1
|
Elkoshi N, Parikh S, Malcov-Brog H, Parikh R, Manich P, Netti F, Maliah A, Elkoshi H, Haj M, Rippin I, Frand J, Perluk T, Haiat-Factor R, Golan T, Regev-Rudzki N, Kiper E, Brenner R, Gonen P, Dror I, Levi H, Hameiri O, Cohen-Gulkar M, Eldar-Finkelman H, Ast G, Nizri E, Ziv Y, Elkon R, Khaled M, Ebenstein Y, Shiloh Y, Levy C. Ataxia Telangiectasia Mutated Signaling Delays Skin Pigmentation upon UV Exposure by Mediating MITF Function toward DNA Repair Mode. J Invest Dermatol 2023; 143:2494-2506.e4. [PMID: 37236596 DOI: 10.1016/j.jid.2023.03.1686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 05/28/2023]
Abstract
Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.
Collapse
Affiliation(s)
- Nadav Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Malcov-Brog
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesca Netti
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hana Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat-Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tamar Golan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Brenner
- Institute of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Pinchas Gonen
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California Loss Angeles School of Medicine, Los Angeles, California, USA
| | - Hagai Levi
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky Medical Center Ichilov, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rani Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Bahreyni-Toossi MT, Zafari N, Azimian H, Mehrad-Majd H, Farhadi J, Vaziri Nezamdoust F. Alteration in Expression of Trim29, TRIM37, TRIM44, and β-Catenin Genes After Irradiation in Human Cells with Different Radiosensitivity. Cancer Biother Radiopharm 2023; 38:506-511. [PMID: 32833505 DOI: 10.1089/cbr.2020.3915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Introduction: Radiotherapy is a crucial component of treatment for ∼70% of all cancer patients. The identification of effective biomarkers of radiosensitivity (RS) is a fundamental goal of radiobiology. The authors hypothesize that the RS of human normal and tumoral cells is correlated by the level of expression of TRIM29, TRIM37, TRIM44, and β-catenin genes. Materials and Methods: Clonogenic assay was performed and RS of four cell lines was determined by survival fraction at 2 Gy. To determine the level of gene expression 6 and 24 h after irradiation, RNA was extracted from each cell line, and expression of the above-mentioned genes in cell lines with different RS was determined by real-time polymerase chain reaction (PCR). Results: The clonogenic assay showed that human dermal fibroblasts (fibroblast) and HT-29 (colorectal) cells are radioresistant, while human foreskin fibroblasts (fibroblast) and QU-DB (lung) cells are radiosensitive. Analysis of the real-time PCR data, 6 h after irradiation, showed that the increase and decrease of the expression of TRIM29 and TRIM37 genes were directly correlated with the RS of normal and tumor cells. At 24 h postirradiation, a considerable difference was only observed in the expression of the β-catenin gene. Conclusion: This study showed that the TRIM29 and TRIM37 genes are involved in the cell response to radiation and proposed that these genes may be biomarkers for predicting RS in normal and tumoral cell lines.
Collapse
Affiliation(s)
| | - Navid Zafari
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Mehrad-Majd
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Farhadi
- Department of Biochemistry and Molecular Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | |
Collapse
|
3
|
Smits JPH, Dirks RAM, Qu J, Oortveld MAW, Brinkman AB, Zeeuwen PLJM, Schalkwijk J, Zhou H, Marks H, van den Bogaard EH. Terminal keratinocyte differentiation in vitro is associated with a stable DNA methylome. Exp Dermatol 2021; 30:1023-1032. [PMID: 32681572 PMCID: PMC8359404 DOI: 10.1111/exd.14153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
The epidermal compartment of the skin is regenerated constantly by proliferation of epidermal keratinocytes. Differentiation of a subset of these keratinocytes allows the epidermis to retain its barrier properties. Regulation of keratinocyte fate-whether to remain proliferative or terminally differentiate-is complex and not fully understood. The objective of our study was to assess if DNA methylation changes contribute to the regulation of keratinocyte fate. We employed genome-wide MethylationEPIC beadchip array measuring approximately 850 000 probes combined with RNA sequencing of in vitro cultured non-differentiated and terminally differentiated adult human primary keratinocytes. We did not observe a correlation between methylation status and transcriptome changes. Moreover, only two differentially methylated probes were detected, of which one was located in the TRIM29 gene. Although TRIM29 knock-down resulted in lower expression levels of terminal differentiation genes, these changes were minor. From these results, we conclude that-in our in vitro experimental setup-it is unlikely that changes in DNA methylation have an important regulatory role in terminal keratinocyte differentiation.
