1
|
Singh N, Chattopadhyay G, Sundaramoorthy NS, Varadarajan R, Singh R. Understanding the physiological role and cross-interaction network of VapBC35 toxin-antitoxin system from Mycobacterium tuberculosis. Commun Biol 2025; 8:327. [PMID: 40016306 PMCID: PMC11868609 DOI: 10.1038/s42003-025-07663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
The VapBC toxin-antitoxin (TA) system, composed of VapC toxin and VapB antitoxin, has gained attention due to its relative abundance in members of the M. tuberculosis complex. Here, we have functionally characterised VapBC35 TA system from M. tuberculosis. We show that ectopic expression of VapC35 inhibits M. smegmatis growth in a bacteriostatic manner. Also, an increase in the VapB35 antitoxin to VapC35 toxin ratio results in a stronger binding affinity of the complex with the promoter-operator DNA. We show that VapBC35 is necessary for M. tuberculosis adaptation in oxidative stress conditions but is dispensable for M. tuberculosis growth in guinea pigs. Further, using a combination of co-expression studies and biophysical methods, we report that VapC35 also interacts with non-cognate antitoxin VapB3. Taken together, the present study advances our understanding of cross-interaction networks among VapBC TA systems from M. tuberculosis.
Collapse
Affiliation(s)
- Neelam Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | | | - Niranjana Sri Sundaramoorthy
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Shafipour M, Mohammadzadeh A, Mahmoodi P, Dehghanpour M, Ghaemi EA. Distribution of lineages and type II toxin-antitoxin systems among rifampin-resistant Mycobacterium Tuberculosis Isolates. PLoS One 2024; 19:e0309292. [PMID: 39446830 PMCID: PMC11500941 DOI: 10.1371/journal.pone.0309292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/07/2024] [Indexed: 10/26/2024] Open
Abstract
Type II toxin-antitoxin systems such as mazEF3, vapBC3, and relJK play a role in antibiotic resistance and tolerance. Among the different known TA systems, mazEF3, vapBC3, and relJK, which are type II systems, have specific roles in drug resistance. Therefore, the aim of this study was to investigate the mutations in these genes in sensitive and resistant isolates of Mycobacterium tuberculosis. Thirty-two rifampin-resistant and 121 rifampin-sensitive M. tuberculosis isolates were collected from various regions of Iran. Lineage typing was performed using the ASO-PCR method. Mutations in the rpoB gene were analyzed in all isolates by MAS-PCR. Furthermore, mutations in the mazEF3, relJK, and vapBC3 genes of the type II toxin system were assessed through PCR sequencing. These sequences were analyzed using COBALT and SnapGene 2017, and submitted to the GenBank database. Among the 153 M. tuberculosis samples, lineages 4, 3 and 2 were the most common. Lineage 2 had the highest rate of rifampin resistance. Mutations in rpoB531 were the most frequent in resistant isolates. Examination of the toxin-antitoxin system showed that rifampin-resistant isolates belonging to lineage 3 had mutations in either the toxin or antitoxin parts of all three TA systems. A mutation in nucleotide 195 (codon 65) of mazF3 leading to an amino acid change from threonine to isoleucine was detected in all rifampin-resistant isolates. M. tuberculosis isolates belonging to lineage 2 exhibited the highest rifampin resistance in our study. Identifying the mutation in mazF3 in all rifampin-resistant isolates can highlight the significance of this mutation in the development of drug resistance in M. tuberculosis. Expanding the sample size in future studies can help develop a new method for identifying resistant isolates.
