1
|
Zhu X, Yue C, Geng H, Song L, Yuan H, Zhang X, Sun C, Luan G, Jia X. Coexistence of tet(A) and bla KPC-2 in the ST11 hypervirulent tigecycline- and carbapenem-resistant Klebsiella pneumoniae isolated from a blood sample. Eur J Clin Microbiol Infect Dis 2023; 42:23-31. [PMID: 36322255 PMCID: PMC9816190 DOI: 10.1007/s10096-022-04512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Carbapenem-resistant Klebsiella pneumoniae are distributed worldwide. This study aimed to characterize a hypervirulent tigecycline-resistant and carbapenem-resistant Klebsiella pneumoniae strain, XJ-K2, collected from a patient's blood. We tested antimicrobial susceptibility, virulence, and whole-genome sequencing (WGS) on strain XJ-K2. WGS data were used to identify virulence and resistance genes and to perform multilocus sequence typing (MLST) and phylogenetic analysis. Three novel plasmids, including a pLVPK-like virulence plasmid (pXJ-K2-p1) and two multiple resistance plasmids (pXJ-K2-KPC-2 and pXJ-K2-p3), were discovered in strain XJ-K2. The IncFII(pCRY) plasmid pXJ-K2-p3 carried the dfrA14, sul2, qnrS1, blaLAP-2, and tet(A) resistance genes. The IncFII(pHN7A8)/IncR plasmid pXJ-K2-KPC-2 also carried a range of resistance elements, containing rmtB, blaKPC-2, blaTEM-1, blaCTX-M-65, and fosA3. MLST analysis revealed that strain XJ-K2 belonged to sequence type 11 (ST11). Seven complete phage sequences and many virulence genes were found in strain XJ-K2. Meanwhile, antimicrobial susceptibility tests and G. mellonella larval infection models confirmed the extensively drug resistance (XDR) and hypervirulence of KJ-K2. To our knowledge, this is the first observation and description of the ST11 hypervirulent tigecycline- and carbapenem-resistant K. pneumoniae strain co-carrying blaKPC-2 and the tet(A) in a patient's blood in China. Further investigation is needed to understand the resistance and virulence mechanisms of this significant hypervirulent tigecycline- and carbapenem-resistant strain.
Collapse
Affiliation(s)
- Xiaokui Zhu
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, China
| | - Huaixin Geng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Lingjie Song
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Huiming Yuan
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xianqin Zhang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Chuanyu Sun
- Huashan Hospital, Fudan University, Shanghai, China
| | - Guangxin Luan
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| | - Xu Jia
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Liu Z, Zhang T, Wu K, Li Z, Chen X, Jiang S, Du L, Lu S, Lin C, Wu J, Wang X. Metagenomic Analysis Reveals A Possible Association Between Respiratory Infection and Periodontitis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:260-273. [PMID: 34252627 PMCID: PMC9684085 DOI: 10.1016/j.gpb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023]
Abstract
Periodontitis is an inflammatory disease that is characterized by progressive destruction of the periodontium and causes tooth loss in adults. Periodontitis is known to be associated with dysbiosis of the oral microflora, which is often linked to various diseases. However, the complexity of plaque microbial communities of periodontitis, antibiotic resistance, and enhanced virulence make this disease difficult to treat. In this study, using metagenomic shotgun sequencing, we investigated the etiology, antibiotic resistance genes (ARGs), and virulence genes (VirGs) of periodontitis. We revealed a significant shift in the composition of oral microbiota as well as several functional pathways that were represented significantly more abundantly in periodontitis patients than in controls. In addition, we observed several positively selected ARGs and VirGs with the Ka/Ks ratio > 1 by analyzing our data and a previous periodontitis dataset, indicating that ARGs and VirGs in oral microbiota may be subjected to positive selection. Moreover, 5 of 12 positively selected ARGs and VirGs in periodontitis patients were found in the genomes of respiratory tract pathogens. Of note, 91.8% of the background VirGs with at least one non-synonymous single-nucleotide polymorphism for natural selection were also from respiratory tract pathogens. These observations suggest a potential association between periodontitis and respiratory infection at the gene level. Our study enriches the knowledge of pathogens and functional pathways as well as the positive selection of antibiotic resistance and pathogen virulence in periodontitis patients, and provides evidence at the gene level for an association between periodontitis and respiratory infection.
Collapse
Affiliation(s)
- Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tao Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Keke Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325000, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaomin Chen
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 352000, China
| | - Chongxiang Lin
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China,Corresponding authors.
| | - Xiaobing Wang
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 352000, China,Corresponding authors.
| |
Collapse
|
3
|
Ramakrishnan V, Marialouis XA, Sankarasubramanian J, Santhanam A, Balakrishnan AS. Whole Genomic analysis of a clinical isolate of Uropathogenic Escherichia coli strain of Sequence Type - 101 carrying the drug resistance NDM-7 in IncX3 plasmid. Bioinformation 2021; 17:126-131. [PMID: 34393427 PMCID: PMC8340689 DOI: 10.6026/97320630017126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
The emerging NDM-producing Enterobactereciae is a major threat to public health. The association of NDM-7 with sequence type 101 E.coli is identified in very few numbers. Therefore, it is of interest to analyse the whole genome sequence of NDM-producing uropathogenic E. coli XA31 that was found to carry numerous drug resistance genes of different antibiotic classes. The isolate E. coli belongs to ST-101 carrying blaNDM-7 coexisting with several resistance genes blaOXA-1, blaTEM1-A, blaCTX-M15, aac(6')-Ib-cr, catB3, tetB. Resfinder predicts this and four other plasmid replicons were identified using the Plasfinder in the CGE platform. The high transferable IncX3 plasmid was found to carry the NDM-7 gene. Thus, we the report the combination of NDM-7-ST101-IncX3 in India. The combination of this epidemic clone with NDM-7 is highly required to develop an effective infection control strategy.
