1
|
Qu H, Zong Q, Wang H, Wu S, Cai D, Bao W. C/EBPα Epigenetically Modulates TFF1 Expression via mC-6 Methylation in the Jejunum Inflammation Induced by a Porcine Coronavirus. Front Immunol 2022; 13:881289. [PMID: 35693767 PMCID: PMC9174463 DOI: 10.3389/fimmu.2022.881289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an emerging coronavirus which causes acute diarrhea and destroys gastrointestinal barrier function in neonatal pigs. Trefoil factor 1 (TFF1) is a protective peptide for maintaining the integrity of gastrointestinal mucosa and reducing intestinal inflammation. However, its role in protecting intestinal epithelium against PEDV infection is still unclear. In this study, we discovered that TFF1 expression was activated in the jejunum of pigs with PEDV infection and TFF1 is required for the growth of porcine intestinal epithelial cells. For instance, inhibited cell proliferation and cell arrest were observed when TFF1 is genetically knocked-out using CRISPR-Cas9. Additionally, TFF1 depletion increased viral copy number and PEDV titer, along with the elevated genes involved in antiviral and inflammatory cytokines. The decreased TFF1 mRNA expression is in line with hypermethylation on the gene promoter. Notably, the strong interactions of protein-DNA complexes containing CCAAT motif significantly increased C/EBPα accessibility, whereas hypermethylation of mC-6 loci decreased C/EBPα binding occupancies in TFF1 promoter. Overall, our findings show that PEDV triggers the C/EBPα-mediated epigenetic regulation of TFF1 in intestine epithelium and facilitates host resistance to PEDV and other Coronavirus infections.
Collapse
Affiliation(s)
- Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qiufang Zong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
TFF1 Promotes EMT-Like Changes through an Auto-Induction Mechanism. Int J Mol Sci 2018; 19:ijms19072018. [PMID: 29997345 PMCID: PMC6073196 DOI: 10.3390/ijms19072018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor 1 (TFF1) is a small secreted protein expressed in the gastrointestinal tract where, together with the other two members of its family, it plays an essential role in mucosal protection and repair against injury. The molecular mechanisms involved in the protective function of all three TFF proteins are not fully elucidated. In this paper, we investigated the role of TFF1 in epithelial to mesenchymal transition (EMT) events. The effects of TFF1 on cellular models in normoxia and/or hypoxia were evaluated by western blot, immunofluorescence, qRT-PCR and trans-well invasion assays. Luciferase reporter assays were used to assess the existence of an auto-regulatory mechanism of TFF1. The methylation status of TFF1 promoter was measured by high-resolution melting (HRM) analysis. We demonstrate a TFF1 auto-induction mechanism with the identification of a specific responsive element located between −583 and −212 bp of its promoter. Our results suggest that TFF1 can regulate its own expression in normoxic, as well as in hypoxic, conditions acting synergistically with the hypoxia-inducible factor 1 (HIF-1α) pathway. Functionally, this auto-induction mechanism seems to promote cell invasion and EMT-like modifications in vitro. Additionally, exogenously added human recombinant TFF1 protein was sufficient to observe similar effects. Together, these findings suggest that the hypoxic conditions, which can be induced by gastric injury, promote TFF1 up-regulation, strengthened by an auto-induction mechanism, and that the trefoil peptide takes part in the epithelial-mesenchymal transition events eventually triggered to repair the damage.