Collapse
Affiliation(s)
- Jos P. H. Smits
- Department of DermatologyRadboud Institute for Molecular Life Sciences (RIMLS)Radboud University Medical Center (Radboudumc)NijmegenThe Netherlands
| | - René A. M. Dirks
- Department of Molecular BiologyFaculty of ScienceRadboud UniversityNijmegenThe Netherlands
| | - Jieqiong Qu
- Department of Molecular Developmental BiologyFaculty of ScienceRadboud UniversityNijmegenThe Netherlands
| | - Merel A. W. Oortveld
- Department of DermatologyRadboud Institute for Molecular Life Sciences (RIMLS)Radboud University Medical Center (Radboudumc)NijmegenThe Netherlands
| | - Arie B. Brinkman
- Department of Molecular BiologyFaculty of ScienceRadboud UniversityNijmegenThe Netherlands
| | - Patrick L. J. M. Zeeuwen
- Department of DermatologyRadboud Institute for Molecular Life Sciences (RIMLS)Radboud University Medical Center (Radboudumc)NijmegenThe Netherlands
| | - Joost Schalkwijk
- Department of DermatologyRadboud Institute for Molecular Life Sciences (RIMLS)Radboud University Medical Center (Radboudumc)NijmegenThe Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental BiologyFaculty of ScienceRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRIMLS, RadboudumcNijmegenThe Netherlands
| | - Hendrik Marks
- Department of Molecular BiologyFaculty of ScienceRadboud UniversityNijmegenThe Netherlands
| | - Ellen H. van den Bogaard
- Department of DermatologyRadboud Institute for Molecular Life Sciences (RIMLS)Radboud University Medical Center (Radboudumc)NijmegenThe Netherlands
| |
Collapse
|
4
|
Zeng Q, Jiang J, Wang J, Zhou Q, Zhang X. N-Terminal Acetylation and C-Terminal Amidation of Spirulina platensis-Derived Hexapeptide: Anti-Photoaging Activity and Proteomic Analysis. Mar Drugs 2019; 17:md17090520. [PMID: 31487895 PMCID: PMC6780235 DOI: 10.3390/md17090520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023] Open
Abstract
Ultraviolet (UV) irradiation is a potent inducer for skin photoaging. This paper investigated the anti-photoaging effects of the acetylated and amidated hexapeptide (AAH), originally identified from Spirulina platensis, in (Ultraviolet B) UVB-irradiated Human immortalized keratinocytes (Hacats) and mice. The results demonstrated that AAH had much lower toxicity on Hacats than the positive matrixyl (81.52% vs. 5.32%). Moreover, AAH reduced MDA content by 49%; increased SOD, CAT, and GSH-Px activities by 103%, 49%, and 116%, respectively; decreased MMP-1 and MMP-3 expressions by 27% and 29%, respectively, compared to UVB-irradiated mice. Employing isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics, 60 differential proteins were identified, and major metabolic pathways were determined. Network analysis indicated that these differential proteins were mapped into an interaction network composed of two core sub-networks. Collectively, AAH is protective against UVB-induced skin photoaging and has potential application in skin care cosmetics.