Collapse
Affiliation(s)
- Venkatesan Ramakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Xavier Alexander Marialouis
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
- National Institute of Pharmaceutical Education and Research, 168, Manicktala Main Road, Kolkata 700054, West Bengal, India
| | - Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Amutha Santhanam
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Anand Setty Balakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
4
|
Wang M, Wang W, Niu Y, Liu T, Li L, Zhang M, Li Z, Su W, Liu F, Zhang X, Xu H. A Clinical Extensively-Drug Resistant (XDR) Escherichia coli and Role of Its β-Lactamase Genes. Front Microbiol 2020; 11:590357. [PMID: 33362736 PMCID: PMC7758502 DOI: 10.3389/fmicb.2020.590357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
An extensively-drug resistant (XDR) Escherichia coli W60 was isolated from the urine sample of a patient. The genetic basis for its XDR phenotype was investigated, particularly the basis for its resistance toward β-lactam/BLI (β-Lactamase Inhibitor) combinations. Following determination of the XDR phenotype, third generation genomic sequencing was performed to identify genetic structures in E. coli W60. Further cloning analysis was performed to identify determinants of β-lactam/BLI combination resistance. It was found that E. coli W60 is resistant to nearly all of the tested antibiotics including all commonly used β-lactam/BLI combinations. Analysis of the genomic structures in E. coli W60 showed two novel transferable plasmids are responsible for the resistance phenotypes. Further genetic analysis showed bla NDM-5 leads to high resistance to β-lactam/BLI combinations, which was enhanced by co-expressing ble MBL. pECW602 harbors a truncated bla TEM that is not functional due to the loss of the N-terminal signal peptide coding region. Research performed in this work leads to several significant conclusions: the XDR phenotype of E. coli W60 can be attributed to the presence of transferable multidrug resistance plasmids; NDM-5 confers high resistance to β-lactam/BLI combinations; co-expression of ble MBL enhances resistance caused by NDM-5; the signal peptides of TEM type β-lactamases are essential for their secretion and function. Findings of this work show the danger of transferable multidrug resistance plasmids and metallo-β-lactamases, both of which should be given more attention in the analysis and treatment of multidrug resistant pathogens.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yu Niu
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, China
| | - Ting Liu
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ziyun Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Fangyue Liu
- Shandong Shian Chemical Co., Ltd., Dezhou, China
| | - Xuhua Zhang
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Li P, Zhu T, Zhou D, Lu W, Liu H, Sun Z, Ying J, Lu J, Lin X, Li K, Ying J, Bao Q, Xu T. Analysis of Resistance to Florfenicol and the Related Mechanism of Dissemination in Different Animal-Derived Bacteria. Front Cell Infect Microbiol 2020; 10:369. [PMID: 32903722 PMCID: PMC7438884 DOI: 10.3389/fcimb.2020.00369] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial resistance to antibiotics has become an important concern for public health. This study was aimed to investigate the characteristics and the distribution of the florfenicol-related resistance genes in bacteria isolated from four farms. A total of 106 florfenicol-resistant Gram-negative bacilli were examined for florfenicol-related resistance genes, and the positive isolates were further characterized. The antimicrobial sensitivity results showed that most of them (100, 94.33%) belonged to multidrug resistance Enterobacteriaceae. About 91.51% of the strains carried floR gene, while 4.72% carried cfr gene. According to the pulsed-field gel electrophoresis results, 34 Escherichia coli were subdivided into 22 profiles, the genetic similarity coefficient of which ranged from 80.3 to 98.0%. The multilocus sequence typing (MLST) results revealed 17 sequence types (STs), with ST10 being the most prevalent. The genome sequencing result showed that the Proteus vulgaris G32 genome consists of a 4.06-Mb chromosome, a 177,911-bp plasmid (pG32-177), and a 51,686-bp plasmid (pG32-51). A floR located in a drug-resistant region on the chromosome of P. vulgaris G32 was with IS91 family transposase, and the other floR gene on the plasmid pG32-177 was with an ISCR2 insertion sequence. The cfr gene was located on the pG32-51 flanked by IS26 element and TnpA26. This study suggested that the mobile genetic elements played an important role in the replication of resistance genes and the horizontal resistance gene transfer.
Collapse
Affiliation(s)
- Peizhen Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Tingyuan Zhu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Danying Zhou
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongmao Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhewei Sun
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Ying
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Jianchao Ying
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| |
Collapse
|
6
|
Remya P, Shanthi M, Sekar U. Prevalence of blaKPC and its occurrence with other beta-lactamases in Klebsiella pneumoniae. J Lab Physicians 2020; 10:387-391. [PMID: 30498308 PMCID: PMC6210832 DOI: 10.4103/jlp.jlp_29_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND: Klebsiella pneumoniae (K. pneumoniae) is an important nosocomial pathogen, and the emergence of multidrug resistance in these organisms limits the treatment options for serious infections caused by them. K. pneumoniae carbapenemase (KPC) is one of the clinically significant Class A beta-lactamases. AIM AND OBJECTIVE: This study was aimed to detect the KPC and its coexistence with other beta-lactamases in K. pneumoniae. MATERIALS AND METHODS: A total of 370 isolates, collected over a period of 1 year, were included in this study. The source of these isolates were urine (n = 170), exudative specimens (n = 132), respiratory secretions such as bronchial wash, endotracheal aspirate, and pleural fluid (n = 38), and blood (n = 30). For all the isolates, antibiotic susceptibility tests by disc diffusion, modified Hodge test, and KPC screening test were done. Polymerase chain reaction (PCR) was performed for the detection of KPC and the copresence of other beta-lactamases genes. RESULTS: Among the 370 isolates, 41 were resistant to the carbapenem by disc diffusion and minimum inhibitory concentration tests. Screen test using ertapenem and the boronic acid disk was positive in 14 isolates. Only one isolate harbored KPC gene by PCR, and it was co-produced with SHV-12 and CTX-M-15. CONCLUSION: PCR remains the gold standard for detection of KPC compared with any other phenotypic methods. Early detection of these genes helps in initiating proper antibiotic treatment.
Collapse
Affiliation(s)
- Poothakuzhiyil Remya
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Mariappan Shanthi
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Uma Sekar
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Miro E, Rossen JWA, Chlebowicz MA, Harmsen D, Brisse S, Passet V, Navarro F, Friedrich AW, García-Cobos S. Core/Whole Genome Multilocus Sequence Typing and Core Genome SNP-Based Typing of OXA-48-Producing Klebsiella pneumoniae Clinical Isolates From Spain. Front Microbiol 2020; 10:2961. [PMID: 32082262 PMCID: PMC7005014 DOI: 10.3389/fmicb.2019.02961] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022] Open
Abstract
Whole-genome sequencing (WGS)-based typing methods have emerged as promising and highly discriminative epidemiological tools. In this study, we combined gene-by-gene allele calling and core genome single nucleotide polymorphism (cgSNP) approaches to investigate the genetic relatedness of a well-characterized collection of OXA-48-producing Klebsiella pneumoniae isolates. We included isolates from the predominant sequence type ST405 (n = 31) OXA-48-producing K. pneumoniae clone and isolates from ST101 (n = 3), ST14 (n = 1), ST17 (n = 1), and ST1233 (n = 1), obtained from eight Catalan hospitals. Core-genome multilocus sequence typing (cgMLST) schemes from Institut Pasteur’s BIGSdb-Kp (634 genes) and SeqSphere+ (2,365 genes), and a SeqSphere+ whole-genome MLST (wgMLST) scheme (4,891 genes) were used. Allele differences or allelic mismatches and the genetic distance, as the proportion of allele differences, were used to interpret the results from a gene-by-gene approach, whereas the number of SNPs was used for the cgSNP analysis. We observed between 0–10 and 0–14 allele differences among the predominant ST405 using cgMLST and wgMLST from SeqSphere+, respectively, and <2 allelic mismatches when using Institut Pasteur’s BIGSdb-Kp cgMLST scheme. For ST101, we observed 14 and 54 allele differences when using cgMLST and wgMLST SeqSphere+, respectively, and 2–5 allelic mismatches for BIGSdb-Kp cgMLST. A low genetic distance (<0.0035, a previously established threshold for epidemiological link) was generally in concordance with a low number of allele differences (<8) when using the SeqSphere+ cgMLST scheme. The cgSNP analysis showed 6–29 SNPs in isolates with identical allelic SeqSphere+ cgMLST profiles and 16–61 cgSNPs among ST405 isolates. Furthermore, comparison of WGS-based typing results with previously obtained MLST and pulsed-field gel electrophoresis (PFGE) data showed some differences, demonstrating the different molecular principles underlying these techniques. In conclusion, the use of the different WGS-based typing methods that were used to elucidate the genetic relatedness of clonal OXA-48-producing K. pneumoniae all led to the same conclusions. Furthermore, threshold parameters in WGS-based typing methods should be applied with caution and should be used in combination with clinical epidemiological data and population and species characteristics.