Collapse
|
3
|
Arao Y, Korach KS. The F domain of estrogen receptor α is involved in species-specific, tamoxifen-mediated transactivation. J Biol Chem 2018; 293:8495-8507. [PMID: 29632071 DOI: 10.1074/jbc.ra117.001212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/06/2018] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor α (ERα) is a major transducer of estrogen-mediated physiological signals. ERα is a member of the nuclear receptor superfamily, which encompasses ligand-dependent transcription factors. The C terminus of nuclear receptors, termed the F domain, is the least homologous region among the members of this family. The ERα F domain possesses 45 amino acids; however, its function remains unclear. We noticed that the homology of the F domains between mouse and human ERαs is remarkably lower (75.6% similarity) than that between the entire proteins (94.7% similarity). To assess the functionality of the ERα F domains, here we generated chimeric ERα expression constructs with mouse-human-exchanged F domains. Using cell-based in vitro assays, we analyzed the transcriptional coactivator interaction and ligand-binding domain dimerization activities of these mouse-human F domain-swapped ERαs. We found that the transcriptional activity of the mouse WT ERα is more potent than that of the human WT ERα in the human hepatoma cell line HepG2. 4-Hydroxytamoxifen (4OHT)-mediated transcriptional activity of mouse-human F domain-swapped ERαs was the inverse of the WT ERα activities but not estradiol-mediated transcriptional activities. Further experiments with constructs containing deletion or point mutations of a predicted β-strand region within the F domain suggested that this region governs the species-specific 4OHT-mediated transcriptional activity of ERα. We conclude that the ERα F domain has a species-specific function in 4OHT-mediated receptor transactivation and that mouse-human F domain-swapped ERα mutants enable key insights into ERα F domain structure and function.
Collapse
Affiliation(s)
- Yukitomo Arao
- From the Receptor Biology Section, Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kenneth S Korach
- From the Receptor Biology Section, Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
4
|
Perkins MS, Louw-du Toit R, Africander D. A comparative characterization of estrogens used in hormone therapy via estrogen receptor (ER)-α and -β. J Steroid Biochem Mol Biol 2017; 174:27-39. [PMID: 28743541 DOI: 10.1016/j.jsbmb.2017.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
Abstract
Conventional hormone therapy (HT) containing estrogens such as ethinylestradiol (EE) have been associated with an increased risk of breast cancer and cardiovascular disease resulting in women seeking safer alternatives that are claimed to have fewer health risks. One such alternative gaining popularity, is custom-compounded bioidentical (b)HT formulations containing bioidentical estradiol (bE2) and estriol (bE3). However, the preparation of these custom-compounded estrogens is not regulated, and depending on the route of synthesis, steroid mixtures with differing activities may be produced. Thus, an investigation into the activities of estrogens prepared by custom-compounded pharmacies is warranted. The aim of this study was therefore to directly compare the pharmacological properties of bE2 and bE3 of unknown purity relative to commercially available, pure E2, E3 and estrone (E1) standards as well as synthetic EE used in conventional HT via the human estrogen receptor (ER)-α and -β. We determined precise equilibrium dissociation constants (Kd or Ki values) and showed that bE2 and bE3 display similar binding affinities to the E2 and E3 standards, while EE had a higher affinity for ERα, and E1 a lower affinity for ERβ. Furthermore, all the estrogens display similar agonist efficacies, but not potencies, for transactivation on a minimal ERE-containing promoter via the individual ER subtypes. Although E2 and E3 were equally efficacious and potent on the endogenous ERE-containing pS2 promoter in the MCF-7 BUS breast cancer cell line co-expressing ERα and ERβ, E1 was less efficacious and potent than E2. This study is the first to demonstrate that the bioidentical estrogens, commercially available estrogen standards and synthetic EE are full agonists for transrepression on both minimal and endogenous NFκB-containing promoters. Moreover, we showed that these estrogens all increase proliferation and anchorage-independent growth of MCF-7 BUS cells to a similar extent, suggesting that custom-compounded bHT may in fact not be a safer alternative to conventional HT. Furthermore, our results showing that E3 and E1 are not weak estrogens, and that E3 does not antagonize the activity of E2, suggest that the rationale behind the use of E3 and E1 in custom-compounded bHT formulations should be readdressed. Taken together, the results indicating that there is mostly no difference between the custom-compounded bioidentical estrogens, commercially available estrogen standards and synthetic EE, at concentrations reflecting serum levels in women using estrogen-containing HT, suggest that there is no clear advantage in choosing bHT above conventional HT.