Collapse
Affiliation(s)
- Qiaohui Zeng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Food Science, Foshan University, Foshan 528000, China.
| | - Jianguo Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jingjing Wang
- Department of Food Science, Foshan University, Foshan 528000, China.
| | - Qiuchan Zhou
- Institute of Laboratory animal science, Jinan University, Guangzhou 510632, China.
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Bürkle A. In memoriam Olivier Toussaint – Stress-induced premature senescence and the role of DNA damage. Mech Ageing Dev 2018. [DOI: 10.1016/j.mad.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Smits JPH, Niehues H, Rikken G, van Vlijmen-Willems IMJJ, van de Zande GWHJF, Zeeuwen PLJM, Schalkwijk J, van den Bogaard EH. Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models. Sci Rep 2017; 7:11838. [PMID: 28928444 PMCID: PMC5605545 DOI: 10.1038/s41598-017-12041-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022] Open
Abstract
The strong societal urge to reduce the use of experimental animals, and the biological differences between rodent and human skin, have led to the development of alternative models for healthy and diseased human skin. However, the limited availability of primary keratinocytes to generate such models hampers large-scale implementation of skin models in biomedical, toxicological, and pharmaceutical research. Immortalized cell lines may overcome these issues, however, few immortalized human keratinocyte cell lines are available and most do not form a fully stratified epithelium. In this study we compared two immortalized keratinocyte cell lines (N/TERT1, N/TERT2G) to human primary keratinocytes based on epidermal differentiation, response to inflammatory mediators, and the development of normal and inflammatory human epidermal equivalents (HEEs). Stratum corneum permeability, epidermal morphology, and expression of epidermal differentiation and host defence genes and proteins in N/TERT-HEE cultures was similar to that of primary human keratinocytes. We successfully generated N/TERT-HEEs with psoriasis or atopic dermatitis features and validated these models for drug-screening purposes. We conclude that the N/TERT keratinocyte cell lines are useful substitutes for primary human keratinocytes thereby providing a biologically relevant, unlimited cell source for in vitro studies on epidermal biology, inflammatory skin disease pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Jos P H Smits
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hanna Niehues
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gijs Rikken
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Guillaume W H J F van de Zande
- Department of Human Genetics, Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Chen X, Li L, Xu S, Bu W, Chen K, Li M, Gu H. Ultraviolet B radiation down-regulates ULK1 and ATG7 expression and impairs the autophagy response in human keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:152-164. [PMID: 29154199 DOI: 10.1016/j.jphotobiol.2017.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023]
Abstract
Autophagy is a self-digestive pathway that helps to maintain cellular homeostasis, and many autophagy-related gene (ATG)s involved the regulation of the autophagy process. Ultraviolet light is a common stressor of skin, but it is unclear how autophagy is regulated after ultraviolet exposure in epidermal keratinocytes. Here, we found that the mRNAs of some key ATG genes such as ULK1, ATG5 and ATG7 exhibited significantly lower levels in the skin tissues of the face and chest with solar ultraviolet exposure, compared with perineal skin. Interestingly, UVB radiation down-regulated the expression of ULK1, ATG3 and ATG7, and it inhibited the autophagy flux via a mechanistic target of rapamycin (MTOR)-independent pathway in human keratinocytes. The inhibition of autophagy in UVB-treated keratinocytes cannot be restored by treatment with the MTOR-dependent autophagy inducer rapamycin. Importantly, UVB treatment perturbs the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and LC3-II turnover in response to treatment with MTOR inhibitors (Torin 1 and pp242), as well as endoplasmic reticular stress (A23187 and tunicamycin), inositol pathway (L690,330) and autophagy inducers (resveratrol and STF62247). Our study demonstrates that UVB radiation down-regulates several key autophagy-related proteins and impairs the autophagy response in keratinocytes. This study demonstrates a linkage between autophagy and skin disorders associated with ultraviolet exposure.
Collapse
Affiliation(s)
- Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Li Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Song Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Wenbo Bu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China.
