1
|
Manck LE, Coale TH, Stephens BM, Forsch KO, Aluwihare LI, Dupont CL, Allen AE, Barbeau KA. Iron limitation of heterotrophic bacteria in the California Current System tracks relative availability of organic carbon and iron. THE ISME JOURNAL 2024; 18:wrae061. [PMID: 38624181 PMCID: PMC11069385 DOI: 10.1093/ismejo/wrae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress biomarkers, as identified in the iron-addition experiments, was also detected insitu. These results suggest iron availability will impact the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump.
Collapse
Affiliation(s)
- Lauren E Manck
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, United States
| | - Tyler H Coale
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, United States
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Brandon M Stephens
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Institute of Oceanography, National Taiwan University, Taipei, 106, Taiwan
| | - Kiefer O Forsch
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| | - Lihini I Aluwihare
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| | - Christopher L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Human Health, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Synthetic Biology, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
2
|
Noell SE, Hellweger FL, Temperton B, Giovannoni SJ. A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiol Mol Biol Rev 2023; 87:e0012422. [PMID: 36995249 PMCID: PMC10304753 DOI: 10.1128/mmbr.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In this review, we consider the regulatory strategies of aquatic oligotrophs, microbial cells that are adapted to thrive under low-nutrient concentrations in oceans, lakes, and other aquatic ecosystems. Many reports have concluded that oligotrophs use less transcriptional regulation than copiotrophic cells, which are adapted to high nutrient concentrations and are far more common subjects for laboratory investigations of regulation. It is theorized that oligotrophs have retained alternate mechanisms of regulation, such as riboswitches, that provide shorter response times and smaller amplitude responses and require fewer cellular resources. We examine the accumulated evidence for distinctive regulatory strategies in oligotrophs. We explore differences in the selective pressures copiotrophs and oligotrophs encounter and ask why, although evolutionary history gives copiotrophs and oligotrophs access to the same regulatory mechanisms, they might exhibit distinctly different patterns in how these mechanisms are used. We discuss the implications of these findings for understanding broad patterns in the evolution of microbial regulatory networks and their relationships to environmental niche and life history strategy. We ask whether these observations, which have emerged from a decade of increased investigation of the cell biology of oligotrophs, might be relevant to recent discoveries of many microbial cell lineages in nature that share with oligotrophs the property of reduced genome size.
Collapse
Affiliation(s)
- Stephen E. Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
3
|
Lanclos VC, Rasmussen AN, Kojima CY, Cheng C, Henson MW, Faircloth BC, Francis CA, Thrash JC. Ecophysiology and genomics of the brackish water adapted SAR11 subclade IIIa. THE ISME JOURNAL 2023; 17:620-629. [PMID: 36739346 PMCID: PMC10030771 DOI: 10.1038/s41396-023-01376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.
Collapse
Affiliation(s)
- V Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Anna N Rasmussen
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Conner Y Kojima
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chuankai Cheng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Michael W Henson
- Department of Geophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Noell SE, Brennan E, Washburn Q, Davis EW, Hellweger FL, Giovannoni SJ. Differences in the regulatory strategies of marine oligotrophs and copiotrophs reflect differences in motility. Environ Microbiol 2023. [PMID: 36826469 DOI: 10.1111/1462-2920.16357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Aquatic bacteria frequently are divided into lifestyle categories oligotroph or copiotroph. Oligotrophs have proportionately fewer transcriptional regulatory genes than copiotrophs and are generally non-motile/chemotactic. We hypothesized that the absence of chemotaxis/motility in oligotrophs prevents them from occupying nutrient patches long enough to benefit from transcriptional regulation. We first confirmed that marine oligotrophs are generally reduced in genes for transcriptional regulation and motility/chemotaxis. Next, using a non-motile oligotroph (Ca. Pelagibacter st. HTCC7211), a motile copiotroph (Alteromonas macleodii st. HOT1A3), and [14 C]l-alanine, we confirmed that l-alanine catabolism is not transcriptionally regulated in HTCC7211 but is in HOT1A3. We then found that HOT1A3 took 2.5-4 min to initiate l-alanine oxidation at patch l-alanine concentrations, compared to <30 s for HTCC7211. By modelling cell trajectories, we predicted that, in most scenarios, non-motile cells spend <2 min in patches, compared to >4 min for chemotactic/motile cells. Thus, the time necessary for transcriptional regulation to initiate prevents transcriptional regulation from being beneficial for non-motile oligotrophs. This is supported by a mechanistic model we developed, which predicted that HTCC7211 cells with transcriptional regulation of l-alanine metabolism would produce 12% of their standing ATP stock upon encountering an l-alanine patch, compared to 880% in HTCC7211 cells without transcriptional regulation.
Collapse
Affiliation(s)
- Stephen E Noell
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth Brennan
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Quinn Washburn
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Oregon, USA
| | | | | |
Collapse
|
5
|
Tu W, Huang WE. Rhodopsin driven microbial CO 2 fixation using synthetic biology design. Environ Microbiol 2023; 25:126-130. [PMID: 36221243 PMCID: PMC10092888 DOI: 10.1111/1462-2920.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Weiming Tu
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Dinasquet J, Landa M, Obernosterer I. SAR11 clade microdiversity and activity during the early spring blooms off Kerguelen Island, Southern Ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:907-916. [PMID: 36028477 DOI: 10.1111/1758-2229.13117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/10/2022] [Indexed: 05/17/2023]
Abstract
The ecology of the SAR11 clade, the most abundant bacterial group in the ocean, has been intensively studied in temperate and tropical regions, but its distribution remains largely unexplored in the Southern Ocean. Through amplicon sequencing of the 16S rRNA gene, we assessed the contribution of the SAR11 clade to bacterial community composition in the naturally iron fertilized region off Kerguelen Island. We investigated the upper 300 m at seven sites located in early spring phytoplankton blooms and at one high-nutrient low-chlorophyll site. Despite pronounced vertical patterns of the bacterioplankton assemblages, the SAR11 clade had high relative abundances at all depths and sites, averaging 40% (±15%) of the total community relative abundance. Micro-autoradiography combined with CARD-FISH further revealed that the clade had an overall stable contribution (45%-60% in surface waters) to bacterial biomass production (determined by 3 H-leucine incorporation) during different early bloom stages. The spatio-temporal partitioning of some of the SAR11 subclades suggests a niche specificity and periodic selection of different subclades in response to the fluctuating extreme conditions of the Southern Ocean. These observations improve our understanding of the ecology of the SAR11 clade and its implications in biogeochemical cycles in the rapidly changing Southern Ocean.