Collapse
Affiliation(s)
- Maryam Shafipour
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Dehghanpour
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ezzat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
3
|
Gu Q, Zhu X, Yu Y, Jiang T, Pan Z, Ma J, Yao H. Type II and IV toxin-antitoxin systems coordinately stabilize the integrative and conjugative element of the ICESa2603 family conferring multiple drug resistance in Streptococcus suis. PLoS Pathog 2024; 20:e1012169. [PMID: 38640137 PMCID: PMC11062541 DOI: 10.1371/journal.ppat.1012169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/01/2024] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
Integrative and conjugative elements (ICEs) play a vital role in bacterial evolution by carrying essential genes that confer adaptive functions to the host. Despite their importance, the mechanism underlying the stable inheritance of ICEs, which is necessary for the acquisition of new traits in bacteria, remains poorly understood. Here, we identified SezAT, a type II toxin-antitoxin (TA) system, and AbiE, a type IV TA system encoded within the ICESsuHN105, coordinately promote ICE stabilization and mediate multidrug resistance in Streptococcus suis. Deletion of SezAT or AbiE did not affect the strain's antibiotic susceptibility, but their duple deletion increased susceptibility, mainly mediated by the antitoxins SezA and AbiEi. Further studies have revealed that SezA and AbiEi affect the genetic stability of ICESsuHN105 by moderating the excision and extrachromosomal copy number, consequently affecting the antibiotic resistance conferred by ICE. The DNA-binding proteins AbiEi and SezA, which bind palindromic sequences in the promoter, coordinately modulate ICE excision and extracellular copy number by binding to sequences in the origin-of-transfer (oriT) and the attL sites, respectively. Furthermore, AbiEi negatively regulates the transcription of SezAT by binding directly to its promoter, optimizing the coordinate network of SezAT and AbiE in maintaining ICESsuHN105 stability. Importantly, SezAT and AbiE are widespread and conserved in ICEs harbouring diverse drug-resistance genes, and their coordinated effects in promoting ICE stability and mediating drug resistance may be broadly applicable to other ICEs. Altogether, our study uncovers the TA system's role in maintaining the genetic stability of ICE and offers potential targets for overcoming the dissemination and evolution of drug resistance.
Collapse
Affiliation(s)
- Qibing Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Xiayu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Tao Jiang
- Department of Stomatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
4
|
Shafipour M, Mohammadzadeh A, Ghaemi EA, Mahmoodi P. PCR Development for Analysis of Some Type II Toxin-Antitoxin Systems, relJK, mazEF3, and vapBC3 Genes, in Mycobacterium tuberculosis and Mycobacterium bovis. Curr Microbiol 2024; 81:90. [PMID: 38311651 DOI: 10.1007/s00284-023-03599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
Toxin-Antitoxin (TA) systems are some small genetic modules in bacteria that play significant roles in resistance and tolerance development to antibiotics. Whole genome sequencing (WGS) is an effective method to analyze TA systems in pathogenic Mycobacteria. However, this study aimed to use a simple and inexpensive PCR-Sequencing approach to investigate the type II TA system. Using data from the WGS of Mycobacterium tuberculosis (M. tuberculosis) strain H37Rv and Mycobacterium bovis (M. bovis) strain BCG, primers specific to the relJK, mazEF3, and vapBC3 gene families were designed by Primer3 software. Following that, a total of 90 isolates were examined using the newly developed PCR assay, consisting of 64 M. tuberculosis and 26 M. bovis isolates, encompassing both 45 rifampin-sensitive and 45 rifampin-resistant strains. Finally, 28 isolates (including 14 rifampin-resistant isolates) were sent for sequencing, and their sequences were aligned and compared to the mentioned reference sequences. The amplicons size of mazEF3, relJK, and vapBC3 genes were 825, 875, and 934 bp, respectively. Furthermore, all tested isolates showed the specific amplicons for these TA families. To evaluate the specificity of the primers, PCR was performed on S. aureus and E.coli isolates. None of the examined samples had the desired amplicons. Therefore, the primers had acceptable specificity. The results indicated that the developed PCR-Sequencing approach can be used to effectively investigate certain types of TA systems. Considering high costs of WGS and difficulty in interpreting its results, such a simple and inexpensive method is beneficial in the evaluation of TA systems in Mycobacteria.