Collapse
Affiliation(s)
- Meghan S Perkins
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
5
|
Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer. Oncogene 2016; 36:1328-1338. [PMID: 27593931 DOI: 10.1038/onc.2016.297] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/04/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023]
Abstract
Cancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour-suppressor genes. The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the mediation of gene silencing through interaction with histone deacetylases and histone methyltransferases. However, the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in reshaping the DNA methylation landscape at this locus and genome-wide. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer samples, highlighting a potential active role of MBD2 in promoting cancer-specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 shows that MBD2 associates with DNA methyltransferase enzymes 1 and 3A. Together our results demonstrate that MBD2 has a critical role in 'rewriting' the cancer methylome at specific regulatory regions.
Collapse
|
6
|
Carvalho RH, Haberle V, Hou J, van Gent T, Thongjuea S, van Ijcken W, Kockx C, Brouwer R, Rijkers E, Sieuwerts A, Foekens J, van Vroonhoven M, Aerts J, Grosveld F, Lenhard B, Philipsen S. Genome-wide DNA methylation profiling of non-small cell lung carcinomas. Epigenetics Chromatin 2012; 5:9. [PMID: 22726460 PMCID: PMC3407794 DOI: 10.1186/1756-8935-5-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) is a complex malignancy that owing to its heterogeneity and poor prognosis poses many challenges to diagnosis, prognosis and patient treatment. DNA methylation is an important mechanism of epigenetic regulation involved in normal development and cancer. It is a very stable and specific modification and therefore in principle a very suitable marker for epigenetic phenotyping of tumors. Here we present a genome-wide DNA methylation analysis of NSCLC samples and paired lung tissues, where we combine MethylCap and next generation sequencing (MethylCap-seq) to provide comprehensive DNA methylation maps of the tumor and paired lung samples. The MethylCap-seq data were validated by bisulfite sequencing and methyl-specific polymerase chain reaction of selected regions. Results Analysis of the MethylCap-seq data revealed a strong positive correlation between replicate experiments and between paired tumor/lung samples. We identified 57 differentially methylated regions (DMRs) present in all NSCLC tumors analyzed by MethylCap-seq. While hypomethylated DMRs did not correlate to any particular functional category of genes, the hypermethylated DMRs were strongly associated with genes encoding transcriptional regulators. Furthermore, subtelomeric regions and satellite repeats were hypomethylated in the NSCLC samples. We also identified DMRs that were specific to two of the major subtypes of NSCLC, adenocarcinomas and squamous cell carcinomas. Conclusions Collectively, we provide a resource containing genome-wide DNA methylation maps of NSCLC and their paired lung tissues, and comprehensive lists of known and novel DMRs and associated genes in NSCLC.
Collapse
Affiliation(s)
- Rejane Hughes Carvalho
- Department of Cell Biology, ErasmusMC, PO Box 2040, Rotterdam, CA, 3000, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Band AM, Laiho M. SnoN oncoprotein enhances estrogen receptor-α transcriptional activity. Cell Signal 2011; 24:922-30. [PMID: 22227247 DOI: 10.1016/j.cellsig.2011.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022]
Abstract
Estrogen receptor-α (ERα) and transforming growth factor-beta (TGF-β) signaling pathways are essential regulators during mammary gland development and tumorigenesis. Ski-related novel gene (SnoN) is an oncoprotein and a negative feedback inhibitor of TGF-β signaling. We have previously reported that low expression of SnoN in ERα positive breast carcinomas is associated with favorable prognosis (Zhang et al. Cancer Res. (2003) 63, 5005-5010). Here we have studied the mechanism of a possible cross-talk between ERα and SnoN. We find that SnoN interacts with the estrogen-activated form of ERα in the nucleus. SnoN contains two highly conserved nuclear receptor binding LxxLL-like motifs and we show that mutations in these motifs reduce the interaction of SnoN with ERα. Over-expression of SnoN enhanced the transcriptional activity of ERα in estrogen response element (ERE)-reporter assays, augmented the expression of several ERα target genes and increased the proliferation of MCF7 breast carcinoma cells in an estrogen-dependent manner. Chromatin immunoprecipitation demonstrated that SnoN interacts with ERα at the TTF1 (pS2) gene promoter. Conversely, silencing of SnoN reduced both ERE-reporter activity and the expression of ERα target genes in MCF7 and T-47D breast cancer cells. Histone deacetylase inhibition increased the level of SnoN and SnoN-dependent enhancement of ERα-dependent transcription and SnoN supported the recruitment of p300 histone acetylase to ERα. This study reveals a novel mechanism that interconnects ERα and TGF-β signaling pathways by SnoN. Accordingly, the results indicate that high SnoN level promotes ERα signaling and possibly breast cancer progression.