Collapse
Affiliation(s)
- Julie Dinasquet
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-Mer, France
- Marine Biology Research Division and Climate, Atmospheric Science & Physical Oceanography Department, Scripps Institution of Oceanography, San Diego, California, USA
| | - Marine Landa
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-Mer, France
- Sorbonne Université/Centre National de la Recherche Scientifique, UMR7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Ingrid Obernosterer
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne, LOMIC, Banyuls-sur-Mer, France
| |
Collapse
|
7
|
Jing X, Gong Y, Xu T, Davison PA, MacGregor-Chatwin C, Hunter CN, Xu L, Meng Y, Ji Y, Ma B, Xu J, Huang WE. Revealing CO 2-Fixing SAR11 Bacteria in the Ocean by Raman-Based Single-Cell Metabolic Profiling and Genomics. BIODESIGN RESEARCH 2022; 2022:9782712. [PMID: 37850122 PMCID: PMC10521720 DOI: 10.34133/2022/9782712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
The majority of marine microbes remain uncultured, which hinders the identification and mining of CO2-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO2-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their 13C-bicarbonate (13C-HCO3-) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution. The single-cell metabolism, phenotype and genome are consistent. We identified a not-yet-cultured Pelagibacter spp., which actively assimilates 13C-HCO3-, and also possesses most of the genes encoding enzymes of the Calvin-Benson cycle for CO2 fixation, a complete gene set for a rhodopsin-based light-harvesting system, and the full genes necessary for carotenoid synthesis. The four proteorhodopsin (PR) genes identified in the Pelagibacter spp. were confirmed by heterologous expression in E. coli. These results suggest that hitherto uncultured Pelagibacter spp. uses light-powered metabolism to contribute to global carbon cycling.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul A. Davison
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Craig MacGregor-Chatwin
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - La Xu
- Disease and Fishery Drugs Research Center, Marine Biology Institute of Shandong Province, Qingdao, ShandongChina
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Single-Cell Biotechnology, Ltd, Qingdao, ShandongChina
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, UK
| |
Collapse
|
8
|
Walworth NG, Saito MA, Lee MD, McIlvin MR, Moran DM, Kellogg RM, Fu FX, Hutchins DA, Webb EA. Why Environmental Biomarkers Work: Transcriptome-Proteome Correlations and Modeling of Multistressor Experiments in the Marine Bacterium Trichodesmium. J Proteome Res 2021; 21:77-89. [PMID: 34855411 DOI: 10.1021/acs.jproteome.1c00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.
Collapse
Affiliation(s)
- Nathan G Walworth
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington 98104, United States.,Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Riss M Kellogg
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Fei-Xue Fu
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
9
|
Ma F, Zhou H, Yang Z, Wang C, An Y, Ni L, Liu M, Wang Y, Yu L. Gene expression profile analysis and target gene discovery of Mycobacterium tuberculosis biofilm. Appl Microbiol Biotechnol 2021; 105:5123-5134. [PMID: 34125278 DOI: 10.1007/s00253-021-11361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is a fatal infectious disease to human health, and the drug tolerance and immune evasion of M. tuberculosis were reported to be related to its biofilm formation; however, the difficulty of M. tuberculosis biofilm culture and its unknown global mechanism impede its further research. Here, we developed a modified in vitro M. tuberculosis biofilm model with shorter culture time. Then we used Illumina RNA-seq technology to determine the global gene expression profile of M. tuberculosis H37Rv biofilms. Over 437 genes are expressed at significantly different levels in biofilm cells than in planktonic cells; among them, 153 were downregulated and 284 were upregulated. Go enrichment analysis and KEGG pathway analysis showed that genes involved in biosynthesis and metabolism of sulfur metabolism, steroid degradation, atrazine degradation, mammalian cell entry protein complex, etc. are involved in M. tuberculosis biofilm cells. Especially, ATP-binding cassette (ABC) transporters Rv1217c and Rv1218c were significantly upregulated in biofilm, whereas efflux pump inhibitors (EPIs) piperine and 1-(1-naphthylmethyl)-piperazine (NMP) inhibited biofilm formation and the expression of the Rv1217c and Rv1218c genes in a concentration-dependent manner, respectively, indicating Rv1217c and Rv1218c are potential target genes of M. tuberculosis biofilm. This study is the first RNA-Seq-based transcriptome profiling of M. tuberculosis biofilms and provides insights into a potential strategy for M. tuberculosis biofilm inhibition. KEY POINTS: • Characterize M. tuberculosis transcriptomes in biofilm cells by RNA-seq. • Inhibit the expression of Rv1217c and Rv1218c repressed biofilm formation.