Collapse
Affiliation(s)
- Maryam Shafipour
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran.
| | - Ezzat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
5
|
Boss L, Kędzierska B. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Toxins (Basel) 2023; 15:380. [PMID: 37368681 DOI: 10.3390/toxins15060380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. They consist of stable toxins and unstable antitoxins that are classified into distinct groups based on their structure and biological activity. TA systems are mostly related to mobile genetic elements and can be easily acquired through horizontal gene transfer. The ubiquity of different homologous and non-homologous TA systems within a single bacterial genome raises questions about their potential cross-interactions. Unspecific cross-talk between toxins and antitoxins of non-cognate modules may unbalance the ratio of the interacting partners and cause an increase in the free toxin level, which can be deleterious to the cell. Moreover, TA systems can be involved in broadly understood molecular networks as transcriptional regulators of other genes' expression or modulators of cellular mRNA stability. In nature, multiple copies of highly similar or identical TA systems are rather infrequent and probably represent a transition stage during evolution to complete insulation or decay of one of them. Nevertheless, several types of cross-interactions have been described in the literature to date. This implies a question of the possibility and consequences of the TA system cross-interactions, especially in the context of the practical application of the TA-based biotechnological and medical strategies, in which such TAs will be used outside their natural context, will be artificially introduced and induced in the new hosts. Thus, in this review, we discuss the prospective challenges of system cross-talks in the safety and effectiveness of TA system usage.
Collapse
Affiliation(s)
- Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| |
Collapse
|
6
|
Shmidov E, Lebenthal-Loinger I, Roth S, Karako-Lampert S, Zander I, Shoshani S, Danielli A, Banin E. PrrT/A, a Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation. Microbiol Spectr 2022; 10:e0118222. [PMID: 35575497 PMCID: PMC9241795 DOI: 10.1128/spectrum.01182-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023] Open
Abstract
Toxin-antitoxin (TA) systems are genetic modules that consist of a stable protein-toxin and an unstable antitoxin that neutralizes the toxic effect. In type II TA systems, the antitoxin is a protein that inhibits the toxin by direct binding. Type II TA systems, whose roles and functions are under intensive study, are highly distributed among bacterial chromosomes. Here, we identified and characterized a novel type II TA system PrrT/A encoded in the chromosome of the clinical isolate 39016 of the opportunistic pathogen Pseudomonas aeruginosa. We have shown that the PrrT/A system exhibits classical type II TA characteristics and novel regulatory properties. Following deletion of the prrA antitoxin, we discovered that the system is involved in a range of processes including (i) biofilm and motility, (ii) reduced prophage induction and bacteriophage production, and (iii) increased fitness for aminoglycosides. Taken together, these results highlight the importance of this toxin-antitoxin system to key physiological traits in P. aeruginosa. IMPORTANCE The functions attributed to bacterial TA systems are controversial and remain largely unknown. Our study suggests new insights into the potential functions of bacterial TA systems. We reveal that a chromosome-encoded TA system can regulate biofilm and motility, antibiotic resistance, prophage gene expression, and phage production. The latter presents a thus far unreported function of bacterial TA systems. In addition, with the emergence of antimicrobial-resistant bacteria, especially with the rising of P. aeruginosa resistant strains, the investigation of TA systems is critical as it may account for potential new targets against the resistant strains.
Collapse
Affiliation(s)
- Esther Shmidov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Ilana Lebenthal-Loinger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Shira Roth
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Sarit Karako-Lampert
- Scientific Equipment Center, The Mina & Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat Gan, Israel
| | - Itzhak Zander
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Amos Danielli
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
7
|
Dawson CC, Cummings JE, Starkey JM, Slayden RA. Discovery of a novel type IIb RelBE toxin-antitoxin system in Mycobacterium tuberculosis defined by co-regulation with an antisense RNA. Mol Microbiol 2022; 117:1419-1433. [PMID: 35526138 PMCID: PMC9325379 DOI: 10.1111/mmi.14917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Toxin‐antitoxin loci regulate adaptive responses to stresses associated with the host environment and drug exposure. Phylogenomic studies have shown that Mycobacterium tuberculosis encodes a naturally expanded type II toxin‐antitoxin system, including ParDE/RelBE superfamily members. Type II toxins are presumably regulated exclusively through protein–protein interactions with type II antitoxins. However, experimental observations in M. tuberculosis indicated that additional control mechanisms regulate RelBE2 type II loci under host‐associated stress conditions. Herein, we describe for the first time a novel antisense RNA, termed asRelE2, that co‐regulates RelE2 production via targeted processing by the Mtb RNase III, Rnc. We find that convergent expression of this coding‐antisense hybrid TA locus, relBE2‐asrelE2, is controlled in a cAMP‐dependent manner by the essential cAMP receptor protein transcription factor, Crp, in response to the host‐associated stresses of low pH and nutrient limitation. Ex vivo survival studies with relE2 and asrelE2 knockout strains showed that RelE2 contributes to Mtb survival in activated macrophages and low pH to nutrient limitation. To our knowledge, this is the first report of a novel tripartite type IIb TA loci and antisense post‐transcriptional regulation of a type II TA loci.