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Science, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
8
|
Yang H, Palmbos PL, Wang L, Kim EH, Ney GM, Liu C, Prasad J, Misek DE, Yu X, Ljungman M, Simeone DM. ATDC (Ataxia Telangiectasia Group D Complementing) Promotes Radioresistance through an Interaction with the RNF8 Ubiquitin Ligase. J Biol Chem 2015; 290:27146-27157. [PMID: 26381412 DOI: 10.1074/jbc.m115.665489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Induction of DNA damage by ionizing radiation (IR) and/or cytotoxic chemotherapy is an essential component of cancer therapy. The ataxia telangiectasia group D complementing gene (ATDC, also called TRIM29) is highly expressed in many malignancies. It participates in the DNA damage response downstream of ataxia telangiectasia-mutated (ATM) and p38/MK2 and promotes cell survival after IR. To elucidate the downstream mechanisms of ATDC-induced IR protection, we performed a mass spectrometry screen to identify ATDC binding partners. We identified a direct physical interaction between ATDC and the E3 ubiquitin ligase and DNA damage response protein, RNF8, which is required for ATDC-induced radioresistance. This interaction was refined to the C-terminal portion (amino acids 348-588) of ATDC and the RING domain of RNF8 and was disrupted by mutation of ATDC Ser-550 to alanine. Mutations disrupting this interaction abrogated ATDC-induced radioresistance. The interaction between RNF8 and ATDC, which was increased by IR, also promoted downstream DNA damage responses such as IR-induced γ-H2AX ubiquitination, 53BP1 phosphorylation, and subsequent resolution of the DNA damage foci. These studies define a novel function for ATDC in the RNF8-mediated DNA damage response and implicate RNF8 binding as a key determinant of the radioprotective function of ATDC.
Collapse
Affiliation(s)
- Huibin Yang
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Phillip L Palmbos
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Lidong Wang
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Evelyn H Kim
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gina M Ney
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109
| | - Chao Liu
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Jayendra Prasad
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - David E Misek
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Xiaochun Yu
- Departments of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Mats Ljungman
- Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Diane M Simeone
- Departments of Surgery, University of Michigan, Ann Arbor, Michigan 48109; Departments of Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109; Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
9
|
Liu C, Huang X, Hou S, Hu B, Li H. Silencing of tripartite motif (TRIM) 29 inhibits proliferation and invasion and increases chemosensitivity to cisplatin in human lung squamous cancer NCI-H520 cells. Thorac Cancer 2015; 6:31-7. [PMID: 26273332 PMCID: PMC4448470 DOI: 10.1111/1759-7714.12130] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/24/2014] [Indexed: 01/01/2023] Open
Abstract
Background TRIM29 belongs to the tripartite motif (TRIM) protein family. It has been reported to be a tumor suppressor or have oncogenic function in many cancer types. The aim of this study was to investigate whether downregulation of TRIM29 by small interfering ribonucleic acid (siRNA) could inhibit cell proliferation and invasion and increase chemosensitivity to cisplatin in human lung squamous cancer NCI-H520 cells in vitro. Methods We transformed TRIM29 siRNA into NCI-H520 cells. Real time reverse transcriptase polymerase chain reaction and Western blotting assay were employed to determine TRIM29 messenger (m)RNA and protein expressions. MTT assay was used to determine the cell proliferation. Transwell invasion assay was used to determine the cell invasion. An Annexin V-propidium iodide (AnnV/PI) staining apoptosis test was used for detecting apoptosis. Results TRIM29 siRNA could specifically and efficiently suppress TRIM29 expression at both mRNA and protein levels. Silencing of the TRIM29 by siRNA in NCI-H520 cells inhibited cell proliferation and invasion in vitro. TRIM29 knockdown resulted in chemosensitivity enhancement in NCI-H520 cells. Conclusion Downregulation of TRIM29 can lead to potent antitumor activity and chemosensitizing effect in human lung squamous cancer NCI-H520 cells.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| | - Xiaoxi Huang
- Department of Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| | - Shengcai Hou
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University Beijing, China
| |
Collapse
|
10
|
Suh SS, Hwang J, Park M, Seo HH, Kim HS, Lee JH, Moh SH, Lee TK. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar Drugs 2014; 12:5174-87. [PMID: 25317535 PMCID: PMC4210892 DOI: 10.3390/md12105174] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/16/2022] Open
Abstract
Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells.