Collapse
Affiliation(s)
- Fangxue Ma
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hong Zhou
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhiqiang Yang
- Institute of Biomedical Sciences, School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Chao Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264000, China
| | - Yanan An
- Department of Physiology, Binzhou Medical University, Yantai, 264000, China
| | - Lihui Ni
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Mingyuan Liu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yang Wang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Lu Yu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonosis, Department of Infectious Diseases, First Hospital of Jilin University, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
10
|
Debeljak P, Toulza E, Beier S, Blain S, Obernosterer I. Microbial iron metabolism as revealed by gene expression profiles in contrasted Southern Ocean regimes. Environ Microbiol 2019; 21:2360-2374. [PMID: 30958628 PMCID: PMC6618146 DOI: 10.1111/1462-2920.14621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 11/28/2022]
Abstract
Iron (Fe) is a limiting nutrient in large regions of the ocean, but the strategies of prokaryotes to cope with this micronutrient are poorly known. Using a gene-specific approach from metatranscriptomics data, we investigated seven Fe-related metabolic pathways in microbial communities from high nutrient low chlorophyll and naturally Fe-fertilized waters in the Southern Ocean. We observed major differences in the contribution of prokaryotic groups at different taxonomic levels to transcripts encoding Fe-uptake mechanisms, intracellular Fe storage and replacement and Fe-related pathways in the tricarboxylic acid (TCA) cycle. The composition of the prokaryotic communities contributing to the transcripts of a given Fe-related pathway was overall independent of the in situ Fe supply, indicating that microbial taxa utilize distinct Fe-related metabolic processes. Only a few prokaryotic groups contributed to the transcripts of more than one Fe-uptake mechanism, suggesting limited metabolic versatility. Taxa-specific expression of individual genes varied among prokaryotic groups and was substantially higher for all inspected genes in Fe-limited as compared to naturally fertilized waters, indicating the link between transcriptional state and Fe regime. Different metabolic strategies regarding low Fe concentrations in the Southern Ocean are discussed for two abundant prokaryotic groups, Pelagibacteraceae and Flavobacteriaceae.
Collapse
Affiliation(s)
- Pavla Debeljak
- Sorbonne UniversitéCNRS, Laboratoire d'Océanographie Microbienne, LOMICF‐66650 Banyuls/merFrance
- Department of Limnology and Bio‐OceanographyUniversity of Vienna, A‐1090ViennaAustria
| | - Eve Toulza
- Université Perpignan Via DomitiaIHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F‐66860PerpignanFrance
| | - Sara Beier
- Leibniz Institute for Baltic Sea ResearchWarnemündeGermany
| | - Stephane Blain
- Sorbonne UniversitéCNRS, Laboratoire d'Océanographie Microbienne, LOMICF‐66650 Banyuls/merFrance
| | - Ingrid Obernosterer
- Sorbonne UniversitéCNRS, Laboratoire d'Océanographie Microbienne, LOMICF‐66650 Banyuls/merFrance
| |
Collapse
|
11
|
Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional and Proteomic Choreography Under Phosphorus Deficiency and Re-supply in the N 2 Fixing Cyanobacterium Trichodesmium erythraeum. Front Microbiol 2019; 10:330. [PMID: 30891009 PMCID: PMC6411698 DOI: 10.3389/fmicb.2019.00330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/08/2019] [Indexed: 01/27/2023] Open
Abstract
The N2 fixing cyanobacterium Trichodesmium is a critically important organism in oligotrophic marine ecosystems, supplying “new” nitrogen (N) to the otherwise N-poor tropical and subtropical regions where it occurs. Low concentrations of phosphorus (P) in these regions can constrain Trichodesmium distribution and N2 fixation rates. Physiological characterization of a single species in a mixed community can be challenging, and ‘omic approaches are increasingly important tools for tracking nutritional physiology in a taxon-specific manner. As such, studies examining the dynamics of gene and protein markers of physiology (e.g., nutrient stress) are critical for the application and interpretation of such ‘omic data in situ. Here we leveraged combined transcriptomics, proteomics, and enzyme activity assays to track the physiological response of Trichodesmium erythraeum IMS101 to P deficiency and subsequent P re-supply over 72 h of sampling. P deficiency resulted in differential gene expression, protein abundance, and enzyme activity that highlighted a synchronous shift in P physiology with increases in the transcripts and corresponding proteins for hydrolyzing organic phosphorus, taking up phosphate with higher affinity, and modulating intracellular P demand. After P deficiency was alleviated, gene expression of these biomarkers was reduced to replete levels within 4 h of P amendment. A number of these gene biomarkers were adjacent to putative pho boxes and their expression patterns were similar to a sphR response regulator. Protein products of the P deficiency biomarkers were slow to decline, with 84% of the original P deficient protein set still significantly differentially expressed after 72 h. Alkaline phosphatase activity tracked with proteins for this enzyme. With the rapid turnover time of transcripts, they appear to be good biomarkers of a P stress phenotype, whereas proteins, with a slower turnover time, may better reflect cellular activities. These results highlight the importance of validating and pairing transcriptome and proteome data that can be applied to physiological studies of key species in situ.
Collapse
Affiliation(s)
- Kyle R Frischkorn
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.,Lamont-Doherty Earth Observatory, Palisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Palisades, NY, United States
| | - Sonya T Dyhrman
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, United States.,Lamont-Doherty Earth Observatory, Palisades, NY, United States
| |
Collapse
|
12
|
Carini P, Dupont CL, Santoro AE. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol 2018; 20:2112-2124. [PMID: 29626379 DOI: 10.1111/1462-2920.14107] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Thaumarchaea are ubiquitous in marine habitats where they participate in carbon and nitrogen cycling. Although metatranscriptomes suggest thaumarchaea are active microbes in marine waters, we understand little about how thaumarchaeal gene expression patterns relate to substrate utilization and activity. Here, we report the global transcriptional response of the marine ammonia-oxidizing thaumarchaeon 'Candidatus Nitrosopelagicus brevis' str. CN25 to ammonia limitation using RNA-Seq. We further describe the genome and transcriptome of Ca. N. brevis str. U25, a new strain capable of urea utilization. Ammonia limitation in CN25 resulted in reduced expression of transcripts coding for ammonia oxidation proteins, and increased expression of a gene coding an Hsp20-like chaperone. Despite significantly different transcript abundances across treatments, two ammonia monooxygenase subunits (amoAB), a nitrite reductase (nirK) and both ammonium transporter genes were always among the most abundant transcripts, regardless of growth state. Ca. N. brevis str. U25 cells expressed a urea transporter 139-fold more than the urease catalytic subunit ureC. Gene coexpression networks derived from culture transcriptomes and 10 thaumarchaea-enriched metatranscriptomes revealed a high degree of correlated gene expression across disparate environmental conditions and identified a module of coexpressed genes, including amoABC and nirK, that we hypothesize to represent the core ammonia oxidation machinery.