Collapse
Affiliation(s)
- Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins.,Endolytix Technology, Inc. Beverly, 01915
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Julie M Starkey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| | - Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins
| |
Collapse
|
8
|
A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains. Proc Natl Acad Sci U S A 2022; 119:2102212119. [PMID: 35121656 PMCID: PMC8832971 DOI: 10.1073/pnas.2102212119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Toxin–antitoxin systems are enigmatic and diverse elements of bacterial and bacteriophage genomes. We have uncovered remarkable versatility in an antitoxin protein domain that has evolved to neutralize dozens of different toxin domains. We find that antitoxins carrying this domain—Panacea—form complexes with their cognate toxins, indicating a direct neutralization mechanism, and that Panacea can be evolved to neutralize a noncognate and nonhomologous toxin with just two amino acid substitutions. This raises the possibility that this domain could be an adaptable universal or semi-universal protein neutralizer with significant biotechnological and medical potential. Toxin–antitoxin (TA) gene pairs are ubiquitous in microbial chromosomal genomes and plasmids as well as temperate bacteriophages. They act as regulatory switches, with the toxin limiting the growth of bacteria and archaea by compromising diverse essential cellular targets and the antitoxin counteracting the toxic effect. To uncover previously uncharted TA diversity across microbes and bacteriophages, we analyzed the conservation of genomic neighborhoods using our computational tool FlaGs (for flanking genes), which allows high-throughput detection of TA-like operons. Focusing on the widespread but poorly experimentally characterized antitoxin domain DUF4065, our in silico analyses indicated that DUF4065-containing proteins serve as broadly distributed antitoxin components in putative TA-like operons with dozens of different toxic domains with multiple different folds. Given the versatility of DUF4065, we have named the domain Panacea (and proteins containing the domain, PanA) after the Greek goddess of universal remedy. We have experimentally validated nine PanA-neutralized TA pairs. While the majority of validated PanA-neutralized toxins act as translation inhibitors or membrane disruptors, a putative nucleotide cyclase toxin from a Burkholderia prophage compromises transcription and translation as well as inducing RelA-dependent accumulation of the nucleotide alarmone (p)ppGpp. We find that Panacea-containing antitoxins form a complex with their diverse cognate toxins, characteristic of the direct neutralization mechanisms employed by Type II TA systems. Finally, through directed evolution, we have selected PanA variants that can neutralize noncognate TA toxins, thus experimentally demonstrating the evolutionary plasticity of this hyperpromiscuous antitoxin domain.
Collapse
|
9
|
Jeon H, Choi E, Hwang J. Identification and characterization of VapBC toxin-antitoxin system in Bosea sp. PAMC 26642 isolated from Arctic lichens. RNA (NEW YORK, N.Y.) 2021; 27:1374-1389. [PMID: 34429367 PMCID: PMC8522696 DOI: 10.1261/rna.078786.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.
