1
|
Le X, Gao T, Wang L, Wei F, Chen C, Zhao Y. Self-Assembly of Short Amphiphilic Peptides and Their Biomedical Applications. Curr Pharm Des 2022; 28:3546-3562. [PMID: 36424793 DOI: 10.2174/1381612829666221124103526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
A series of functional biomaterials with different sizes and morphologies can be constructed through self-assembly, among which amphiphilic peptide-based materials have received intense attention. One main possible reason is that the short amphiphilic peptides can facilitate the formation of versatile materials and promote their further applications in different fields. Another reason is that the simple structure of amphiphilic peptides can help establish the structure-function relationship. This review highlights the recent advances in the self-assembly of two typical peptide species, surfactant-like peptides (SLPs) and peptides amphiphiles (PAs). These peptides can self-assemble into diverse nanostructures. The formation of these different nanostructures resulted from the delicate balance of varied non-covalent interactions. This review embraced each non-covalent interaction and then listed the typical routes for regulating these non-covalent interactions, then realized the morphologies modulation of the self-assemblies. Finally, their applications in some biomedical fields, such as the stabilization of membrane proteins, templating for nanofabrication and biomineralization, acting as the antibacterial and antitumor agents, hemostasis, and synthesis of melanin have been summarized. Further advances in the self-assembly of SLPs and PAs may focus on the design of functional materials with targeted properties and exploring their improved properties.
Collapse
Affiliation(s)
- Xiaosong Le
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Tianwen Gao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Li Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Feng Wei
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| |
Collapse
|
2
|
Improving Photostability of Photosystem I-Based Nanodevice by Plasmonic Interactions with Planar Silver Nanostructures. Int J Mol Sci 2022; 23:ijms23062976. [PMID: 35328397 PMCID: PMC8950156 DOI: 10.3390/ijms23062976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Abstract
One of the crucial challenges for science is the development of alternative pollution-free and renewable energy sources. One of the most promising inexhaustible sources of energy is solar energy, and in this field, solar fuel cells employing naturally evolved solar energy converting biocomplexes—photosynthetic reaction centers, such as photosystem I—are of growing interest due to their highly efficient photo-powered operation, resulting in the production of chemical potential, enabling synthesis of simple fuels. However, application of the biomolecules in such a context is strongly limited by the progressing photobleaching thereof during illumination. In the current work, we investigated the excitation wavelength dependence of the photosystem I photodamage dynamics. Moreover, we aimed to correlate the PSI–LHCI photostability dependence on the excitation wavelength with significant (ca. 50-fold) plasmonic enhancement of fluorescence due to the utilization of planar metallic nanostructure as a substrate. Finally, we present a rational approach for the significant improvement in the photostability of PSI in anoxic conditions. We find that photobleaching rates for 5 min long blue excitation are reduced from nearly 100% to 20% and 70% for substrates of bare glass and plasmonically active substrate, respectively. Our results pave promising ways for optimization of the biomimetic solar fuel cells due to synergy of the plasmon-induced absorption enhancement together with improved photostability of the molecular machinery of the solar-to-fuel conversion.
Collapse
|
3
|
Banerjee A, Lu CY, Dutt M. A hybrid coarse-grained model for structure, solvation and assembly of lipid-like peptides. Phys Chem Chem Phys 2021; 24:1553-1568. [PMID: 34940778 DOI: 10.1039/d1cp04205j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet, a fundamental understanding of the organization of these peptides with respect to the photosynthetic proteins and themselves remains unknown and is critical for guiding the design of such light-activated devices. This study investigates the relative organization of one such peptide sequence V6K2 (V: valine and K: lysine) within assemblies. Given the expansive spatiotemporal scales associated with this study, a hybrid coarse-grained (CG) model which captures the structure, conformation and aggregation of the peptide is adopted. The CG model uses a combination of iterative Boltzmann inversion and force matching to provide insight into the relative organization of V6K2 in assemblies. The CG model reproduces the structure of a V6K2 peptide sequence along with its all atom (AA) solvation structure. The relative organization of multiple peptides in an assembly, as captured by CG simulations, is in agreement with corresponding results from AA simulations. Also, a backmapping procedure reintroduces the AA details of the peptides within the aggregates captured by the CG model to demonstrate the relative organization of the peptides. Furthermore, a large number of peptides self-assemble into an elongated micelle in the CG simulation, which is consistent with experimental findings. The coarse-graining procedure is tested for transferability to longer peptide sequences, and hence can be extended to other amphiphilic peptide sequences.