Collapse
Affiliation(s)
- Elisenda Miro
- Department of Microbiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - Monika A Chlebowicz
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dag Harmsen
- Department of Periodontology and Restorative Dentistry, University of Münster, Münster, Germany
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Virginie Passet
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Ferran Navarro
- Department of Microbiology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - S García-Cobos
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Lü Y, Zhao S, Liang H, Zhang W, Liu J, Hu H. The first report of a novel IncHI1B bla SIM-1-carrying megaplasmid pSIM-1-BJ01 from a clinical Klebsiella pneumoniae isolate. Infect Drug Resist 2019; 12:2103-2112. [PMID: 31413597 PMCID: PMC6657655 DOI: 10.2147/idr.s212333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/03/2019] [Indexed: 12/03/2022] Open
Abstract
Background: A rare member of metallo-β-lactamases genes, blaSIM-1, carried by a 316-kb plasmid designated pSIM-1-BJ01 was isolated from a clinical cephalosporins- and carbapenem-resistant Klebsiellapneumoniae 13624. This is the first sequence report of a transferable blaSIM-1-carrying conjugative plasmid isolated from K. pneumoniae. Purpose: The sequence analysis of pSIM-1-BJ01 will help us to identify genes responsible for conjugation, plasmid maintenance and drug resistance, to understand the evolution and control the dissemination of resistance plasmids. Patients and methods:K. pneumoniae 13624 was isolated from the urine specimen of a patient. Bacterial genomic DNA was sequenced with PacBio RSII platform. Results: Most of the pSIM-1-BJ01 backbone matches that of pRJA166a, which was isolated from a clinical hypervirulent K. pneumoniae ST23 strain at Shanghai, China, recently. The highly homologous backbones between the two plasmids imply the close relationship of evolution. Two different multidrug-resistant regions both carrying the class 1 integrons with different resistance genes have been assembled into the pSIM-1-BJ01. Besides, the other two resistance plasmids, pKP13624-1 carrying blaTEM-1 and blaCTX-M-15 and pKP13624-2 carrying blaCTX-M-14 and blaLAP-2 were also identified. Conclusion: The emergence of the blaSIM-1-carrying IncHI1B pSIM-1-BJ01 suggests the spread of blaSIM among Enterobacteriaceae is possible. We should pay more attention to supervise and control the dissemination of hypervirulent carbapenem-resistant K. pneumonia in public hospitals.
Collapse
Affiliation(s)
- Yang Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shulong Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Hui Liang
- Department of Laboratory Medicine, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wei Zhang
- Department of Laboratory Medicine, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jia Liu
- Department of Laboratory Medicine, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hongyan Hu
- Department of Laboratory Medicine, The Third Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
9
|
Lima WC, Pillonel T, Bertelli C, Ifrid E, Greub G, Cosson P. Genome sequencing and functional characterization of the non-pathogenic Klebsiella pneumoniae KpGe bacteria. Microbes Infect 2018; 20:293-301. [PMID: 29753816 DOI: 10.1016/j.micinf.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/26/2023]
Abstract
Klebsiella pneumoniae is an extensively studied human pathogen responsible for a wide variety of infections. Dictyostelium discoideum is a model host organism employed to study many facets of the complex interactions between phagocytic cells and bacteria. Historically, a non-pathogenic strain of K. pneumoniae has been used to feed Dictyostelium amoebae, and more recently to study cellular mechanisms involved in bacterial recognition, ingestion and killing. Here we provide the full genome sequence and functional characterization of this non-pathogenic KpGe strain.
Collapse
Affiliation(s)
- Wanessa C Lima
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland.
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Estelle Ifrid
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Pierre Cosson
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
10
|
Rimoldi SG, Gentile B, Pagani C, Di Gregorio A, Anselmo A, Palozzi AM, Fortunato A, Pittiglio V, Ridolfo AL, Gismondo MR, Rizzardini G, Lista F. Whole genome sequencing for the molecular characterization of carbapenem-resistant Klebsiella pneumoniae strains isolated at the Italian ASST Fatebenefratelli Sacco Hospital, 2012-2014. BMC Infect Dis 2017; 17:666. [PMID: 29017452 PMCID: PMC5634883 DOI: 10.1186/s12879-017-2760-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 09/22/2017] [Indexed: 12/18/2022] Open
Abstract
Background The emergence of carbapenem-resistant Klebsiella pneumoniae strains is threatening antimicrobial treatment. Methods Sixty-eight carbapenemase-producing K. pneumoniae strains isolated at Luigi Sacco University Hospital-ASST Fatebenefratelli Sacco (Milan, Italy) between 2012 and 2014 were characterised microbiologically and molecularly. They were tested for drug susceptibility and carbapenemase phenotypes, investigated by means of repetitive extra-genic palindromic polymerase chain reaction (REP-PCR), and fully sequenced by means of next-generation sequencing for the in silico analysis of multi-locus sequence typing (MLST), their resistome, virulome and plasmid content, and their core single nucleotide polymorphism (SNP) genotypes. Results All of the samples were resistant to carbapenems, other β-lactams and ciprofloxacin; many were resistant to aminoglycosides and tigecycline; and seven were resistant to colistin. Resistome analysis revealed the presence of blaKPC genes and, less frequently blaSHV, blaTEM, blaCTX-M and blaOXA, which are related to resistance to carbapenem and other β-lactams. Other genes conferring resistance to aminoglycoside, fluoroquinolone, phenicol, sulphonamide, tetracycline, trimethoprim and macrolide-lincosamide-streptogramin were also detected. Genes related to AcrAB-TolC efflux pump-dependent and pump-independent tigecycline resistance mechanisms were investigated, but it was not possible to clearly correlate the genomic features with tigecycline resistance because of the presence of a common mutation in susceptible, intermediate and resistant strains. Concerning colistin resistance, the mgrB gene was disrupted by an IS5-like element, and the mobile mcr-1 and mcr-2 genes were not detected in two cases. The virulome profile revealed type-3 fimbriae and iron uptake system genes, which are important during the colonisation stage in the mammalian host environment. The in silico detected plasmid replicons were classified as IncFIB(pQil), IncFIB(K), ColRNAI, IncX1, IncX3, IncFII(K), IncN, IncL/M(pMU407) and IncFIA(HI1). REP-PCR showed five major clusters, and MLST revealed six different sequence types: 512, 258, 307, 1519, 745 and 101. Core SNP genotyping, which led to four clusters, correlated with the MLST data. Isolates of the same sequencing type often had common genetic traits, but the SNP analysis allowed greater strain tracking and discrimination than either the REP-PCR or MLST analysis. Conclusion Our findings support the importance of implementing bacterial genomics in clinical medicine in order to complement traditional methods and overcome their limited resolution. Electronic supplementary material The online version of this article (10.1186/s12879-017-2760-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Giordana Rimoldi
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco, University Hospital "Luigi Sacco", Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Bernardina Gentile
- Scientific Department Army Medical Center, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Cristina Pagani
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco, University Hospital "Luigi Sacco", Via G.B. Grassi 74, 20157, Milan, Italy
| | - Annamaria Di Gregorio
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco, University Hospital "Luigi Sacco", Via G.B. Grassi 74, 20157, Milan, Italy
| | - Anna Anselmo
- Scientific Department Army Medical Center, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Anna Maria Palozzi
- Scientific Department Army Medical Center, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Antonella Fortunato
- Scientific Department Army Medical Center, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Valentina Pittiglio
- Scientific Department Army Medical Center, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Anna Lisa Ridolfo
- Infectious Diseases Department, ASST Fatebenefratelli Sacco, University Hospital "Luigi Sacco", Via G.B. Grassi 74, 20157, Milan, Italy
| | - Maria Rita Gismondo
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, ASST Fatebenefratelli Sacco, University Hospital "Luigi Sacco", Via G.B. Grassi 74, 20157, Milan, Italy
| | - Giuliano Rizzardini
- Infectious Diseases Department, I Division, ASST Fatebenefratelli Sacco, University Hospital "Luigi Sacco", Via G.B. Grassi 74, 20157, Milan, Italy
| | - Florigio Lista
- Scientific Department Army Medical Center, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| |
Collapse
|
11
|
Genetic Environment of the blaKPC-2 Gene in a Klebsiella pneumoniae Isolate That May Have Been Imported to Russia from Southeast Asia. Antimicrob Agents Chemother 2017; 61:AAC.01856-16. [PMID: 27919902 DOI: 10.1128/aac.01856-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022] Open
Abstract
The nucleotide sequence of a blaKPC-2-harboring plasmid (pKPCAPSS) from Klebsiella pneumoniae ST273 isolated in Saint Petersburg, Russia, from a patient with history of recent travel to Vietnam is presented. This 127,970-bp plasmid possessed both IncFII and IncR replicons. blaKPC-2 was localized on a hypothetical mobile element. This element was flanked by 38-bp inverted Tn3 repeats and included a Tn3-specific transposase gene, macrolide resistance operon (mphA-mrx-mphR), and a fragment of blaTEM with unique polymorphisms.
