract
Association between cold stress and oxidative stress was demonstrated by measuring the activity of two antioxidant enzymes and the level of free radicals generated in two batches of cells of an Antarctic bacterium Pseudomonas fluorescens MTCC 667, grown at 22 and 4°C. Increase in oxidative stress in cells grown at low temperature was evidenced by increase in the activity of an enzyme and also in the amount of free radicals generated, in the cold-grown cells. The association between cold stress and oxidative stress demonstrated in this investigation bolsters the concept of interlinked stress response in bacteria.
Collapse
Affiliation(s)
- M K Chattopadhyay
- Centre for Cellular and Molecular Biology (CSIR), Hyderabad, 500 007, India,
| | | | | | | | | | | |
Collapse
|