Collapse
Affiliation(s)
- Akash Banerjee
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Chien Yu Lu
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
4
|
Zhao C, Chen H, Wang F, Zhang X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf B Biointerfaces 2021; 208:112040. [PMID: 34425532 DOI: 10.1016/j.colsurfb.2021.112040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
Amphiphilic self-assembling peptides are widely used in tissue and cell engineering, antimicrobials, drug-delivery systems and other biomedical fields due to their good biocompatibility, functionality, flexibility of design and synthesis, and tremendous potential as delivery carriers for drugs. Currently, the design and study of amphipathic peptides by a bottom-up method to develop new biomedical materials have become a hot topic. However, defined rules have not been established for the design and development of self-assembled peptides. Therefore, the focus of this review is to summarize and provide several rational strategies for the design and study of amphiphilic self-assembly peptides. In addition, this paper also describes the types and general self-assembling mechanism of amphipathic peptides, and outlines their applications in the delivery of hydrophobic drugs, nucleic acid drugs, peptide drugs and vaccines. Amphiphilic self-assembled peptides are expected to exploit new functional materials for drug delivery and other applications.
Collapse
Affiliation(s)
- Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, People's Republic of China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
5
|
Peng F, Chen Y, Liu J, Xing Z, Fan J, Zhang W, Qiu F. Facile design of gemini surfactant-like peptide for hydrophobic drug delivery and antimicrobial activity. J Colloid Interface Sci 2021; 591:314-325. [PMID: 33621783 DOI: 10.1016/j.jcis.2021.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Recently, many kinds of gemini-type amphiphilic peptides have been designed and shown their advantage as self-assembling nanomaterials. In this study, we proposed a simple strategy to design gemini surfactant-like peptides, which are only composed of natural amino acids and can be easily obtained by conventional peptide sythnesis. Taking two prolines as the turn-forming units, a peptide named APK was designed. The petide has a linear sequence but naturally takes the conformation like a gemini surfactant. Compared with a single-tailed surfactant-like peptide A6K, APK showed much stronger ability to undergo self-assembly and to encapsulate hydrophobic pyrene. Several hydrophobic drugs including paclitaxel, doxorubicin, etomidate and propofol were encapsulated by APK, and the corresponding formulations showed anti-tumor or anesthetic efficacy comparable to their respective clinical formulations. Furthermore, APK could inhibit the growth of different microorganisms including E. coli, S. aureus and C. albicans. Etomidate and propofol formulations encapsulated by APK also showed strong antimicrobial activity. Taking APK as an example, our study indicated a straightforward strategy to design gemini surfactant-like peptides, which could be potential nanomaterials for exploring hydrophobic drug formulations with efficacy, safety and self-antimicrobial activity.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongzhu Chen
- Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Fan
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wensheng Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Feng Qiu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Yu D, Lan J, Khan NU, Li Q, Xu F, Huang G, Xu H, Huang F. The in vitro synergistic denaturation effect of heat and surfactant on photosystem I isolated from Arthrospira Platensis. PHOTOSYNTHESIS RESEARCH 2019; 141:229-243. [PMID: 30725234 DOI: 10.1007/s11120-019-00623-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Photosystem I (PSI) generates the most negative redox potential found in nature, and the performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermal stability of PSI. Thus, understanding thermal denaturation is an important prerequisite for the use of PSI at elevated temperatures. To assess the thermal stability of surfactant-solubilized PSI from cyanobacteria Arthrospira Platensis, the synergistic denaturation effect of heat and surfactant was studied. At room temperature, surfactant n-dodecyl-β-D-maltoside solubilized PSI trimer gradually disassembles into PSI monomers and free pigments over long time. In the solubilizing process of PSI particles, surfactant can uncouple pigments of PSI, and the high concentration of surfactant causes the pigment to uncouple more; after the surfactant-solubilizing process, the uncoupling is relatively slow. During the heating process, changes were monitored by transmittance T800nm, ellipticity θ686nm and θ222nm, upon slow heating (1.5 °C per minute) of samples in Tris buffer (20 mM, pH 7.8) from 20 to 95 °C. The thermal denaturation of surfactant-solubilized PSI is a much more complicated process, which includes the uncoupling of pigments by surfactants, the disappearance of surrounding surfactants, and the unfolding of PSI α-helices. During the heating process, the uncoupling chlorophyll a (Chla) and converted pheophytin (Pheo) can form excitons of Chla-Pheo. The secondary structure α-helix of PSI proteins is stable up to 87-92 °C in the low-concentration surfactant solubilized PSI, and high-concentration surfactant and pigments uncoupling can accelerate the α-helical unfolding.