Collapse
Affiliation(s)
- Paul Carini
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| | | | - Alyson E Santoro
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| |
Collapse
|
13
|
Osman OA, Beier S, Grabherr M, Bertilsson S. Interactions of Freshwater Cyanobacteria with Bacterial Antagonists. Appl Environ Microbiol 2017; 83:e02634-16. [PMID: 28115385 PMCID: PMC5359482 DOI: 10.1128/aem.02634-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/07/2017] [Indexed: 01/15/2023] Open
Abstract
Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1:1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. l,d-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes.IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses in both heterotrophs and cyanobacteria were identified. The study contributes to a better understanding of the interspecies cellular interactions underpinning the persistence and collapse of cyanobacterial blooms.
Collapse
Affiliation(s)
- Omneya Ahmed Osman
- Department of Ecology and Genetics, Limnology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Beier
- Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Manfred Grabherr
- Department of Medical Microbiology and Biochemistry, Bioinformatics Infrastructure for Life Sciences, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Abstract
SAR11 is a group of small, carbon-oxidizing bacteria that reach a global estimated population size of 2.4×1028 cells-approximately 25% of all plankton. They are found throughout the oceans but reach their largest numbers in stratified, oligotrophic gyres, which are an expanding habitat in the warming oceans. SAR11 likely had a Precambrian origin and, over geological time, evolved into the niche of harvesting labile, low-molecular-weight dissolved organic matter (DOM). SAR11 cells are minimal in size and complexity, a phenomenon known as streamlining that is thought to benefit them by lowering the material costs of replication and maximizing transport functions that are essential to competition at ultralow nutrient concentrations. One of the surprises in SAR11 metabolism is their ability to both oxidize and produce a variety of volatile organic compounds that can diffuse into the atmosphere. SAR11 cells divide slowly and lack many forms of regulation commonly used by bacterial cells to adjust to changing environmental conditions. As a result of genome reduction, they require an unusual range of nutrients, which leads to complex biochemical interactions with other plankton. The study of SAR11 is providing insight into the biogeochemistry of labile DOM and is affecting microbiology beyond marine science by providing a model for understanding the evolution and function of streamlined cells.
Collapse
|
15
|
Transcriptional Control in Marine Copiotrophic and Oligotrophic Bacteria with Streamlined Genomes. Appl Environ Microbiol 2016; 82:6010-8. [PMID: 27474718 DOI: 10.1128/aem.01299-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteria often respond to environmental stimuli using transcriptional control, but this may not be the case for marine bacteria such as "Candidatus Pelagibacter ubique," a cultivated representative of the SAR11 clade, the most abundant organism in the ocean. This bacterium has a small, streamlined genome and an unusually low number of transcriptional regulators, suggesting that transcriptional control is low in Pelagibacter and limits its response to environmental conditions. Transcriptome sequencing during batch culture growth revealed that only 0.1% of protein-encoding genes appear to be under transcriptional control in Pelagibacter and in another oligotroph (SAR92) whereas >10% of genes were under transcriptional control in the copiotrophs Polaribacter sp. strain MED152 and Ruegeria pomeroyi When growth levels changed, transcript levels remained steady in Pelagibacter and SAR92 but shifted in MED152 and R. pomeroyi Transcript abundances per cell, determined using an internal RNA sequencing standard, were low (<1 transcript per cell) for all but a few of the most highly transcribed genes in all four taxa, and there was no correlation between transcript abundances per cell and shifts in the levels of transcription. These results suggest that low transcriptional control contributes to the success of Pelagibacter and possibly other oligotrophic microbes that dominate microbial communities in the oceans. IMPORTANCE Diverse heterotrophic bacteria drive biogeochemical cycling in the ocean. The most abundant types of marine bacteria are oligotrophs with small, streamlined genomes. The metabolic controls that regulate the response of oligotrophic bacteria to environmental conditions remain unclear. Our results reveal that transcriptional control is lower in marine oligotrophic bacteria than in marine copiotrophic bacteria. Although responses of bacteria to environmental conditions are commonly regulated at the level of transcription, metabolism in the most abundant bacteria in the ocean appears to be regulated by other mechanisms.
Collapse
|
16
|
Proteome Remodeling in Response to Sulfur Limitation in " Candidatus Pelagibacter ubique". mSystems 2016; 1:mSystems00068-16. [PMID: 27822545 PMCID: PMC5069961 DOI: 10.1128/msystems.00068-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022] Open
Abstract
The alphaproteobacterium "Candidatus Pelagibacter ubique" strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. The first response was characterized by increased transcription and translation of all "Ca. Pelagibacter ubique" genes downstream from the previously confirmed S-adenosyl methionine (SAM) riboswitches bhmT, mmuM, and metY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the heme c shuttle-encoding gene ccmC and two small genes of unknown function (SAR11_1163 and SAR11_1164). This bacterium's strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes, ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch. IMPORTANCE "Ca. Pelagibacter ubique" is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquisition systems are constitutively expressed but the enzymatic steps leading to the essential sulfur-containing amino acid methionine are regulated by a unique array of riboswitches and genes, many of which are encoded in a rapidly evolving genome region. These findings support mounting evidence that streamlined cells have evolved regulatory mechanisms that minimize transcriptional switching and, unexpectedly, localize essential sulfur acquisition genes in a genome region normally associated with adaption to environmental variation.