Collapse
Affiliation(s)
- Arja M Band
- Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
8
|
Molzberger AF, Vollmer G, Hertrampf T, Möller FJ, Kulling S, Diel P. In utero and postnatal exposure to isoflavones results in a reduced responsivity of the mammary gland towards estradiol. Mol Nutr Food Res 2011; 56:399-409. [PMID: 22183799 DOI: 10.1002/mnfr.201100371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/12/2022]
Abstract
SCOPE Exposure scenarios during different stages of development of an organism are discussed to trigger adverse and beneficial effects of isoflavones (ISO). The aim of this study was to investigate how in utero and postnatal ISO exposure modulates the estrogen sensitivity of the mammary gland and to identify the underlying molecular mechanisms. METHODS AND RESULTS Therefore, rats were exposed to either ISO-free (IDD), ISO-rich (IRD) or genistein-rich diet (GRD), up to young adulthood. Proliferative activity (PCNA expression) in the mammary gland at different ages and the estrogen sensitivity of the mammary gland to estradiol (E₂) or genistein (GEN) in adult ovariectomized animals was determined and compared with different treatments. Treatment with E₂ resulted in a significant lower proliferative and estrogenic response of the mammary gland in IRD and GRD compared with IDD. This correlates to a change in the gene expression pattern and a decrease in the ratio of estrogen receptor alpha (ERα) beta (ERβ CONCLUSIONS Our results provide evidence that in utero and postnatal exposure to a diet rich in ISO but also to GEN reduces the sensitivity of the mammary gland toward estrogens and support the hypothesis that in utero and postnatal ISO exposure reduces the risk to develop breast cancer.
Collapse
Affiliation(s)
- Almut F Molzberger
- Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Scarsdale JN, Webb HD, Ginder GD, Williams DC. Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence. Nucleic Acids Res 2011; 39:6741-52. [PMID: 21531701 PMCID: PMC3159451 DOI: 10.1093/nar/gkr262] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The epigenetic code of DNA methylation is interpreted chiefly by methyl cytosine binding domain (MBD) proteins which in turn recruit multiprotein co-repressor complexes. We previously isolated one such complex, MBD2-NuRD, from primary erythroid cells and have shown it contributes to embryonic/fetal β-type globin gene silencing during development. This complex has been implicated in silencing tumor suppressor genes in a variety of human tumor cell types. Here we present structural details of chicken MBD2 bound to a methylated DNA sequence from the ρ-globin promoter to which it binds in vivo and mediates developmental transcriptional silencing in normal erythroid cells. While previous studies have failed to show sequence specificity for MBD2 outside of the symmetric mCpG, we find that this domain binds in a single orientation on the ρ-globin target DNA sequence. Further, we show that the orientation and affinity depends on guanine immediately following the mCpG dinucleotide. Dynamic analyses show that DNA binding stabilizes the central β-sheet, while the N- and C-terminal regions of the protein maintain mobility. Taken together, these data lead to a model in which DNA binding stabilizes the MBD2 structure and that binding orientation and affinity is influenced by the DNA sequence surrounding the central mCpG.
Collapse
Affiliation(s)
- J Neel Scarsdale
- Institute of Structural Biology and Drug Design, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | |
Collapse
|