Collapse
Affiliation(s)
- Sung-Suk Suh
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 656-830, Korea.
| | - Jinik Hwang
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 656-830, Korea.
| | - Mirye Park
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 656-830, Korea.
| | - Hyo Hyun Seo
- Anti-Aging Research Institute of Bio-FD&C Co. Ltd, Incheon 406-840, Korea.
| | - Hyoung-Shik Kim
- Anti-Aging Research Institute of Bio-FD&C Co. Ltd, Incheon 406-840, Korea.
| | - Jeong Hun Lee
- Anti-Aging Research Institute of Bio-FD&C Co. Ltd, Incheon 406-840, Korea.
| | - Sang Hyun Moh
- Anti-Aging Research Institute of Bio-FD&C Co. Ltd, Incheon 406-840, Korea.
| | - Taek-Kyun Lee
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje 656-830, Korea.
| |
Collapse
|
11
|
Banno T, Blumenberg M. Keratinocyte detachment-differentiation connection revisited, or anoikis-pityriasi nexus redux. PLoS One 2014; 9:e100279. [PMID: 24960166 PMCID: PMC4069014 DOI: 10.1371/journal.pone.0100279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/26/2014] [Indexed: 01/03/2023] Open
Abstract
Epidermis, a continuously self-renewing and differentiating organ, produces a protective stratum corneum that shields us from external chemical, physical and microbial threats. Epidermal differentiation is a multi-step process regulated by influences, some unknown, others insufficiently explored. Detachment of keratinocytes from the basement membrane is one such pro-differentiation stimulus. Here, we define the transcriptional changes during differentiation, especially those caused by detachment from the substratum. Using comprehensive transcriptional profiling, we revisited the effects of detachment as a differentiation signal to keratinocytes. We identified the genes regulated by detachment, the corresponding ontological categories and, using metaanalysis, compared the genes and categories to those regulated by other pro-differentiating stimuli. We identified 762 genes overexpressed in suspended keratinocyte, including known and novel differentiation markers, and 1427 in attached cells, including basal layer markers. Detachment induced epidermis development, cornification and desmosomal genes, but also innate immunity, proliferation inhibitors, transcription regulators and MAPKs; conversely the attached cells overexpressed cell cycle, anchoring, motility, splicing and mitochondrial genes, and both positive and negative regulators of apoptosis. Metaanalysis identified which detachment-regulated categories overlap with those induced by suprabasal location in vivo, by reaching confluency in vitro, and by inhibition of JUN kinases. Attached and in vivo basal cells shared overexpression of mitochondrial components. Interestingly, melanosome trafficking components were also overexpressed in the attached and in vivo basal keratinocytes. These results suggest that specific pro-differentiation signals induce specific features of the keratinization process, which are in vivo orchestrated into harmonious epidermal homeostasis.