Collapse
|
12
|
Asti A, Marmondi E, Tinelli C, Corbella M, De Silvestri A, Bernardi G, Andreini F, Preti A, Bricchi M. Microbiological sentinel events at a neurological hospital: a retrospective cohort study. J Med Microbiol 2016; 65:1512-1520. [PMID: 27902392 DOI: 10.1099/jmm.0.000374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study is to describe the epidemiological surveillance of microbiological sentinel events (SEs) carried out between 2012 and 2014 at the Neurological Hospital Carlo Besta, Milano, Italy. The setting is inpatient care with multidrug-resistant infections. The aim of the procedure is to formalize the management mode, reporting and transmission of SEs. Categorical variables were described by counts and percentages, as mean and sd or median and interquartile range. The incidence rates of SE were calculated per 1000 patient-days and for 100 admissions using Poisson distribution. The incidence rate of isolation for 1000 patient-days varies from a minimum of 0.52 (95 % confidence interval, 0.23-1.15) for the second quarter of 2014 to a maximum value of 4.16 (95 % confidence interval, 3.20-5.40) for the first quarter of 2013. A decrease followed from the third quarter of 2013 that remained constant in 2014, reaching values similar to those of 2012. Preventive actions and their effectiveness on Acinetobacterbaumannii, the primary cause in our division of multidrug-resistant infections in 2012, have ensured a reduction of the incidence of the same; preventive actions and their effectiveness allowed us to intercept microbiological SE and trigger appropriate precautionary behaviour and isolation. Surveillance of healthcare-associated infections is fundamental in understanding the sources that are contributing to the growing reservoir within hospital communities.
Collapse
Affiliation(s)
- Annalia Asti
- Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - Elio Marmondi
- Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - Carmine Tinelli
- Clinical Epidemiology and Biometric Unit, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Marta Corbella
- Clinical Epidemiology and Biometric Unit, Fondazione IRCCS San Matteo, Pavia, Italy
| | | | - Gaetano Bernardi
- Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - Franco Andreini
- Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - Anna Preti
- Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milano, Italy
| | - Monica Bricchi
- Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milano, Italy
| |
Collapse
|
13
|
Le V, Nhu NTK, Cerdeno-Tarraga A, Campbell JI, Tuyen HT, Nhu TDH, Tam PTT, Schultsz C, Thwaites G, Thomson NR, Baker S. Genetic characterization of three qnrS1-harbouring multidrug-resistance plasmids and qnrS1-containing transposons circulating in Ho Chi Minh City, Vietnam. J Med Microbiol 2015; 64:869-878. [PMID: 26272054 PMCID: PMC4635468 DOI: 10.1099/jmm.0.000100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) refers to a family of closely related genes that confer decreased susceptibility to fluoroquinolones. PMQR genes are generally associated with integrons and/or plasmids that carry additional antimicrobial resistance genes active against a range of antimicrobials. In Ho Chi Minh City (HCMC), Vietnam, we have previously shown a high frequency of PMQR genes within commensal Enterobacteriaceae. However, there are limited available sequence data detailing the genetic context in which the PMQR genes reside, and a lack of understanding of how these genes spread across the Enterobacteriaceae. Here, we aimed to determine the genetic background facilitating the spread and maintenance of qnrS1, the dominant PMQR gene circulating in HCMC. We sequenced three qnrS1-carrying plasmids in their entirety to understand the genetic context of these qnrS1-embedded plasmids and also the association of qnrS1-mediated quinolone resistance with other antimicrobial resistance phenotypes. Annotation of the three qnrS1-containing plasmids revealed a qnrS1-containing transposon with a closely related structure. We screened 112 qnrS1-positive commensal Enterobacteriaceae isolated in the community and in a hospital in HCMC to detect the common transposon structure. We found the same transposon structure to be present in 71.4 % (45/63) of qnrS1-positive hospital isolates and in 36.7 % (18/49) of qnrS1-positive isolates from the community. The resulting sequence analysis of the qnrS1 environment suggested that qnrS1 genes are widely distributed and are mobilized on elements with a common genetic background. Our data add additional insight into mechanisms that facilitate resistance to multiple antimicrobials in Gram-negative bacteria in Vietnam.
Collapse
Affiliation(s)
- Vien Le
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Nguyen Thi Khanh Nhu
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | | - James I Campbell
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, UK
| | - Ha Thanh Tuyen
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Do Hoang Nhu
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Pham Thi Thanh Tam
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Constance Schultsz
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Guy Thwaites
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Stephen Baker
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, UK.,Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
14
|
Characterization of Tn3000, a Transposon Responsible for blaNDM-1 Dissemination among Enterobacteriaceae in Brazil, Nepal, Morocco, and India. Antimicrob Agents Chemother 2015; 59:7387-95. [PMID: 26392506 DOI: 10.1128/aac.01458-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/30/2015] [Indexed: 01/19/2023] Open
Abstract
In Enterobacteriaceae, the blaNDM genes have been found in many different genetic contexts, and a wide diversity of plasmid scaffolds bearing those genes has been found. In August 2013, we identified NDM-1-producing Escherichia coli and Enterobacter hormaechei strains from a single rectal swab sample from a patient hospitalized in Rio de Janeiro, Brazil, who had no history of travel abroad. Complete DNA sequencing using the Illumina platform and annotation of the two plasmids harboring the blaNDM-1 gene, one from each strain, showed that they belonged to incompatibility groups IncFIIK and IncX3 and harbored a novel transposon named Tn3000. Similar genetic structures have been identified among other isolates in Brazil but also on plasmids from other continents. Our findings suggest that the blaNDM-1 gene may be transmitted by Tn3000 in different parts of the world.
Collapse
|
15
|
Ying J, Wu S, Zhang K, Wang Z, Zhu W, Zhu M, Zhang Y, Cheng C, Wang H, Tou H, Zhu C, Li P, Ying J, Xu T, Yi H, Li J, Ni L, Xu Z, Bao Q, Lu J. Comparative genomics analysis of pKF3-94 in Klebsiella pneumoniae reveals plasmid compatibility and horizontal gene transfer. Front Microbiol 2015; 6:831. [PMID: 26347723 PMCID: PMC4539522 DOI: 10.3389/fmicb.2015.00831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
In order to get insights into plasmid evolution and the dissemination of multidrug resistance, we performed extensive comparative genomics analyses of the Klebsiella pneumoniae plasmid pKF3-94 and some of its related plasmids. pKF3-94 is one of three plasmids isolated from the K. pneumoniae strain KF3. Of the 144 putative genes it harbors, 69 can be functionally assigned to be involved in transfer conjugation, transfer leading, antimicrobial resistance, transposon function, and plasmid replication. Comparison of plasmid replicon sequence types revealed that pKF3-94 carries two replicons that are distinct from those carried on the two sibling K. pneumonia plasmids pKF3-70 and pKF3-140, thereby allowing pKF3-94 to coexist with these latter plasmids in the same host cell. Comparative genomics analyses further showed that pKF3-94 is more similar to plasmids pK1HV and pC15-k, which were isolated from different K. pneumonia strains, than to pKF3-70 and pKF3-140. Interestingly, pK1HV contains a unique 49 kb region rich in mobile genetic elements and drug resistance genes, while pKF3-94 and pC15-k share a 15 kb homology region partitioned into a region rich in drug resistance genes and one containing a replicon. It is conceivable, therefore, that pK1HV and pC15-k have both arisen from a common pKF3-94-like plasmid. The comparisons lend further support for the role horizontal gene transfer plays in genome evolution and in the dissemination of genetic elements including drug resistance genes.