Collapse
|
17
|
Trace Metal Acquisition by Marine Heterotrophic Bacterioplankton with Contrasting Trophic Strategies. Appl Environ Microbiol 2016; 82:1613-1624. [PMID: 26729720 PMCID: PMC4771312 DOI: 10.1128/aem.03128-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022] Open
Abstract
Heterotrophic bacteria in the SAR11 and Roseobacter lineages shape the marine carbon, nitrogen, phosphorous, and sulfur cycles, yet they do so having adopted divergent ecological strategies. Currently, it is unknown whether these globally significant groups partition into specific niches with respect to micronutrients (e.g., trace metals) and how that may affect marine trace metal cycling. Here, we used comparative genomics to identify diverse iron, cobalt, nickel, copper, and zinc uptake capabilities in SAR11 and Roseobacter genomes and uncover surprising unevenness within and between lineages. The strongest predictors for the extent of the metal uptake gene content are the total number of transporters per genome, genome size, total metal transporters, and GC content, but numerous exceptions exist in both groups. Taken together, our results suggest that SAR11 have strongly minimized their trace metal uptake versatility, with high-affinity zinc uptake being a unique exception. The larger Roseobacter genomes have greater trace metal uptake versatility on average, but they also appear to have greater plasticity, resulting in phylogenetically similar genomes having largely different capabilities. Ultimately, phylogeny is predictive of the diversity and extent of 20 to 33% of all metal uptake systems, suggesting that specialization in metal utilization mostly occurred independently from overall lineage diversification in both SAR11 and Roseobacter. We interpret these results as reflecting relatively recent trace metal niche partitioning in both lineages, suggesting that concentrations and chemical forms of metals in the marine environment are important factors shaping the gene content of marine heterotrophic Alphaproteobacteria of the SAR11 and Roseobacter lineages.
Collapse
|
18
|
Growth rates and rRNA content of four marine bacteria in pure cultures and in the Delaware estuary. ISME JOURNAL 2015; 10:823-32. [PMID: 26394004 DOI: 10.1038/ismej.2015.156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 02/01/2023]
Abstract
Interpretation of 16S ribosomal RNA (rRNA) to 16S rRNA gene ratios (rRNA:rDNA) is based on a limited number of studies with rapidly growing copiotrophic bacteria. The most abundant bacteria in the ocean are oligotrophs, which probably grow more slowly than those bacteria whose rRNA:rDNA versus growth rate relationships are known. To examine whether rRNA:rDNA varies differently in oligotrophic marine bacteria than in copiotrophic bacteria, we used quantitative PCR and reverse transcriptase quantitative PCR to measure rRNA:rDNA in two marine copiotrophs and in two marine oligotrophs, including Candidatus Pelagibacter ubique HTCC1062, a coastal isolate of SAR11, the most abundant bacterial clade in the ocean. The rRNA:rDNA ratios for the two copiotrophs were similar to those expected on the basis of an analysis of previously studied copiotrophic bacteria, while the ratios for the two oligotrophs were substantially lower than predicted even given their slow growth rates. The rRNA:rDNA ratios determined along a transect in the Delaware estuary suggested that SAR11 bacteria grow at rates close to the growth rate in culture, while rates of the two copiotrophs were far below those observed in laboratory cultures. Our results have implications for interpreting rRNA:rDNA from natural communities, understanding growth strategies and comparing regulatory mechanisms in copiotrophs and oligotrophs.
Collapse
|
19
|
Beier S, Gálvez MJ, Molina V, Sarthou G, Quéroué F, Blain S, Obernosterer I. The transcriptional regulation of the glyoxylate cycle in SAR11 in response to iron fertilization in the Southern Ocean. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:427-434. [PMID: 25625554 DOI: 10.1111/1758-2229.12267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/14/2014] [Indexed: 06/04/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a central metabolic pathway that is present in all aerobic organisms and initiates the respiration of organic material. The glyoxylate cycle is a variation of the TCA cycle, where organic material is recycled for subsequent assimilation into cell material instead of being released as carbon dioxide. Despite the importance for the fate of organic matter, the environmental factors that induce the glyoxylate cycle in microbial communities remain poorly understood. In this study, we assessed the expression of isocitrate lyase, the enzyme that induces the switch to the glyoxylate cycle, of the ubiquitous SAR11 clade in response to natural iron fertilization in the Southern Ocean. The cell-specific transcriptional regulation of the glyoxylate cycle, as determined by the ratio between copy numbers of isocitrate lyase gene transcripts and isocitrate genes, was consistently lower in iron fertilized than in high-nutrient, low chlorophyll waters (by 2.4- to 16.5-fold). SAR11 cell-specific isocitrate lyase gene transcription was negatively correlated to chlorophyll a, and bulk bacterial heterotrophic metabolism. We conclude that the glyoxylate cycle is a metabolic strategy for SAR11 that is highly sensitive to the degree of iron and carbon limitation in the marine environment.
Collapse
Affiliation(s)
- Sara Beier
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| | - María J Gálvez
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
- Graduate program in Oceanography, Department of Oceanography, University of Concepción, Chile
| | - Veronica Molina
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso, Chile
| | - Géraldine Sarthou
- LEMAR-UMR CNRS UBO IRD 6539, Technopole Brest Iroise, Place Nicolas Copernic, Plouzané, F29280, France
| | - Fabien Quéroué
- LEMAR-UMR CNRS UBO IRD 6539, Technopole Brest Iroise, Place Nicolas Copernic, Plouzané, F29280, France
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas 7001, Australia
- Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas 7001, Australia
| | - Stephane Blain
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| | - Ingrid Obernosterer
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
| |
Collapse
|
20
|
Implications of streamlining theory for microbial ecology. ISME JOURNAL 2014; 8:1553-65. [PMID: 24739623 DOI: 10.1038/ismej.2014.60] [Citation(s) in RCA: 492] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022]
Abstract
Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, 'simplicity is the ultimate sophistication'. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.