Collapse
Affiliation(s)
- Tomohiro Banno
- The R.O.Perelman Department of Dermatology, NYU Langone Medical Center, New York, New York, United States of America
| | - Miroslav Blumenberg
- The R.O.Perelman Department of Dermatology, NYU Langone Medical Center, New York, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, New York, United States of America
- NYU Cancer Institute, NYU Langone Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Leszczynski D. Radiation proteomics: A brief overview. Proteomics 2014; 14:481-8. [DOI: 10.1002/pmic.201300390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Dariusz Leszczynski
- STUK - Radiation and Nuclear Safety Authority; Helsinki Finland
- Department of Biosciences and Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
13
|
Wang L, Yang H, Palmbos PL, Ney G, Detzler TA, Coleman D, Leflein J, Davis M, Zhang M, Tang W, Hicks JK, Helchowski CM, Prasad J, Lawrence TS, Xu L, Yu X, Canman CE, Ljungman M, Simeone DM. ATDC/TRIM29 phosphorylation by ATM/MAPKAP kinase 2 mediates radioresistance in pancreatic cancer cells. Cancer Res 2014; 74:1778-88. [PMID: 24469230 DOI: 10.1158/0008-5472.can-13-2289] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by therapeutic resistance for which the basis is poorly understood. Here, we report that the DNA and p53-binding protein ATDC/TRIM29, which is highly expressed in PDAC, plays a critical role in DNA damage signaling and radioresistance in pancreatic cancer cells. Ataxia-telangiectasia group D-associated gene (ATDC) mediated resistance to ionizing radiation in vitro and in vivo in mouse xenograft assays. ATDC was phosphorylated directly by MAPKAP kinase 2 (MK2) at Ser550 in an ATM-dependent manner. Phosphorylation at Ser-550 by MK2 was required for the radioprotective function of ATDC. Our results identify a DNA repair pathway leading from MK2 and ATM to ATDC, suggesting its candidacy as a therapeutic target to radiosensitize PDAC and improve the efficacy of DNA-damaging treatment.
Collapse
Affiliation(s)
- Lidong Wang
- Authors' Affiliations: Departments of Surgery, Radiation Oncology, Pharmacology, Internal Medicine and Molecular and Integrative Physiology, Translational Oncology Program, and Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bulman A, Neagu M, Constantin C. Immunomics in Skin Cancer - Improvement in Diagnosis, Prognosis and Therapy Monitoring. CURR PROTEOMICS 2013; 10:202-217. [PMID: 24228023 PMCID: PMC3821382 DOI: 10.2174/1570164611310030003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022]
Abstract
This review will focus on the elements of the skin’s immune system, immune cells and/or non-immune cells that support immune mechanisms, molecules with immune origin and/or immune functions that are involved in skin
carcinogenesis. All these immune elements are compulsory in the development of skin tumors and/or sustainability of the neoplastic process. In this light, recent data gathered in this review will acknowledge all immune elements that contribute to skin tumorigenesis; moreover, they can serve as immune biomarkers. These immune markers can contribute to the
diagnostic improvement, prognosis forecast, therapy monitoring, and even personalized therapeutical approach in skin cancer. Immune processes that sustain tumorigenesis in non-melanoma and melanoma skin cancers are described in the framework of recent data.
Collapse
|
15
|
Huang W, Williamson SR, Rao Q, Lopez-Beltran A, Montironi R, Eble JN, Grignon DJ, Idrees MT, Emerson RE, Zhou XJ, Zhang S, Baldridge LA, Hahn NM, Wang M, Koch MO, Cheng L. Novel markers of squamous differentiation in the urinary bladder. Hum Pathol 2013; 44:1989-97. [PMID: 23806524 DOI: 10.1016/j.humpath.2013.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022]
Abstract
Urinary bladder squamous cell carcinoma and urothelial carcinoma with squamous differentiation are often high-grade and high-stage tumors that are thought to be associated with a poorer prognosis and response to therapy compared with urothelial carcinoma without divergent differentiation. Therefore, recognition of a squamous component is increasingly important in guiding prognosis and therapy. We investigated the expression of MAC387, desmoglein-3, and TRIM29 in pure squamous cell carcinoma and urothelial carcinoma with squamous differentiation to determine whether they have utility as diagnostic biomarkers for squamous differentiation. Eighty-four cases were retrieved from participating institutions including 51 pure urinary bladder squamous cell carcinomas and 33 urothelial carcinomas with squamous differentiation. MAC387, desmoglein-3, and TRIM29 antibodies demonstrated positive staining in pure squamous cell carcinoma in 51 (100%), 46 (90%), and 48 (93%) cases, respectively. Urothelial carcinoma with squamous