Collapse
Affiliation(s)
- Jianchao Ying
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Songquan Wu
- School of Medicine, Lishui College Lishui, China
| | - Kaibo Zhang
- School of Medicine, Lishui College Lishui, China
| | - Ziqiang Wang
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Wen Zhu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Mei Zhu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Ying Zhang
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Cong Cheng
- School of Medicine, Lishui College Lishui, China
| | - Huifeng Wang
- National Institute of Biological Sciences Beijing, China
| | - Huifen Tou
- Wenzhou Center for Disease Control and Prevention Wenzhou, China
| | - Chuanxin Zhu
- Wenzhou Center for Disease Control and Prevention Wenzhou, China
| | - Peizhen Li
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Jun Ying
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Teng Xu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Huiguang Yi
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Jinsong Li
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Liyan Ni
- The Second Affiliated Hospital, Wenzhou Medical University Wenzhou, China
| | - Zuyuan Xu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Qiyu Bao
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University Wenzhou, China
| | - Junwan Lu
- School of Medicine, Lishui College Lishui, China
| |
Collapse
|
16
|
War wound treatment complications due to transfer of an IncN plasmid harboring bla(OXA-181) from Morganella morganii to CTX-M-27-producing sequence type 131 Escherichia coli. Antimicrob Agents Chemother 2015; 59:3556-62. [PMID: 25870058 DOI: 10.1128/aac.04442-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/01/2015] [Indexed: 12/22/2022] Open
Abstract
A 22-year-old male developed a recurrent sacral abscess associated with embedded shrapnel following a blast injury. Cultures grew extended-spectrum β-lactamase (ESBL)-producing, carbapenem-susceptible Escherichia coli. Ertapenem was administered, but the infection recurred after each course of antibiotics. Initial surgical interventions were unsuccessful, and subsequent cultures yielded E. coli and Morganella morganii, both nonsusceptible to carbapenems. The isolates were Carba NP test negative, gave ambiguous results with the modified Hodge test, and amplified the bla(OXA48)-like gene by real-time PCR. All E. coli isolates were sequence type 131 (ST131), carried nine resistance genes (including bla(CTX-M-27)) on an IncF plasmid, and were identical by genome sequencing, except for 150 kb of plasmid DNA in carbapenem-nonsusceptible isolates only. Sixty kilobases of this was shared by M. morganii and represented an IncN plasmid harboring bla(OXA-181). In M. morganii, the gene was flanked by IS3000 and ISKpn19, but in all but one of the E. coli isolates containing bla(OXA-181), a second copy of ISKpn19 had inserted adjacent to IS3000. To the best of our knowledge, this is the first report of bla(OXA-181) in the virulent ST131 clonal group and carried by the promiscuous IncN family of plasmids. The tendency of M. morganii to have high MICs of imipenem, a bla(OXA-181) substrate profile that includes penicillins but not extended-spectrum cephalosporins, and weak carbapenemase activity almost resulted in the presence of bla(OXA-181) being overlooked. We highlight the importance of surveillance for carbapenem resistance in all species, even those with intrinsic resistances, and the value of advanced molecular techniques in detecting subtle genetic changes.
Collapse
|
17
|
TEM and SHV Genes in Klebsiella pneumoniae Isolated from Cockroaches and Their Antimicrobial Resistance Pattern. Osong Public Health Res Perspect 2014; 6:3-8. [PMID: 25737824 PMCID: PMC4346594 DOI: 10.1016/j.phrp.2014.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/10/2014] [Accepted: 10/27/2014] [Indexed: 12/02/2022] Open
Abstract
Objectives Klebsiella pneumoniae is a gram-negative rod bacterium, a known cause of community-acquired bacterial pneumonia and is an important hospital-acquired pathogen that causes severe morbidity and mortality. The aim of this study was to identify the TEM and SHV genes in K. pneumoniae isolated from cockroaches obtained from hospitals. Methods In this study, 250 cockroaches were collected from different hospitals in the province of Chaharmahal Va Bakhtiari, which is located in southwest Iran. The samples were examined for the presence of K. pneumoniae by plating onto a combination of culture media, and the antimicrobial susceptibility patterns of isolated K. pneumoniae from samples were evaluated using the disk diffusion test. In addition, from the culture, genomic bacterial DNA was extracted, and sequence-specific targets (TEM and SHV genes) were amplified using the polymerase chain reaction (PCR) method. Results Out of 250 cockroach samples collected from various hospitals, 179 samples (71.60%) were positive for K. pneumoniae. PCR reaction was performed using specific oligonucleotide primers (TEM-F, TEM-R and SHV-F, SHV-R) for the amplification of each gene, and amplified products were visualized on 1% agarose gel electrophoresis. Of all the specimens amplified by PCR in this research, 32 samples (17.87%) were positive for TEM and 15 samples (8.37%) were positive for SHV. Conclusion Detection of TEM and SHV genes using molecular methods and their pattern of antimicrobial resistance can provide useful information about the epidemiology of and risk factors associated with K. pneumoniae infection.
Collapse
|
18
|
Rodrigues C, Machado E, Ramos H, Peixe L, Novais Â. Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: a successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int J Med Microbiol 2014; 304:1100-8. [PMID: 25190354 DOI: 10.1016/j.ijmm.2014.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to characterize by a multi-level approach extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae isolates other than E. coli from Portuguese hospitals. Eighty-eight ESBL-producing clinical isolates (69 Klebsiella pneumoniae, 13 Enterobacter cloacae complex, 3 Klebsiella oxytoca, 1 Enterobacter asburiae, 1 Proteus mirabilis and 1 Serratia marcescens) recovered from hospitals located in the North (A) or Centre (B, C) regions during two time periods (2006-7 and 2010) were analyzed. Standard methods were used for bacterial identification, antibiotic susceptibility testing, ESBL characterization, clonal (PFGE, MLST) and plasmid (S1-PFGE, I-CeuI-PFGE, replicon typing, hybridization) analysis. Isolates produced mostly CTX-M-15 (47%) or SHV-12 (30%), and less frequently other SHV- (15%; SHV-2, -5, -28, -55, -106) or TEM- (9%; TEM-10, -24, -199)-types, with marked local and temporal variations. The increase of CTX-M-15 and diverse SHV ESBL-types observed in Hospital A was associated with the amplification of multidrug-resistant (MDR) K. pneumoniae epidemic clones (ST15, ST147, ST336). SHV-12 and TEM-type ESBLs were mostly identified in diverse isolates of different Enterobacteriaceae species in Hospitals B and C in 2006-7. Particular plasmid types were linked to blaCTX-M-15 (IncR or non-typeable plasmids), blaSHV-12 (IncR or IncHI2), blaSHV-28/-55/-106 (IncFIIK1 or IncFIIK5), blaTEM-10 (IncL/M) or blaTEM-24 (IncA/C), mostly in epidemic clones. In our country, the amplification of CTX-M-15 and diverse SHV-type ESBL among non-E. coli Enterobacteriaceae is linked to international MDR K. pneumoniae clones (ST15, ST147, ST336) and plasmid types (IncR, IncFIIK). Furthermore, we highlight the potential of IncFIIK plasmids (here firstly associated with blaSHV-2/-28/-55/-106) to disseminate as antibiotic resistance plasmids.