Collapse
Affiliation(s)
- Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Targeting Type II Toxin-Antitoxin Systems as Antibacterial Strategies. Toxins (Basel) 2020; 12:toxins12090568. [PMID: 32899634 PMCID: PMC7551001 DOI: 10.3390/toxins12090568] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
The identification of novel targets for antimicrobial agents is crucial for combating infectious diseases caused by evolving bacterial pathogens. Components of bacterial toxin–antitoxin (TA) systems have been recognized as promising therapeutic targets. These widespread genetic modules are usually composed of two genes that encode a toxic protein targeting an essential cellular process and an antitoxin that counteracts the activity of the toxin. Uncontrolled toxin expression may elicit a bactericidal effect, so they may be considered “intracellular molecular bombs” that can lead to elimination of their host cells. Based on the molecular nature of antitoxins and their mode of interaction with toxins, TA systems have been classified into six groups. The most prevalent are type II TA systems. Due to their ubiquity among clinical isolates of pathogenic bacteria and the essential processes targeted, they are promising candidates for the development of novel antimicrobial strategies. In this review, we describe the distribution of type II TA systems in clinically relevant human pathogens, examine how these systems could be developed as the targets for novel antibacterials, and discuss possible undesirable effects of such therapeutic intervention, such as the induction of persister cells, biofilm formation and toxicity to eukaryotic cells.
Collapse
|
11
|
Tandon H, Melarkode Vattekatte A, Srinivasan N, Sandhya S. Molecular and Structural Basis of Cross-Reactivity in M. tuberculosis Toxin-Antitoxin Systems. Toxins (Basel) 2020; 12:E481. [PMID: 32751054 PMCID: PMC7472061 DOI: 10.3390/toxins12080481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium tuberculosis genome encodes over 80 toxin-antitoxin (TA) systems. While each toxin interacts with its cognate antitoxin, the abundance of TA systems presents an opportunity for potential non-cognate interactions. TA systems mediate manifold interactions to manage pathogenicity and stress response network of the cell and non-cognate interactions may play vital roles as well. To address if non-cognate and heterologous interactions are feasible and to understand the structural basis of their interactions, we have performed comprehensive computational analyses on the available 3D structures and generated structural models of paralogous M. tuberculosis VapBC and MazEF TA systems. For a majority of the TA systems, we show that non-cognate toxin-antitoxin interactions are structurally incompatible except for complexes like VapBC15 and VapBC11, which show similar interfaces and potential for cross-reactivity. For TA systems which have been experimentally shown earlier to disfavor non-cognate interactions, we demonstrate that they are structurally and stereo-chemically incompatible. For selected TA systems, our detailed structural analysis identifies specificity conferring residues. Thus, our work improves the current understanding of TA interfaces and generates a hypothesis based on congenial binding site, geometric complementarity, and chemical nature of interfaces. Overall, our work offers a structure-based explanation for non-cognate toxin-antitoxin interactions in M. tuberculosis.
Collapse
Affiliation(s)
- Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (H.T.); (A.M.V.)
| | - Akhila Melarkode Vattekatte
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (H.T.); (A.M.V.)
- Biologie Intégrée du Globule Rouge UMR_S1134, INSERM, Université Paris, Université de la Réunion, Université des Antilles, F-75739 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75739 Paris, France
- Faculté des Sciences et Technologies, Saint Denis Messag, F-97715 La Réunion, France
- Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France
| | - Narayanaswamy Srinivasan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (H.T.); (A.M.V.)
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India; (H.T.); (A.M.V.)
| |
Collapse
|
12
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
13
|
Soutourina O. Type I Toxin-Antitoxin Systems in Clostridia. Toxins (Basel) 2019; 11:toxins11050253. [PMID: 31064056 PMCID: PMC6563280 DOI: 10.3390/toxins11050253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Type I toxin-antitoxin (TA) modules are abundant in both bacterial plasmids and chromosomes and usually encode a small hydrophobic toxic protein and an antisense RNA acting as an antitoxin. The RNA antitoxin neutralizes toxin mRNA by inhibiting its translation and/or promoting its degradation. This review summarizes our current knowledge of the type I TA modules identified in Clostridia species focusing on the recent findings in the human pathogen Clostridium difficile. More than ten functional type I TA modules have been identified in the genome of this emerging enteropathogen that could potentially contribute to its fitness and success inside the host. Despite the absence of sequence homology, the comparison of these newly identified type I TA modules with previously studied systems in other Gram-positive bacteria, i.e., Bacillus subtilis and Staphylococcus aureus, revealed some important common traits. These include the conservation of characteristic sequence features for small hydrophobic toxic proteins, the localization of several type I TA within prophage or prophage-like regions and strong connections with stress response. Potential functions in the stabilization of genome regions, adaptations to stress conditions and interactions with CRISPR-Cas defence system, as well as promising applications of TA for genome-editing and antimicrobial developments are discussed.