differentiation showed reactivity for MAC387, desmoglein-3, and TRIM29 in the squamous component for 32 (97%), 26 (79%), and 32 (97%) cases, respectively. MAC387 demonstrated a sensitivity of 99% and a specificity of 70% for squamous differentiation, whereas desmoglein-3 yielded a sensitivity of 86% and a specificity of 91%. No urothelial component showed greater than 10% labeling for desmoglein-3. TRIM29 labeling showed a sensitivity of 95%, but a poorer specificity of 33%. In summary, MAC387 and desmoglein-3 are reliable diagnostic markers for supporting the morphologic impression of squamous differentiation in urinary bladder carcinoma. Desmoglein-3 shows high specificity, whereas TRIM29 was most likely to demonstrate labeling in areas without light microscopically recognizable squamous differentiation.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pathology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing 210006, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Skin is a model of choice in studies on aging. Indeed, skin aging can be modulated by internal and external factors, reflecting its complexity. Two types of skin aging have been identified: intrinsic, mainly genetically determined and extrinsic—also called "photo-aging"—resulting on the impact of environmental stress and more precisely of UV rays. Simplified in vitro models, based on cellular senescence, have been developed to study the relationship between UV and aging. These models vary on the cell type (fibroblasts or keratinocytes, normal or immortalized) and the type of UV used (UVA or UVB).
Collapse
|
17
|
Isoir M, Roque T, Squiban C, Milliat F, Mondon P, Mas-Chamberlin C, Benderitter M, Guipaud O, Tamarat R. Protective Effect of Geranylgeranylacetone against Radiation-Induced Delayed Effects on Human Keratinocytes. Radiat Res 2013; 179:232-242. [DOI: 10.1667/rr2717.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
18
|
Pastila R. Effects of ultraviolet radiation on skin cell proteome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:121-7. [PMID: 23378008 DOI: 10.1007/978-94-007-5896-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ultraviolet (UV) radiation is known to cause both positive and negative health effects for humans. The synthesis of vitamin D is one of the rare beneficial effects of UV. The negative effects, such as sunburn and premature photoaging of the skin, increase the risk of skin cancer, which is the most detrimental health consequence of UV radiation. Although proteomics has been extensively applied in various areas of the biomedical field, this technique has not been commonly used in the cutaneous biology. Proteome maps of human keratinocytes and of murine skin have been established to characterize the cutaneous responses and the age-related differences. There are very few publications, in which proteomic techniques have been utilized in photobiology and hence there is no systematic research data available of the UV effects on the skin proteome. The proteomic studies have mainly focused on the UV-induced photoaging, which is the consequence of the long-term chronic UV exposure. Since the use of proteomics has been very narrow in the photobiology, there is room for new studies. Proteomics would offer a cost-effective way to large-scale screen the possible target molecules involved in the UV-derived photodamage, especially what the large-scale effects are after the acute and chronic exposure on the different skin cell populations.
Collapse
Affiliation(s)
- Riikka Pastila
- STUK - Radiation and Nuclear Safety Authority, 14, Helsinki, FI-00881, Finland.
| |
Collapse
|
19
|
Ultraviolet radiation effects on the proteome of skin cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:111-9. [PMID: 23378007 DOI: 10.1007/978-94-007-5896-4_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proteomic studies to date have had limited use as an investigative tool in the skin's response to UV radiation. These studies used cell lines and reconstructed skin and have shown evidence of cell injury with oxidative damage and stress induced heat shock proteins. Others changes included altered cytokeratin and cytoskeletal proteins with enhanced expression of TRIM29 as the keratinocytes regenerate. The associated DNA repair requires polη, Rad18/Rad16 and Rev1. In the whole animal these events would be associated with inflammation, remodelling of the epidermis and modulation of the immune response. Longer term changes include ageing and skin cancers such as melanoma, squamous cell carcinoma and basal cell carcinoma. In the future proteomics will be used to explore these important aspects of photobiology. Better characterisation of the proteins involved should lead to a greater understanding of the skin's response to UV radiation.