Collapse
Affiliation(s)
- Carla Rodrigues
- REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; CEBIMED/FP-ENAS, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| | - Elisabete Machado
- REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; CEBIMED/FP-ENAS, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| | - Helena Ramos
- Centro Hospitalar do Porto - Hospital Geral de Santo António, 4099-001 Porto, Portugal
| | - Luísa Peixe
- REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ângela Novais
- REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
19
|
Załuga J, Stragier P, Baeyen S, Haegeman A, Van Vaerenbergh J, Maes M, De Vos P. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle. BMC Genomics 2014; 15:392. [PMID: 24885539 PMCID: PMC4059874 DOI: 10.1186/1471-2164-15-392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/09/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. RESULTS To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. CONCLUSIONS The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and adaptation mechanisms present in the genus Clavibacter.
Collapse
Affiliation(s)
- Joanna Załuga
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Pieter Stragier
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Steve Baeyen
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Annelies Haegeman
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Johan Van Vaerenbergh
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Martine Maes
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Paul De Vos
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
- />BCCM/LMG Bacteria collection - Laboratory of Microbiology Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| |
Collapse
|
20
|
Characterization of Klebsiella sp. strain 10982, a colonizer of humans that contains novel antibiotic resistance alleles and exhibits genetic similarities to plant and clinical Klebsiella isolates. Antimicrob Agents Chemother 2014; 58:1879-88. [PMID: 24395222 DOI: 10.1128/aac.01605-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A unique Klebsiella species strain, 10982, was cultured from a perianal swab specimen obtained from a patient in the University of Maryland Medical Center intensive care unit. Klebsiella sp. 10982 possesses a large IncA/C multidrug resistance plasmid encoding a novel FOX AmpC β-lactamase designated FOX-10. A novel variant of the LEN β-lactamase was also identified. Genome sequencing and bioinformatic analysis demonstrated that this isolate contains genes associated with nitrogen fixation, allantoin metabolism, and citrate fermentation. These three gene regions are typically present in either Klebsiella pneumoniae clinical isolates or Klebsiella nitrogen-fixing endophytes but usually not in the same organism. Phylogenomic analysis of Klebsiella sp. 10982 and sequenced Klebsiella genomes demonstrated that Klebsiella sp. 10982 is present on a branch that is located intermediate between the genomes of nitrogen-fixing endophytes and K. pneumoniae clinical isolates. Metabolic features identified in the genome of Klebsiella sp. 10982 distinguish this isolate from other Klebsiella clinical isolates. These features include the nitrogen fixation (nif) gene cluster, which is typically present in endophytic Klebsiella isolates and is absent from Klebsiella clinical isolates. Additionally, the Klebsiella sp. 10982 genome contains genes associated with allantoin metabolism, which have been detected primarily in K. pneumoniae isolates from liver abscesses. Comparative genomic analysis of Klebsiella sp. 10982 demonstrated that this organism has acquired genes conferring new metabolic strategies and novel antibiotic resistance alleles, both of which may enhance its ability to colonize the human body.
Collapse
|
21
|
Cabral AB, Melo RDCDA, Maciel MAV, Lopes ACS. Multidrug resistance genes, including bla(KPC) and bla(CTX)-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop 2013; 45:572-8. [PMID: 23152339 DOI: 10.1590/s0037-86822012000500007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/20/2012] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The prevalence of cephalosporins and carbapenem-resistant Klebsiella pneumoniae strains is rising in Brazil, with potential serious consequences in terms of patients' outcomes and general care. METHODS This study characterized 24 clinical isolates of K. pneumoniae from two hospitals in Recife, Brazil, through the antimicrobial susceptibility profile, analyses of β-lactamase genes (bla(TEM), bla(SHV),bla(CTX-M), bla(KPC), bla(VIM), bla(IMP), and bla(SPM), plasmidial profile and ERIC-PCR (Enterobacterial repetitive intergenic consensus-polymerase chain reaction). RESULTS ERIC-PCR and plasmidial analysis grouped the isolates in 17 and 19 patterns, respectively. Six isolates from one hospital presented the same pattern by ERIC-PCR, indicating clonal dissemination. All isolates presented bla(SHV), 62.5% presented bla(CTX)-M-2, 29% bla(TEM), and 41.7% bla(KPC). Metallo-β-lactamase genes bla(VIM), bla(IMP), and bla(SPM) not detected. Eleven isolates were identified carrying at least 3 β-lactamase studied genes, and 2 isolates carried bla(SHV), bla(TEM), bla (CTX-M-2) and bla(KPC) simultaneously. CONCLUSIONS The accumulation of resistance genes in some strains, observed in this study, imposes limitations in the therapeutic options available for the treatment of infections caused by K. pneumoniae in Recife, Brazil. These results should alert the Brazilian medical authorities to establish rigorous methods for more efficiently control the dissemination of antimicrobial resistance genes in the hospital environment.
Collapse
|
22
|
Bai J, Liu Q, Yang Y, Wang J, Yang Y, Li J, Li P, Li X, Xi Y, Ying J, Ren P, Yang L, Ni L, Wu J, Bao Q, Zhou T. Insights into the evolution of gene organization and multidrug resistance from Klebsiella pneumoniae plasmid pKF3-140. Gene 2013; 519:60-6. [PMID: 23402892 DOI: 10.1016/j.gene.2013.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/20/2012] [Accepted: 01/27/2013] [Indexed: 01/02/2023]
Abstract
Plasmid-mediated transfer of drug-resistance genes among various bacterial species is considered one of the most important mechanisms for the spread of multidrug resistance. To gain insights into the evolution of gene organization and antimicrobial resistance in clinical bacterial samples, a complete plasmid genome of Klebsiella pneumoniae pKF3-140 is determined, which has a circular chromosome of 147,416bp in length. Among the 203 predicted genes, 142 have function assignment and about 50 appear to be involved in plasmid replication, maintenance, conjugative transfer, iron acquisition and transport, and drug resistance. Extensive comparative genomic analyses revealed that pKF3-140 exhibits a rather low sequence similarity and structural conservation with other reported K. pneumoniae plasmids. In contrast, the overall organization of pKF3-140 is highly similar to Escherichia coli plasmids p1ESCUM and pUTI89, which indicates the possibility that K. pneumoniae pKF3-140 may have a potential origin in E. coli. Meanwhile, interestingly, several drug resistant genes show high similarity to the plasmid pU302L in Salmonella enterica serovar Typhimurium U302 strain G8430 and the plasmid pK245 in K. pneumoniae. This mosaic pattern of sequence similarities suggests that pKF3-140 might have arisen from E. coli and acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among enteric bacteria.
Collapse
Affiliation(s)
- Jie Bai
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, and The First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Epidemic plasmid carrying bla(CTX-M-15) in Klebsiella penumoniae in China. PLoS One 2013; 8:e52222. [PMID: 23382815 PMCID: PMC3558504 DOI: 10.1371/journal.pone.0052222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/16/2012] [Indexed: 11/25/2022] Open
Abstract
Objective To investigate the local epidemiology of Klebsiella penumoniae carrying blaCTX-M-15 in southern China and to characterize the genetic environment of blaCTX-M-15. Methods PCR and DNA sequencing were used to detect and characterize the genetic contexts of blaCTX-M-15. The clonal relatedness of isolates carrying blaCTX-M-15 was determined by pulse-field gel electrophoresis. Conjugative plasmids carrying blaCTX-M-15 were obtained by mating and were further subject to restriction analysis and replicon typing. Results A total of 47CTX-M-15 ESBL-producing isolates of K. pneumoniae were collected from nine hospitals in China from October 2007 to October 2008. Isolates were clustered into various clonal groups. The local spread of blaCTX-M-15 was mainly mediated by one major conjugative plasmid as determined by S1-PFGE and restriction analysis. A 90-kb plasmid belonging to incompatible group FII was the major carrier of blaCTX-M-15 in K. pneumoniae. Except blaTEM-1, the resistance genes such as blaSHV, blaDHA-1, blaOXA-1, qnrB, qnrS, aac(3)-II, and aac(6′)-Ib were not found in the plasmid. In the comparing of conjugative gene sequence, it is 100% identical with the plasmid pKF3–94, which was found in K. pneumonia from Zhejiang province of china previously. Conclusions blaCTX-M-15 was prevalent in K. pneumonia of southern China. The dissemination of blaCTX-M-15 appeared to be due to the horizontal transfer of a 90-kb epidemic plasmid.