Collapse
|
21
|
Proteomic and transcriptomic analyses of "Candidatus Pelagibacter ubique" describe the first PII-independent response to nitrogen limitation in a free-living Alphaproteobacterium. mBio 2013; 4:e00133-12. [PMID: 24281717 PMCID: PMC3870248 DOI: 10.1128/mbio.00133-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Nitrogen is one of the major nutrients limiting microbial productivity in the ocean, and as a result, most marine microorganisms have evolved systems for responding to nitrogen stress. The highly abundant alphaproteobacterium "Candidatus Pelagibacter ubique," a cultured member of the order Pelagibacterales (SAR11), lacks the canonical GlnB, GlnD, GlnK, and NtrB/NtrC genes for regulating nitrogen assimilation, raising questions about how these organisms respond to nitrogen limitation. A survey of 266 Alphaproteobacteria genomes found these five regulatory genes nearly universally conserved, absent only in intracellular parasites and members of the order Pelagibacterales, including "Ca. Pelagibacter ubique." Global differences in mRNA and protein expression between nitrogen-limited and nitrogen-replete cultures were measured to identify nitrogen stress responses in "Ca. Pelagibacter ubique" strain HTCC1062. Transporters for ammonium (AmtB), taurine (TauA), amino acids (YhdW), and opines (OccT) were all elevated in nitrogen-limited cells, indicating that they devote increased resources to the assimilation of nitrogenous organic compounds. Enzymes for assimilating amine into glutamine (GlnA), glutamate (GltBD), and glycine (AspC) were similarly upregulated. Differential regulation of the transcriptional regulator NtrX in the two-component signaling system NtrY/NtrX was also observed, implicating it in control of the nitrogen starvation response. Comparisons of the transcriptome and proteome supported previous observations of uncoupling between transcription and translation in nutrient-deprived "Ca. Pelagibacter ubique" cells. Overall, these data reveal a streamlined, PII-independent response to nitrogen stress in "Ca. Pelagibacter ubique," and likely other Pelagibacterales, and show that they respond to nitrogen stress by allocating more resources to the assimilation of nitrogen-rich organic compounds. IMPORTANCE Pelagibacterales are extraordinarily abundant and play a pivotal role in marine geochemical cycles, as one of the major recyclers of labile dissolved organic matter. They are also models for understanding how streamlining selection can reshape chemoheterotroph metabolism. Streamlining and its broad importance to environmental microbiology are emerging slowly from studies that reveal the complete genomes of uncultured organisms. Here, we report another remarkable example of streamlined metabolism in Pelagibacterales, this time in systems that control nitrogen assimilation. Pelagibacterales are major contributors to metatranscriptomes and metaproteomes from ocean systems, where patterns of gene expression are used to gain insight into ocean conditions and geochemical cycles. The data presented here supply background that is essential to interpreting data from field studies.
Collapse
|
22
|
Rappé MS. Stabilizing the foundation of the house that ‘omics builds: the evolving value of cultured isolates to marine microbiology. Curr Opin Microbiol 2013; 16:618-24. [DOI: 10.1016/j.mib.2013.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 11/24/2022]
|
23
|
Tripp HJ. The unique metabolism of SAR11 aquatic bacteria. J Microbiol 2013; 51:147-53. [DOI: 10.1007/s12275-013-2671-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/11/2012] [Indexed: 01/19/2023]
|
24
|
Zarraonaindia I, Smith DP, Gilbert JA. Beyond the genome: community-level analysis of the microbial world. BIOLOGY & PHILOSOPHY 2013; 28:261-282. [PMID: 23482824 PMCID: PMC3585761 DOI: 10.1007/s10539-012-9357-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/29/2012] [Indexed: 05/10/2023]
Abstract
The development of culture-independent strategies to study microbial diversity and function has led to a revolution in microbial ecology, enabling us to address fundamental questions about the distribution of microbes and their influence on Earth's biogeochemical cycles. This article discusses some of the progress that scientists have made with the use of so-called "omic" techniques (metagenomics, metatranscriptomics, and metaproteomics) and the limitations and major challenges these approaches are currently facing. These 'omic methods have been used to describe the taxonomic structure of microbial communities in different environments and to discover new genes and enzymes of industrial and medical interest. However, microbial community structure varies in different spatial and temporal scales and none of the 'omic techniques are individually able to elucidate the complex aspects of microbial communities and ecosystems. In this article we highlight the importance of a spatiotemporal sampling design, together with a multilevel 'omic approach and a community analysis strategy (association networks and modeling) to examine and predict interacting microbial communities and their impact on the environment.
Collapse
Affiliation(s)
- Iratxe Zarraonaindia
- Argonne National Laboratory, Institute for Genomic and Systems Biology, 9700 South Cass Avenue, Argonne, IL 60439 USA
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Daniel P. Smith
- Argonne National Laboratory, Institute for Genomic and Systems Biology, 9700 South Cass Avenue, Argonne, IL 60439 USA
| | - Jack A. Gilbert
- Argonne National Laboratory, Institute for Genomic and Systems Biology, 9700 South Cass Avenue, Argonne, IL 60439 USA
- Department of Ecology and Evolution, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 USA
| |
Collapse
|
25
|
Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci U S A 2013; 110:E488-97. [PMID: 23345438 DOI: 10.1073/pnas.1222099110] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.
Collapse
|
26
|
Hamamura N, Meneghin J, Reysenbach AL. Comparative community gene expression analysis of Aquificales-dominated geothermal springs. Environ Microbiol 2013; 15:1226-37. [PMID: 23279131 DOI: 10.1111/1462-2920.12061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 11/01/2012] [Accepted: 11/25/2012] [Indexed: 11/29/2022]
Abstract
Members of Sulfurihydrogenibium are often observed as visible filamentous biomass in circumneutral hot springs and play roles in sulfur-cycling, hydrogen oxidation and iron mineralization. To gain insight into the ecophysiology of Sulfurihydrogenibium populations, we conducted preliminary metatranscriptomic analysis of three distinct thermal springs; Calcite Springs (YNP-CS) and Mammoth Springs (YNP-MHS) in Yellowstone National Park, USA, and Furnas Springs (AZ) in Azores, Portugal. Genes to which transcripts were assigned revealed commonly expressed functions among the sites, while several differences were also observed. All three sites, Sulfurihydrogenibium spp. dominate and are obtaining energy via metabolism of sulfur compounds under microaerophilic conditions. Cell motility was one of the expressed functions in two sites (YNP-CS and AZ) with slower stream flow rates and thicker well-formed biofilms. The transcripts from YNP-CS and -MHS exhibited varying levels of sequence divergence from the reference genomes and corresponding metagenomes, suggesting the presence of microdiversity among Sulfurihydrogenibium populations in situ. Conversely, the majority of the AZ transcripts were identical to the S. azorense genome. Our initial results show that the metatranscriptomes in these similar Aquificales-dominated communities can reveal community-level gene function in geochemically distinct thermal environments.