Collapse
|
20
|
Wu CL, Chou HC, Cheng CS, Li JM, Lin ST, Chen YW, Chan HL. Proteomic analysis of UVB-induced protein expression- and redox-dependent changes in skin fibroblasts using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis. J Proteomics 2012; 75:1991-2014. [DOI: 10.1016/j.jprot.2011.12.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/27/2011] [Accepted: 12/27/2011] [Indexed: 02/02/2023]
|
21
|
Sho T, Tsukiyama T, Sato T, Kondo T, Cheng J, Saku T, Asaka M, Hatakeyama S. TRIM29 negatively regulates p53 via inhibition of Tip60. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1245-53. [PMID: 21463657 DOI: 10.1016/j.bbamcr.2011.03.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
Ataxia-telangiectasia (AT) is an autosomal recessive genetic disease characterized by immunological deficiencies, neurological degeneration, developmental abnormalities and an increased risk of cancer. Ataxia-telangiectasia group D (ATDC) was initially described as a gene related to AT. Ataxia-telangiectasia group D, also known as TRIM29, is structurally a member of the tripartite motif (TRIM) family of proteins, some of which have been reported to be highly expressed in some human carcinomas, but the involvement of TRIM29 in carcinogenesis has not been fully elucidated. In this study, we found by using yeast two-hybrid screening that TRIM29 binds to Tip60, which has been reported as a cellular acetyltransferase protein. Overexpression of TRIM29 promoted degradation and changed localization of Tip60 and reduced acetylation of p53 at lysine 120 by Tip60, resulting in enhancement of cell growth and transforming activity. In addition, we found that TRIM29 suppresses apoptosis induced by UV irradiation in HCT116 cell lines. These findings suggest that TRIM29 functions as an oncogene that promotes tumor growth.
Collapse
Affiliation(s)
- Takuya Sho
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vankoningsloo S, Piret JP, Saout C, Noel F, Mejia J, Coquette A, Zouboulis CC, Delhalle J, Lucas S, Toussaint O. Pro-inflammatory effects of different MWCNTs dispersions in p16(INK4A)-deficient telomerase-expressing human keratinocytes but not in human SV-40 immortalized sebocytes. Nanotoxicology 2011; 6:77-93. [PMID: 21352087 DOI: 10.3109/17435390.2011.558642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We tested whether multi-walled carbon nanotubes (MWCNTs) induce oxidative stress and a pro-inflammatory response in human N-hTERT telomerase-immortalized keratinocytes, in human SZ95 SV-40 immortalized sebocytes and in in vitro reconstructed epidermises. MWCNTS were tested in various dispersion states, from raw and agglomerated particles to isolated entities obtained by sonication in the presence of dispersive agents (hydroxypropylcellulose and Pluronic F108). It was observed that: (a) Contrary to individualized MWCNTs, agglomerated particles prepared by suspension into pure water increased the intracellular levels of reactive oxygen species as well as the expression and secretion of interleukin-8 in N-hTERT cells; (b) the inflammatory signature of MWCNTs in N-hTERT cells, drawn by transcriptomic analysis with low-density microfluidic cards, included various other cytokines such as interleukin-6 or C-C motif ligand 3; (c) the pro-inflammatory effects of MWCNTs, as assessed by interleukin-8 transcript level and protein release, were not observed in SZ95 cells; and (d) the secretion of interleukins-1α and -8 from in vitro reconstructed epidermal tissues, used as specific markers for skin irritation and sensitization, was unaffected in presence of MWCNTs, confirming that the cornified layer is an efficient barrier against MWCNTs.
Collapse
|