Collapse
Affiliation(s)
- Daoyong Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Jinxiao Lan
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Naseer Ullah Khan
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Quan Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Fengxi Xu
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Guihong Huang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
7
|
Crowet JM, Nasir MN, Dony N, Deschamps A, Stroobant V, Morsomme P, Deleu M, Soumillion P, Lins L. Insight into the Self-Assembling Properties of Peptergents: A Molecular Dynamics Simulation Study. Int J Mol Sci 2018; 19:ijms19092772. [PMID: 30223492 PMCID: PMC6163580 DOI: 10.3390/ijms19092772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022] Open
Abstract
By manipulating the various physicochemical properties of amino acids, the design of peptides with specific self-assembling properties has been emerging for more than a decade. In this context, short peptides possessing detergent properties (so-called "peptergents") have been developed to self-assemble into well-ordered nanostructures that can stabilize membrane proteins for crystallization. In this study, the peptide with "peptergency" properties, called ADA8 and extensively described by Tao et al., is studied by molecular dynamic simulations for its self-assembling properties in different conditions. In water, it spontaneously forms beta sheets with a β barrel-like structure. We next simulated the interaction of this peptide with a membrane protein, the bacteriorhodopsin, in the presence or absence of a micelle of dodecylphosphocholine. According to the literature, the peptergent ADA8 is thought to generate a belt of β structures around the hydrophobic helical domain that could help stabilize purified membrane proteins. Molecular dynamic simulations are here used to image this mechanism and provide further molecular details for the replacement of detergent molecules around the protein. In addition, we generalized this behavior by designing an amphipathic peptide with beta propensity, which was called ABZ12. Both peptides are able to surround the membrane protein and displace surfactant molecules. To our best knowledge, this is the first molecular mechanism proposed for "peptergency".
Collapse
Affiliation(s)
- Jean Marc Crowet
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Mehmet Nail Nasir
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Nicolas Dony
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Antoine Deschamps
- Institut des Sciences de la Vie, Université catholique de Louvain, 4-5 Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, de Duve Institute and Université Catholique de Louvain, 75 Avenue Hippocrate, 1200 Brussels, Belgium.
| | - Pierre Morsomme
- Institut des Sciences de la Vie, Université catholique de Louvain, 4-5 Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| | - Patrice Soumillion
- Institut des Sciences de la Vie, Université catholique de Louvain, 4-5 Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, University of Liège, Passage des déportés 2, 5030 Gembloux, Belgium.
| |
Collapse
|
8
|
Qiu F, Chen Y, Tang C, Zhao X. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomedicine 2018; 13:5003-5022. [PMID: 30214203 PMCID: PMC6128269 DOI: 10.2147/ijn.s166403] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Designer self-assembling peptides are a category of emerging nanobiomaterials which have been widely investigated in the past decades. In this field, amphiphilic peptides have received special attention for their simplicity in design and versatility in application. This review focuses on recent progress in designer amphiphilic peptides, trying to give a comprehensive overview about this special type of self-assembling peptides. By exploring published studies on several typical types of amphiphilic peptides in recent years, herein we discuss in detail the basic design, self-assembling behaviors and the mechanism of amphiphilic peptides, as well as how their nanostructures are affected by the peptide characteristics or environmental parameters. The applications of these peptides as potential nanomaterials for nanomedicine and nanotechnology are also summarized.