Collapse
Affiliation(s)
- Natsuko Hamamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, 790-8577, Japan.
| | | | | |
Collapse
|
27
|
Manganese uptake in marine bacteria; the novel MntX transporter is widespread in Roseobacters, Vibrios, Alteromonadales and the SAR11 and SAR116 clades. ISME JOURNAL 2012. [PMID: 23190726 DOI: 10.1038/ismej.2012.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We showed that two very different manganese transporters occur in various important genera of marine bacteria. The ABC transporter encoded by sitABCD of the model Roseobacter-clade bacterium Ruegeria pomeroyi DSS-3 is required for Mn(2+) import and was repressed by the Mur (Manganese uptake regulator) transcriptional regulator in Mn-replete media. Most genome-sequenced Roseobacter strains contain SitABCD, which are in at least two sub-groups, judged by their amino-acid sequences. However, a few Roseobacters, for example, Roseovarius nubinhibens, lack sitABCD, but these contain another gene, mntX, which encodes a predicted inner membrane polypeptide and is preceded by cis-acting Mur-responsive MRS sequences. It was confirmed directly that mntX of Roseovarius nubinhibens encodes a manganese transporter that was required for growth in Mn-depleted media and that its expression was repressed by Mur in Mn-replete conditions. MntX homologues occur in the deduced proteomes of several bacterial species. Strikingly, all of these live in marine habitats, but are in distantly related taxonomic groups, in the γ- and α-proteobacteria. Notably, MntX was prevalent in nearly all strains of Vibrionales, including the important pathogen, Vibrio cholerae. It also occurs in a strain of the hugely abundant Candidatus Pelagibacter (SAR11), and in another populous marine bacterium, Candidatus Puniceispirillum marinum (SAR116). Consistent with this, MntX was abundant in marine bacterial metagenomes, with one sub-type occurring in an as-yet unknown bacterial clade.
Collapse
|
28
|
Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, Rimoldi JM. Marine proteomics: a critical assessment of an emerging technology. JOURNAL OF NATURAL PRODUCTS 2012; 75:1833-1877. [PMID: 23009278 DOI: 10.1021/np300366a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.
Collapse
Affiliation(s)
- Marc Slattery
- Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Desai DK, Desai FD, Laroche J. Factors influencing the diversity of iron uptake systems in aquatic microorganisms. Front Microbiol 2012; 3:362. [PMID: 23087680 PMCID: PMC3475125 DOI: 10.3389/fmicb.2012.00362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dFe. Gradients in dFe concentrations and diversity of the Fe-ligand pool from coastal to open ocean waters have presumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM)-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations) of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT, and Fe2+ transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure) while genes encoding ferrisiderophore, heme and Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly).
Collapse
Affiliation(s)
- Dhwani K Desai
- Biological Oceanography Division, Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) Kiel, Germany
| | | | | |
Collapse
|
30
|
Abstract
SAR11 is an ancient and diverse clade of heterotrophic bacteria that are abundant throughout the world’s oceans, where they play a major role in the ocean carbon cycle. Correlations between the phylogenetic branching order and spatiotemporal patterns in cell distributions from planktonic ocean environments indicate that SAR11 has evolved into perhaps a dozen or more specialized ecotypes that span evolutionary distances equivalent to a bacterial order. We isolated and sequenced genomes from diverse SAR11 cultures that represent three major lineages and encompass the full breadth of the clade. The new data expand observations about genome evolution and gene content that previously had been restricted to the SAR11 Ia subclade, providing a much broader perspective on the clade’s origins, evolution, and ecology. We found small genomes throughout the clade and a very high proportion of core genome genes (48 to 56%), indicating that small genome size is probably an ancestral characteristic. In their level of core genome conservation, the members of SAR11 are outliers, the most conserved free-living bacteria known. Shared features of the clade include low GC content, high gene synteny, a large hypervariable region bounded by rRNA genes, and low numbers of paralogs. Variation among the genomes included genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important to niche partitioning and ecotype divergence within the clade. These data provide support for the conclusion that streamlining selection for efficient cell replication in the planktonic habitat has occurred throughout the evolution and diversification of this clade. The SAR11 clade is the most abundant group of marine microorganisms worldwide, making them key players in the global carbon cycle. Growing knowledge about their biochemistry and metabolism is leading to a more mechanistic understanding of organic carbon oxidation and sequestration in the oceans. The discovery of small genomes in SAR11 provided crucial support for the theory that streamlining selection can drive genome reduction in low-nutrient environments. Study of isolates in culture revealed atypical organic nutrient requirements that can be attributed to genome reduction, such as conditional auxotrophy for glycine and its precursors, a requirement for reduced sulfur compounds, and evidence for widespread cycling of C1 compounds in marine environments. However, understanding the genetic variation and distribution of such pathways and characteristics like streamlining throughout the group has required the isolation and genome sequencing of diverse SAR11 representatives, an analysis of which we provide here.