Collapse
Affiliation(s)
- Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
14
|
Akarsu H, Bordes P, Mansour M, Bigot DJ, Genevaux P, Falquet L. TASmania: A bacterial Toxin-Antitoxin Systems database. PLoS Comput Biol 2019; 15:e1006946. [PMID: 31022176 PMCID: PMC6504116 DOI: 10.1371/journal.pcbi.1006946] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/07/2019] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
Bacterial Toxin-Antitoxin systems (TAS) are involved in key biological functions including plasmid maintenance, defense against phages, persistence and virulence. They are found in nearly all phyla and classified into 6 different types based on the mode of inactivation of the toxin, with the type II TAS being the best characterized so far. We have herein developed a new in silico discovery pipeline named TASmania, which mines the >41K assemblies of the EnsemblBacteria database for known and uncharacterized protein components of type I to IV TAS loci. Our pipeline annotates the proteins based on a list of curated HMMs, which leads to >2.106 loci candidates, including orphan toxins and antitoxins, and organises the candidates in pseudo-operon structures in order to identify new TAS candidates based on a guilt-by-association strategy. In addition, we classify the two-component TAS with an unsupervised method on top of the pseudo-operon (pop) gene structures, leading to 1567 “popTA” models offering a more robust classification of the TAs families. These results give valuable clues in understanding the toxin/antitoxin modular structures and the TAS phylum specificities. Preliminary in vivo work confirmed six putative new hits in Mycobacterium tuberculosis as promising candidates. The TASmania database is available on the following server https://shiny.bioinformatics.unibe.ch/apps/tasmania/. TASmania offers an extensive annotation of TA loci in a very large database of bacterial genomes, which represents a resource of crucial importance for the microbiology community. TASmania supports i) the discovery of new TA families; ii) the design of a robust experimental strategy by taking into account potential interferences in trans; iii) the comparative analysis between TA loci content, phylogeny and/or phenotypes (pathogenicity, persistence, stress resistance, associated host types) by providing a vast repertoire of annotated assemblies. Our database contains TA annotations of a given strain not only mapped to its core genome but also to its plasmids, whenever applicable.
Collapse
Affiliation(s)
- Hatice Akarsu
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Moise Mansour
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Donna-Joe Bigot
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Falquet
- Department of Biology, University of Fribourg & Swiss Institute of Bioinformatics, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Tandon H, Sharma A, Wadhwa S, Varadarajan R, Singh R, Srinivasan N, Sandhya S. Bioinformatic and mutational studies of related toxin-antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. J Biol Chem 2019; 294:9048-9063. [PMID: 31018964 DOI: 10.1074/jbc.ra118.006814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis possesses an unusually large representation of type II toxin-antitoxin (TA) systems, whose functions and targets are mostly unknown. To better understand the basis of their unique expansion and to probe putative functional similarities among these systems, here we computationally and experimentally investigated their sequence relationships. Bioinformatic and phylogenetic investigations revealed that 51 sequences of the VapBC toxin family group into paralogous sub-clusters. On the basis of conserved sequence fingerprints within paralogues, we predicted functional residues and residues at the putative TA interface that are useful to evaluate TA interactions. Substitution of these likely functional residues abolished the toxin's growth-inhibitory activity. Furthermore, conducting similarity searches in 101 mycobacterial and ∼4500 other prokaryotic genomes, we assessed the relative conservation of the M. tuberculosis TA systems and found that most TA orthologues are well-conserved among the members of the M. tuberculosis complex, which cause tuberculosis in animal hosts. We found that soil-inhabiting, free-living Actinobacteria also harbor as many as 12 TA pairs. Finally, we identified five novel putative TA modules in M. tuberculosis. For one of them, we demonstrate that overexpression of the putative toxin, Rv2514c, induces bacteriostasis and that co-expression of the cognate antitoxin Rv2515c restores bacterial growth. Taken together, our findings reveal that toxin sequences are more closely related than antitoxin sequences in M. tuberculosis Furthermore, the identification of additional TA systems reported here expands the known repertoire of TA systems in M. tuberculosis.