Collapse
|
24
|
The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant's on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates. Plasmid 2012; 69:127-37. [PMID: 23212116 DOI: 10.1016/j.plasmid.2012.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/12/2012] [Accepted: 11/18/2012] [Indexed: 11/22/2022]
Abstract
The IncF antibiotic resistance and virulence plasmid pRSB225, isolated from an unknown bacterium released with the purified wastewater from a municipal sewage treatment plant into the environment has been analysed at the genomic level by pyrosequencing. The 164,550bp plasmid comprises 210 coding sequences (cds). It is composed of three replicons (RepFIA, RepFIB, and RepFII) and encodes further plasmid-specific functions for stable maintenance and inheritance and conjugative plasmid transfer. The plasmid is self-transmissible and shows a narrow host range limited to the family Enterobacteriaceae. The accessory modules of the plasmid mainly comprise genes conferring resistance to ampicillin (bla(TEM-1b)), chloramphenicol (catA1), erythromycin (mphA), kanamycin and neomycin (aphA1), streptomycin (strAB), sulphonamides (sul2), tetracycline (tetA(B)) and trimethoprim (dfrA14), as well as mercuric ions (mer genes). In addition, putative virulence-associated genes coding for iron uptake (iutA/iucABCD, sitABCD, and a putative high-affinity Fe²⁺ uptake system) and for a toxin/antitoxin system (vagCD) were identified on the plasmid. All antibiotic and heavy metal resistance genes are located either on class 1 (Tn10-remnant, Tn4352B) and class 2 transposons (Tn2-remnant, Tn21, Tn402-remnant) or a class 1 integron, whereas almost all putative virulence genes are associated with IS elements (IS1, IS26), indicating that transposition and/or recombination events were responsible for acquisition of the accessory pRSB225 modules. Particular modules of plasmid pRSB225 are related to corresponding segments of different virulence plasmids harboured by pathogenic Escherichia coli strains. Moreover, pRSB225 modules were also detected in entero-aggregative-haemorrhagic E. coli (EAHEC) draft genome sequences suggesting that IncF plasmids related to pRSB225 mediated gene transfer into pathogenic E. coli derivatives.
Collapse
|
25
|
Xu T, Ying J, Yao X, Song Y, Ma P, Bao B, Jiang W, Wu X, Tou H, Li P, Ren P, Fei J, Yang L, Liu Q, Xu Z, Zhou T, Ni L, Bao Q. Identification and characterization of two novel bla(KLUC) resistance genes through large-scale resistance plasmids sequencing. PLoS One 2012; 7:e47197. [PMID: 23056610 PMCID: PMC3467222 DOI: 10.1371/journal.pone.0047197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022] Open
Abstract
Plasmids are important antibiotic resistance determinant carriers that can disseminate various drug resistance genes among species or genera. By using a high throughput sequencing approach, two groups of plasmids of Escherichia coli (named E1 and E2, each consisting of 160 clinical E. coli strains isolated from different periods of time) were sequenced and analyzed. A total of 20 million reads were obtained and mapped onto the known resistance gene sequences. As a result, a total of 9 classes, including 36 types of antibiotic resistant genes, were identified. Among these genes, 25 and 27 single nucleotide polymorphisms (SNPs) appeared, of which 9 and 12 SNPs are nonsynonymous substitutions in the E1 and E2 samples. It is interesting to find that a novel genotype of blaKLUC, whose close relatives, blaKLUC-1 and blaKLUC-2, have been previously reported as carried on the Kluyvera cryocrescens chromosome and Enterobacter cloacae plasmid, was identified. It shares 99% and 98% amino acid identities with Kluc-1 and Kluc-2, respectively. Further PCR screening of 608 Enterobacteriaceae family isolates yielded a second variant (named blaKLUC-4). It was interesting to find that Kluc-3 showed resistance to several cephalosporins including cefotaxime, whereas blaKLUC-4 did not show any resistance to the antibiotics tested. This may be due to a positively charged residue, Arg, replaced by a neutral residue, Leu, at position 167, which is located within an omega-loop. This work represents large-scale studies on resistance gene distribution, diversification and genetic variation in pooled multi-drug resistance plasmids, and provides insight into the use of high throughput sequencing technology for microbial resistance gene detection.
Collapse
Affiliation(s)
- Teng Xu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Jun Ying
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiaoding Yao
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Yulong Song
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Ping Ma
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Bokan Bao
- College of Biological Science, Agricultural University of China, Beijing, People’s Republic of China
| | - Weiyan Jiang
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Xinmei Wu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Huifen Tou
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Peizhen Li
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Ping Ren
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Jingxian Fei
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Lei Yang
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Qi Liu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Zuyuan Xu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Tieli Zhou
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Liyan Ni
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
- * E-mail: (LN); (QB)
| | - Qiyu Bao
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
- * E-mail: (LN); (QB)
| |
Collapse
|
26
|
Huang XZ, Frye JG, Chahine MA, Glenn LM, Ake JA, Su W, Nikolich MP, Lesho EP. Characteristics of plasmids in multi-drug-resistant Enterobacteriaceae isolated during prospective surveillance of a newly opened hospital in Iraq. PLoS One 2012; 7:e40360. [PMID: 22808141 PMCID: PMC3394789 DOI: 10.1371/journal.pone.0040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Gram-negative multidrug-resistant (MDR) bacteria are major causes of nosocomial infections, and antibiotic resistance in these organisms is often plasmid mediated. Data are scarce pertaining to molecular mechanisms of antibiotic resistance in resource constrained areas such as Iraq. METHODOLOGY/PRINCIPAL FINDINGS In this study, all MDR Enterobacteriaceae (n = 38) and randomly selected non-MDR counterparts (n = 41) isolated from patients, healthcare workers and environmental surfaces in a newly opened hospital in Iraq were investigated to characterize plasmids found in these isolates and determine their contribution to antibiotic resistance. Our results demonstrated that MDR E. coli and K. pneumoniae isolates harbored significantly more (≥ 3) plasmids compared to their non-MDR counterparts, which carried ≤ 2 plasmids (p<0.01). Various large plasmids (~52 to 100 kb) from representative isolates were confirmed to contain multiple resistance genes by DNA microarray analysis. Aminoglycoside (acc, aadA, aph, strA/B, and ksgA), β-lactam (bla(TEM1), bla(AMPC), bla(CTX-M-15), bla(OXA-1), bla(VIM-2) and bla(SHV)), sulfamethoxazole/trimethoprim (sul/dfr), tetracycline (tet) and chloramphenicol (cat) resistance genes were detected on these plasmids. Additionally, multiple plasmids carrying multiple antibiotic resistance genes were found in the same host strain. Genetic transfer-associated genes were identified on the plasmids from both MDR and non-MDR isolates. Seven plasmid replicon types (FII, FIA, FIB, B/O, K, I1 and N) were detected in the isolates, while globally disseminated IncA/C and IncHI1 plasmids were not detected in these isolates. CONCLUSIONS/SIGNIFICANCE This is the first report of the characteristics of the plasmids found in Enterobacteriaceae isolated following the opening of a new hospital in Iraq. The information provided here furthers our understanding of the mechanisms of drug resistance in this specific region and their evolutionary relationship with other parts of world. The large plasmids, carrying resistance genes and transfer-associated genes, may be potential factors for regional dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Xiao-Zhe Huang
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Characterization of globally spread Escherichia coli ST131 isolates (1991 to 2010). Antimicrob Agents Chemother 2012; 56:3973-6. [PMID: 22491693 DOI: 10.1128/aac.00475-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The characterization of a broad representative sample of ST131 Escherichia coli isolates from different origins and settings (1991 to 2010) revealed that this clonal group has likely diversified recently and that the expansion of particular variants has probably been favored by the capture of diverse, multidrug-resistant IncFII plasmids (pC15-1a, pEK499, pKF3-140-like). The low ability to adhere and to grow as biofilm that was detected in this study suggests unknown mechanisms for the persistence of this clonal group which need to be further explored.