Collapse
Affiliation(s)
- Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu 610041, China, .,Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| | - Yongzhu Chen
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| |
Collapse
|
9
|
Zhao Y, Yang W, Chen C, Wang J, Zhang L, Xu H. Rational design and self-assembly of short amphiphilic peptides and applications. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Kornmueller K, Lehofer B, Leitinger G, Amenitsch H, Prassl R. Peptide self-assembly into lamellar phases and the formation of lipid-peptide nanostructures. NANO RESEARCH 2018; 11:913-928. [PMID: 29372005 PMCID: PMC5777605 DOI: 10.1007/s12274-017-1702-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lipids exhibit an extraordinary polymorphism in self-assembled mesophases, with lamellar phases as biologically most relevant representative. To mimic lipid lamellar phases with amphiphilic designer peptides, seven systematically varied short peptides were engineered. Indeed, four peptide candidates (V4D, V4WD, V4WD2, I4WD2) readily self-assembled into lamellae in aqueous solution: small-angle X-ray scattering patterns (SAXS) revealed ordered lamellar structures with a repeat distance of ~4-5 nm. Transmission electron microscopy (TEM) images confirmed the presence of stacked sheets. Two derivatives (V3D and V4D2) remained as loose aggregates dispersed in solution; one peptide (L4WD2) formed twisted tapes with internal lamellae and an antiparallel β-type monomer alignment. To understand the interaction of peptides with lipids they were mixed with phosphatidylcholines. Low peptide concentrations (1.1 mM) induced the formation of a heterogeneous mixture of vesicular structures: large multilamellar vesicles (d-spacing ~6.3 nm) coexisted with oligo- or unilamellar vesicles (~50 nm in diameter) and bicelle-like structures (~45 nm length, ~18 nm width). High peptide concentrations (11 mM) led to unilamellar vesicles (ULV, diameter ~260-280 nm) with a homogeneous mixing of lipids and peptides. SAXS revealed the temperature-dependent fine structure of these ULVs: at 25 °C the bilayer is in a fully interdigitated state (headgroup-to-headgroup distance dhh ~2.9 nm), whereas at 50 °C this interdigitation opens up (dhh ~3.6 nm). Our results highlight the versatility of self-assembled peptide superstructures: subtle changes in the amino acid composition are key design elements in creating peptide- or lipid-peptide nanostructures with the same richness in morphology as known from the lipid-world.
Collapse
Affiliation(s)
- Karin Kornmueller
- Institute of Biophysics, Medical University of Graz,
BioTechMed-Graz, Graz 8010, Austria
| | - Bernhard Lehofer
- Institute of Biophysics, Medical University of Graz,
BioTechMed-Graz, Graz 8010, Austria
| | - Gerd Leitinger
- Institute of Cell Biology, Histology and Embryology, Research Unit
Electron Microscopic Techniques, Medical University of Graz, Graz 8010,
Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology,
Graz 8010, Austria
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz,
BioTechMed-Graz, Graz 8010, Austria
- Address correspondence to Ruth Prassl,
| |
Collapse
|
11
|
Chen Y, Tang C, Zhang J, Gong M, Su B, Qiu F. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs. Int J Nanomedicine 2015; 10:847-58. [PMID: 25670898 PMCID: PMC4315539 DOI: 10.2147/ijn.s71696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Finding a suitable delivery system to improve the water solubility of hydrophobic drugs is a critical challenge in the development of effective formulations. In this study, we used A6K, a self-assembling surfactant-like peptide, as a carrier to encapsulate and deliver hydrophobic pyrene. Methods Pyrene was mixed with A6K by magnetic stirring to form a suspension. Confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, atomic force microscopy, fluorescence, and cell uptake measurements were carried out to study the features and stability of the nanostructures, the state and content of pyrene, as well as the pyrene release profile. Results The suspension formed contained pyrene monomers trapped in the hydrophobic cores of the micellar nanofibers formed by A6K, as well as nanosized pyrene crystals wrapped up and stabilized by the nanofibers. The two different encapsulation methods greatly increased the concentration of pyrene in the suspension, and formation of pyrene crystals wrapped up by A6K nanofibers might be the major contributor to this effect. Furthermore, the suspension system could readily release and transfer pyrene into living cells. Conclusion A6K could be further exploited as a promising delivery system for hydrophobic drugs.
Collapse
Affiliation(s)
- Yongzhu Chen
- Periodical Press, Sichuan University, Chengdu, People's Republic of China
| | - Chengkang Tang
- Core Facility of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Meng Gong
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Bo Su
- Core Facility of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
12
|
|
13
|
Rawat R, Kumar S, Chadha BS, Kumar D, Oberoi HS. An acidothermophilic functionally active novel GH12 family endoglucanase from Aspergillus niger HO: purification, characterization and molecular interaction studies. Antonie van Leeuwenhoek 2014; 107:103-17. [DOI: 10.1007/s10482-014-0308-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022]
|
14
|
Zheng X, Dong S, Zheng J, Li D, Li F, Luo Z. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnol Adv 2014; 32:564-74. [PMID: 24566241 DOI: 10.1016/j.biotechadv.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/13/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022]
Abstract
G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.