Collapse
Affiliation(s)
- Himani Tandon
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| | - Arun Sharma
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | - Saruchi Wadhwa
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| | - Ramandeep Singh
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | | | - Sankaran Sandhya
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| |
Collapse
|
16
|
Duan W, Li X, Ge Y, Yu Z, Li P, Li J, Qin L, Xie J. Mycobacterium tuberculosis Rv1473 is a novel macrolides ABC Efflux Pump regulated by WhiB7. Future Microbiol 2018; 14:47-59. [PMID: 30539658 DOI: 10.2217/fmb-2018-0207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM To characterize a novel macrolide ATP binding cassette efflux pump encoding gene Rv1473 which might be involved in antibiotic resistance. METHODS Mycobacterium smegmatis was used as a surrogate model for pathogenic mycobacteria, drug susceptibility assays and ethidium bromide accumulation assay were harnessed to verify drug resistance. The real-time quantitative PCR was used to evaluate the transcription levels of WhiB7 and Ms3140 upon exposure to macrolides. RESULTS Rv1473 contributes to macrolides resistance via efflux mechanisms, and was positively regulated by the transcription factor WhiB7 upon macrolides exposure. CONCLUSION Rv1473 is a novel ATP binding cassette efflux pump involved in mycobacterium intrinsic antibiotics resistance via efflux mechanism. This finding will facilitate novel antibiotic discovery and the treatment of pathogen, especially for nontuberculous mycobacteria.
Collapse
Affiliation(s)
- Wei Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, PR China
| | - Xue Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yan Ge
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, PR China
| | - Zhaoxiao Yu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, PR China
| | - Ping Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, PR China
| | - Jiang Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, PR China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200433, PR China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment & Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, PR China
| |
Collapse
|
17
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
18
|
VapC proteins from Mycobacterium tuberculosis share ribonuclease sequence specificity but differ in regulation and toxicity. PLoS One 2018; 13:e0203412. [PMID: 30169502 PMCID: PMC6118392 DOI: 10.1371/journal.pone.0203412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Abstract
The chromosome of Mycobacterium tuberculosis (Mtb) contains a large number of Type II toxin-antitoxin (TA) systems. The majority of these belong to the VapBC TA family, characterised by the VapC protein consisting of a PIN domain with four conserved acidic residues, and proposed ribonuclease activity. Characterisation of five VapC (VapC1, 19, 27, 29 and 39) proteins from various regions of the Mtb chromosome using a combination of pentaprobe RNA sequences and mass spectrometry revealed a shared ribonuclease sequence-specificity with a preference for UAGG sequences. The TA complex VapBC29 is auto-regulatory and interacts with inverted repeat sequences in the vapBC29 promoter, whereas complexes VapBC1 and VapBC27 display no auto-regulatory properties. The difference in regulation could be due to the different properties of the VapB proteins, all of which belong to different VapB protein families. Regulation of the vapBC29 operon is specific, no cross-talk among Type II TA systems was observed. VapC29 is bacteriostatic when expressed in Mycobacterium smegmatis, whereas VapC1 and VapC27 displayed no toxicity upon expression in M. smegmatis. The shared sequence specificity of the five VapC proteins characterised is intriguing, we propose that the differences observed in regulation and toxicity is the key to understanding the role of these TA systems in the growth and persistence of Mtb.