Collapse
|
31
|
Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PLoS One 2012; 7:e43432. [PMID: 22952681 PMCID: PMC3430701 DOI: 10.1371/journal.pone.0043432] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/20/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Growth of the ocean's most abundant primary producer, the cyanobacterium Prochlorococcus, is tightly synchronized to the natural 24-hour light-dark cycle. We sought to quantify the relationship between transcriptome and proteome dynamics that underlie this obligate photoautotroph's highly choreographed response to the daily oscillation in energy supply. METHODOLOGY/PRINCIPAL FINDINGS Using RNA-sequencing transcriptomics and mass spectrometry-based quantitative proteomics, we measured timecourses of paired mRNA-protein abundances for 312 genes every 2 hours over a light-dark cycle. These temporal expression patterns reveal strong oscillations in transcript abundance that are broadly damped at the protein level, with mRNA levels varying on average 2.3 times more than the corresponding protein. The single strongest observed protein-level oscillation is in a ribonucleotide reductase, which may reflect a defense strategy against phage infection. The peak in abundance of most proteins also lags that of their transcript by 2-8 hours, and the two are completely antiphase for some genes. While abundant antisense RNA was detected, it apparently does not account for the observed divergences between expression levels. The redirection of flux through central carbon metabolism from daytime carbon fixation to nighttime respiration is associated with quite small changes in relative enzyme abundances. CONCLUSIONS/SIGNIFICANCE Our results indicate that expression responses to periodic stimuli that are common in natural ecosystems (such as the diel cycle) can diverge significantly between the mRNA and protein levels. Protein expression patterns that are distinct from those of cognate mRNA have implications for the interpretation of transcriptome and metatranscriptome data in terms of cellular metabolism and its biogeochemical impact.
Collapse
Affiliation(s)
- Jacob R. Waldbauer
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Joint Program in Chemical Oceanography, Woods Hole Oceanographic Institution and Massachusetts Institute of Technology, Cambridge Massachusetts, United States of America
| | - Sébastien Rodrigue
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Maureen L. Coleman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts, United States of America
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts, United States of America
| |
Collapse
|
32
|
Yuan J, Wei B, Lipton MS, Gao H. Impact of ArcA loss in Shewanella oneidensis
revealed by comparative proteomics under aerobic and anaerobic conditions. Proteomics 2012; 12:1957-69. [DOI: 10.1002/pmic.201100651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Yuan
- Institute of Microbiology and College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Buyun Wei
- Institute of Microbiology and College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Mary S. Lipton
- Biological Sciences Division; Pacific Northwest National Laboratory; Richland WA USA
- U.S. Department of Energy Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
33
|
Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, Raftery MJ, Ducklow H, Grzymski JJ, Murray AE, Cavicchioli R. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME JOURNAL 2012; 6:1883-900. [PMID: 22534610 DOI: 10.1038/ismej.2012.28] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A metaproteomic survey of surface coastal waters near Palmer Station on the Antarctic Peninsula, West Antarctica, was performed, revealing marked differences in the functional capacity of summer and winter communities of bacterioplankton. Proteins from Flavobacteria were more abundant in the summer metaproteome, whereas winter was characterized by proteins from ammonia-oxidizing Marine Group I Crenarchaeota. Proteins prevalent in both seasons were from SAR11 and Rhodobacterales clades of Alphaproteobacteria, as well as many lineages of Gammaproteobacteria. The metaproteome data were used to elucidate the main metabolic and energy generation pathways and transport processes occurring at the microbial level in each season. In summer, autotrophic carbon assimilation appears to be driven by oxygenic photoautotrophy, consistent with high light availability and intensity. In contrast, during the dark polar winter, the metaproteome supported the occurrence of chemolithoautotrophy via the 3-hydroxypropionate/4-hydroxybutyrate cycle and the reverse tricarboxylic acid cycle of ammonia-oxidizing archaea and nitrite-oxidizing bacteria, respectively. Proteins involved in nitrification were also detected in the metaproteome. Taurine appears to be an important source of carbon and nitrogen for heterotrophs (especially SAR11), with transporters and enzymes for taurine uptake and degradation abundant in the metaproteome. Divergent heterotrophic strategies for Alphaproteobacteria and Flavobacteria were indicated by the metaproteome data, with Alphaproteobacteria capturing (by high-affinity transport) and processing labile solutes, and Flavobacteria expressing outer membrane receptors for particle adhesion to facilitate the exploitation of non-labile substrates. TonB-dependent receptors from Gammaproteobacteria and Flavobacteria (particularly in summer) were abundant, indicating that scavenging of substrates was likely an important strategy for these clades of Southern Ocean bacteria. This study provides the first insight into differences in functional processes occurring between summer and winter microbial communities in coastal Antarctic waters, and particularly highlights the important role that 'dark' carbon fixation has in winter.
Collapse
Affiliation(s)
- Timothy J Williams
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hopkinson BM, Barbeau KA. Iron transporters in marine prokaryotic genomes and metagenomes. Environ Microbiol 2011; 14:114-28. [DOI: 10.1111/j.1462-2920.2011.02539.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Nakanishi Y, Fukuda S, Chikayama E, Kimura Y, Ohno H, Kikuchi J. Dynamic omics approach identifies nutrition-mediated microbial interactions. J Proteome Res 2010; 10:824-36. [PMID: 21058740 DOI: 10.1021/pr100989c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
"Omics" studies reported to date have dealt with either thoroughly characterized single species or poorly explored meta-microbial communities. However, these techniques are capable of producing highly informative data for the analysis of interactions between two organisms. We examined the bacterial interaction between Escherichia coli O157:H7 (O157) and Bifidobacterium longum (BL) as a pathogenic-commensal bacterial model creating a minimum microbial ecosystem in the gut using dynamic omics approaches, consisting of improved time-lapse 2D-nuclear magnetic resonance (NMR) metabolic profiling, transcriptomic, and proteomic analyses. Our study revealed that the minimum ecosystem was established by bacterial adaptation to the changes in the extracellular environment, primarily by O157, but not by BL. Additionally, the relationship between BL and O157 could be partially regarded as that between a producer and a consumer of nutrients, respectively, especially with regard to serine and aspartate metabolism. Taken together, our profiling system can provide a new insight into the primary metabolic dynamics in microbial ecosystems.
Collapse
Affiliation(s)
- Yumiko Nakanishi
- Graduate School of Nanobiosciences, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|