Collapse
Affiliation(s)
- Xuan Zheng
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Shuangshuang Dong
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jie Zheng
- College of laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Duanhua Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide. World J Microbiol Biotechnol 2014; 30:1819-27. [DOI: 10.1007/s11274-014-1608-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|
16
|
Wang X, Huang G, Yu D, Ge B, Wang J, Xu F, Huang F, Xu H, Lu JR. Solubilization and stabilization of isolated photosystem I complex with lipopeptide detergents. PLoS One 2013; 8:e76256. [PMID: 24098786 PMCID: PMC3787008 DOI: 10.1371/journal.pone.0076256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022] Open
Abstract
It is difficult to maintain a target membrane protein in a soluble and functional form in aqueous solution without biological membranes. Use of surfactants can improve solubility, but it remains challenging to identify adequate surfactants that can improve solubility without damaging their native structures and biological functions. Here we report the use of a new class of lipopeptides to solubilize photosystem I (PS-I), a well known membrane protein complex. Changes in the molecular structure of these surfactants affected their amphiphilicity and the goal of this work was to exploit a delicate balance between detergency and biomimetic performance in PS-I solubilization via their binding capacity. Meanwhile, the effects of these surfactants on the thermal and structural stability and functionality of PS-I in aqueous solution were investigated by circular dichroism, fluorescence spectroscopy, SDS-PAGE analysis and O2 uptake measurements, respectively. Our studies showed that the solubility of PS-I depended on both the polarity and charge in the hydrophilic head of the lipopeptides and the length of its hydrophobic tail. The best performing lipopeptides in favour of PS-I solubility turned out to be C14DK and C16DK, which were comparable to the optimal amphiphilicity of the conventional chemical surfactants tested. Lipopeptides showed obvious advantages in enhancing PS-I thermostability over sugar surfactant DDM and some full peptide amphiphiles reported previously. Fluorescence spectroscopy along with SDS-PAGE analysis demonstrated that lipopeptides did not undermine the polypeptide composition and conformation of PS-I after solubilization; instead they showed better performance in improving the structural stability and integrity of this multi-subunit membrane protein than conventional detergents. Furthermore, O2 uptake measurements indicated that PS-I solubilized with lipopeptides maintained its functionality. The underlying mechanism for the favorable actions of lipopeptide in PS-I solubilization and stabilization is discussed.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Guihong Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Fengxi Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
- * E-mail: (FH); (HX)
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
- * E-mail: (FH); (HX)
| | - Jian R. Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Ling Z, Liu Y, Teng S, Kang Z, Zhang J, Chen J, Du G. Rational design of a novel propeptide for improving active production of Streptomyces griseus trypsin in Pichia pastoris. Appl Environ Microbiol 2013; 79:3851-5. [PMID: 23563937 PMCID: PMC3675915 DOI: 10.1128/aem.00376-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/26/2013] [Indexed: 11/20/2022] Open
Abstract
Applying in silico simulations and in vitro experiments, the amino acid proline was proved to have a profound influence on Streptomyces griseus trypsinogen, and the hydrogen bond between H(57) and D(102) was found to be crucial for trypsin activity. By introducing an artificial propeptide, IVEF, the titer of trypsin was increased 6.71-fold.
Collapse
Affiliation(s)
- Zhenmin Ling
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shaolei Teng
- Department of Genetics & Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Zhen Kang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingjing Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
QIU FENG, CHEN YONGZHU, TANG CHENGKANG, LU YANRONG, CHENG JINGQIU, ZHAO XIAOJUN. FORMATION OF REVERSED MICELLE NANORING BY A DESIGNED SURFACTANT-LIKE PEPTIDE. NANO 2012. [DOI: 10.1142/s1793292012500245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Designing self-assembling peptides as nanomaterials has been an attractive strategy in recent years, however, these peptides were usually studied in aqueous solutions for their self-assembling behaviors and applications. In this study, we have designed a surfactant-like peptide AGD with a wedge-like shape and studied its self-assembling behaviors in aqueous solution or nonpolar system. By analyzing the intermolecular hydrogen bond using FT-IR and characterizing the nanostructures with DLS, AFM and TEM, it was confirmed that AGD could not undergo self-assembly in aqueous solution while could self-assemble into well-ordered nanorings in nonpolar system. A molecular model has been proposed to explain how the nanorings were formed in the manner of reversed micelle. These results suggested a novel strategy to fabricate self-assembling peptide nanomaterials in nonpolar system, which could have potential applications in many fields.