Collapse
|
28
|
Abstract
Prokaryotes are in general believed to possess small, compactly organized genomes, with repetitive sequences forming only a small part of them. Nonetheless, many prokaryotic genomes in fact contain species-specific repeats (>85 bp long genomic sequences with less than 60% identity to other species) as we have previously demonstrated. However, it is not known at present how frequent such species-specific repeats are and what their functional roles in bacterial genomes may be. Therefore, we have conducted a comprehensive survey of prokaryotic species-specific repeats and characterized them to examine as to whether there are functional classes among different repeats or not and how they are mutually related to each other. Of the 613 distinct prokaryotic species analyzed, 97% were found to contain at least one species-specific repeats. It seems interesting to note that the species-specific repeats thus identified appear to be functionally variable in different genomes: in some genomes, they are mostly associated with duplicated protein-coding genes, whereas in some other genomes with rRNA and tRNA genes. Contrary to what may be expected, only one-fourth of the species-specific repeats were found to be associated with mobile genetic elements.
Collapse
Affiliation(s)
- Triinu Koressaar
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| | | |
Collapse
|
29
|
Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 on conjugative IncF plasmids from Escherichia coli. Antimicrob Agents Chemother 2011; 55:4971-8. [PMID: 21859935 DOI: 10.1128/aac.00025-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTX-M-15 now appears to be the dominant extended-spectrum β-lactamase worldwide, and a number of different factors may contribute to this success. These include associations between bla(CTX-M-15) and particular plasmids (IncF) and/or strains, such as Escherichia coli ST131, as well as the genetic contexts in which this gene is found. We previously identified bla(CTX-M-15) as the dominant ESBL gene in the western Sydney area, Australia, and found that it was carried mainly on IncF or IncI1 plasmids. Here, we have mapped the multiresistance regions of the 11 conjugative plasmids with one or more IncF replicons obtained from that survey and conducted a limited comparison of plasmid backbones. Two plasmids with only an IncFII replicon appear to be very similar to the published plasmids pC15-1a and pEK516. The remaining nine plasmids, with multiple IncF replicons, have multiresistance regions related to those of pC15-1a and pEK516, but eight contain additional modules previously found in resistance plasmids from different geographic locations that carry a variety of different resistance genes. Differences between the multiresistance regions are largely due to IS26-mediated deletions, insertions, and/or rearrangements, which can explain the observed variable associations between bla(CTX-M-15) and certain other resistance genes. We found no evidence of independent movement of bla(CTX-M-15) or of a large multiresistance region between different plasmid backbones. Instead, homologous recombination between common components, such as IS26 and Tn2, appeared to be more important in creating new multiresistance regions, and this may be coupled with recombination in plasmid backbones to reassort multiple IncF replicons as well as components of multiresistance regions.
Collapse
|
30
|
F33:A-:B- and F2:A-:B- plasmids mediate dissemination of rmtB-blaCTX-M-9 group genes and rmtB-qepA in Enterobacteriaceae isolates from pets in China. Antimicrob Agents Chemother 2011; 55:4926-9. [PMID: 21788459 DOI: 10.1128/aac.00133-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the prevalence of 16S rRNA methylase genes in 267 Enterobacteriaceae isolates collected from pets. The rmtB gene was detected in 69 isolates, most of which were clonally unrelated. The coexistence of the rmtB gene with the bla(CTX-M-9) group genes and/or qepA within the same IncFII replicons was commonly detected. The two dominant types of IncF plasmids, F2:A-:B-, carrying rmtB-qepA, and F33:A-:B-, carrying the rmtB-bla(CTX-M-9) group genes (and especially bla(CTX-M-65)), shared restriction patterns within each incompatibility group.
Collapse
|
31
|
Comparative genomics of Klebsiella pneumoniae strains with different antibiotic resistance profiles. Antimicrob Agents Chemother 2011; 55:4267-76. [PMID: 21746949 DOI: 10.1128/aac.00052-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is a global emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. While the epidemiology of K. pneumoniae strains and occurrences of specific antibiotic resistance genes, such as plasmid-borne extended-spectrum β-lactamases (ESBLs), have been extensively studied, only four complete genomes of K. pneumoniae are available. To better understand the multidrug resistance factors in K. pneumoniae, we determined by pyrosequencing the nearly complete genome DNA sequences of two strains with disparate antibiotic resistance profiles, broadly drug-susceptible strain JH1 and strain 1162281, which is resistant to multiple clinically used antibiotics, including extended-spectrum β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, and sulfamethoxazoles. Comparative genomic analysis of JH1, 1162281, and other published K. pneumoniae genomes revealed a core set of 3,631 conserved orthologous proteins, which were used for reconstruction of whole-genome phylogenetic trees. The close evolutionary relationship between JH1 and 1162281 relative to other K. pneumoniae strains suggests that a large component of the genetic and phenotypic diversity of clinical isolates is due to horizontal gene transfer. Using curated lists of over 400 antibiotic resistance genes, we identified all of the elements that differentiated the antibiotic profile of MDR strain 1162281 from that of susceptible strain JH1, such as the presence of additional efflux pumps, ESBLs, and multiple mechanisms of fluoroquinolone resistance. Our study adds new and significant DNA sequence data on K. pneumoniae strains and demonstrates the value of whole-genome sequencing in characterizing multidrug resistance in clinical isolates.
Collapse
|
32
|
Acquisition of antimicrobial resistance determinants by virulence plasmids specific for nontyphoid serovars of Salmonella enterica. ACTA ACUST UNITED AC 2011. [DOI: 10.1097/mrm.0b013e328346d87d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Abstract
Antibiotic resistance in Gram-negative bacteria is often due to the acquisition of resistance genes from a shared pool. In multiresistant isolates these genes, together with associated mobile elements, may be found in complex conglomerations on plasmids or on the chromosome. Analysis of available sequences reveals that these multiresistance regions (MRR) are modular, mosaic structures composed of different combinations of components from a limited set arranged in a limited number of ways. Components common to different MRR provide targets for homologous recombination, allowing these regions to evolve by combinatorial evolution, but our understanding of this process is far from complete. Advances in technology are leading to increasing amounts of sequence data, but currently available automated annotation methods usually focus on identifying ORFs and predicting protein function by homology. In MRR, where the genes are often well characterized, the challenge is to identify precisely which genes are present and to define the boundaries of complete and fragmented mobile elements. This review aims to summarize the types of mobile elements involved in multiresistance in Gram-negative bacteria and their associations with particular resistance genes, to describe common components of MRR and to illustrate methods for detailed analysis of these regions.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia.
| |
Collapse
|