Collapse
Affiliation(s)
- FENG QIU
- Laboratory of Transplant Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Nanomedicine Laboratory and Institute for Nanobiomedical, Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - YONGZHU CHEN
- Laboratory of Transplant Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Nanomedicine Laboratory and Institute for Nanobiomedical, Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - CHENGKANG TANG
- Laboratory of Transplant Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Nanomedicine Laboratory and Institute for Nanobiomedical, Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - YANRONG LU
- Laboratory of Transplant Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Nanomedicine Laboratory and Institute for Nanobiomedical, Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - JINGQIU CHENG
- Laboratory of Transplant Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Nanomedicine Laboratory and Institute for Nanobiomedical, Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - XIAOJUN ZHAO
- Laboratory of Transplant Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Nanomedicine Laboratory and Institute for Nanobiomedical, Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
19
|
Liu J, Zhang X, Wang M, Liu J, Cao M, Lu J, Cui Z. Characterization of photosystem I from spinach: effect of solution pH. PHOTOSYNTHESIS RESEARCH 2012; 112:63-70. [PMID: 22477469 DOI: 10.1007/s11120-012-9737-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
Our previous work has demonstrated the isolation of photosystem I (PSI) from spinach using ultrafiltration with a final purity of 84%. In order to get a higher purity of PSI and more importantly to develop a practical bioseparation process, key physiochemical properties of PSI and their dependence on operational parameters must be assessed. In this study, the effect of solution pH, one of the most important operating parameters for membrane process, on the property of PSI was examined. Following the isolation of crude PSI from spinach using n-dodecyl-beta-D: -maltoside as detergent, the isoelectric point, aggregation size, zeta potential, low-temperature fluorescence, atomic force microscopy imaging, secondary structure, and thermal stability were determined. Solution pH was found to have a significant effect on the activity, aggregation size and thermal stability of PSI. The results also suggested that the activity of PSI was related to its aggregation size.
Collapse
Affiliation(s)
- Jianguo Liu
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Cao M, Wang Y, Ge X, Cao C, Wang J, Xu H, Xia D, Zhao X, Lu JR. Effects of Anions on Nanostructuring of Cationic Amphiphilic Peptides. J Phys Chem B 2011; 115:11862-71. [PMID: 21894997 DOI: 10.1021/jp205987w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meiwen Cao
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266555, People’s Republic of China
| | - Yuming Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266555, People’s Republic of China
| | - Xin Ge
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266555, People’s Republic of China
| | - Changhai Cao
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266555, People’s Republic of China
| | - Jing Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266555, People’s Republic of China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266555, People’s Republic of China
| | - Daohong Xia
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao 266555, People’s Republic of China
| | - Xiubo Zhao
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Manchester M13 9PL, United Kingdom
| | - Jian R. Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Manchester M13 9PL, United Kingdom
| |
Collapse
|
21
|
Liu J, Yin M, Wang M, Zhang X, Ge B, Liu S, Lu J, Cui Z. A novel membrane based process to isolate photosystem-I membrane complex from spinach. PHOTOSYNTHESIS RESEARCH 2011; 107:187-193. [PMID: 21274629 DOI: 10.1007/s11120-011-9625-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
The isolation of photosystem-I (PS-I) from spinach has been conducted using ultrafiltration with 300 kDa molecular weight cut-off polyethersulfone membranes. The effects of ultrafiltration operating conditions on PS-I activity were optimized using parameter scanning ultrafiltration. These conditions included solution pH, ionic strength, stirring speed, and permeate flux. The effects of detergent (Triton X-100 and n-dodecyl-beta-D-maltoside) concentration on time dependent activity of PS-I were also studied using an O(2) electrode. Under optimized conditions, the PS-I purity obtained in the retentate was about 84% and the activity recovery was greater than 94% after ultrafiltration. To our knowledge, this is the first report of the isolation of a membrane protein using ultrafiltration alone.
Collapse
Affiliation(s)
- Jianguo Liu
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|