Collapse
|
19
|
Golichenari B, Velonia K, Nosrati R, Nezami A, Farokhi-Fard A, Abnous K, Behravan J, Tsatsakis AM. Label-free nano-biosensing on the road to tuberculosis detection. Biosens Bioelectron 2018; 113:124-135. [DOI: 10.1016/j.bios.2018.04.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/14/2018] [Accepted: 04/28/2018] [Indexed: 12/16/2022]
|
20
|
Sprenger H, Kienesberger S, Pertschy B, Pöltl L, Konrad B, Bhutada P, Vorkapic D, Atzmüller D, Feist F, Högenauer C, Gorkiewicz G, Zechner EL. Fic Proteins of Campylobacter fetus subsp. venerealis Form a Network of Functional Toxin-Antitoxin Systems. Front Microbiol 2017; 8:1965. [PMID: 29089929 PMCID: PMC5651007 DOI: 10.3389/fmicb.2017.01965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 01/02/2023] Open
Abstract
Enzymes containing the FIC (filamentation induced by cyclic AMP) domain catalyze post-translational modifications of target proteins. In bacteria the activity of some Fic proteins resembles classical toxin–antitoxin (TA) systems. An excess of toxin over neutralizing antitoxin can enable bacteria to survive some stress conditions by slowing metabolic processes and promoting dormancy. The cell can return to normal growth when sufficient antitoxin is present to block toxin activity. Fic genes of the human and animal pathogen Campylobacter fetus are significantly associated with just one subspecies, which is specifically adapted to the urogenital tract. Here, we demonstrate that the fic genes of virulent isolate C. fetus subsp. venerealis 84-112 form multiple TA systems. Expression of the toxins in Escherichia coli caused filamentation and growth inhibition phenotypes reversible by concomitant antitoxin expression. Key active site residues involved in adenylylation by Fic proteins are conserved in Fic1, Fic3 and Fic4, but degenerated in Fic2. We show that both Fic3 and the non-canonical Fic2 disrupt assembly and function of E. coli ribosomes when expressed independently of a trans-acting antitoxin. Toxicity of the Fic proteins is controlled by different mechanisms. The first involves intramolecular regulation by an inhibitory helix typical for Fic proteins. The second is an unusual neutralization by heterologous Fic–Fic protein interactions. Moreover, a small interacting antitoxin called Fic inhibitory protein 3, which appears unrelated to known Fic antitoxins, has the novel capacity to bind and neutralize Fic toxins encoded in cis and at distant sites. These findings reveal a remarkable system of functional crosstalk occurring between Fic proteins expressed from chromosomal and extrachromosomal modules. Conservation of fic genes in other bacteria that either inhabit or establish pathology in the urogenital tract of humans and animals underscores the significance of these factors for niche-specific adaptation and virulence.
Collapse
Affiliation(s)
- Hanna Sprenger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Institute of Pathology, Medical University of Graz, Graz, Austria.,Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Lisa Pöltl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Bettina Konrad
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Priya Bhutada
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Denise Atzmüller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Florian Feist
- Vehicle Safety Institute, Graz University of Technology, Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Ellen L Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
21
|
Klimina KM, Poluektova EU, Danilenko VN. Bacterial toxin–antitoxin systems: Properties, functional significance, and possibility of use (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Gupta A, Venkataraman B, Vasudevan M, Gopinath Bankar K. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci Rep 2017; 7:5868. [PMID: 28724903 PMCID: PMC5517426 DOI: 10.1038/s41598-017-06003-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
Research on toxin-antitoxin loci (TA loci) is gaining impetus due to their ubiquitous presence in bacterial genomes and their observed roles in stress survival, persistence and drug tolerance. The present study investigates the expression profile of all the seventy-nine TA loci found in Mycobacterium tuberculosis. The bacterium was subjected to multiple stress conditions to identify key players of cellular stress response and elucidate a TA-coexpression network. This study provides direct experimental evidence for transcriptional activation of each of the seventy-nine TA loci following mycobacterial exposure to growth-limiting environments clearly establishing TA loci as stress-responsive modules in M. tuberculosis. TA locus activation was found to be stress-specific with multiple loci activated in a duration-based response to a particular stress. Conditions resulting in arrest of cellular translation led to greater up-regulation of TA genes suggesting that TA loci have a primary role in arresting translation in the cell. Our study identifed higBA2 and vapBC46 as key loci that were activated in all the conditions tested. Besides, relBE1, higBA3, vapBC35, vapBC22 and higBA1 were also upregulated in multpile stresses. Certain TA modules exhibited co-activation across multiple conditions suggestive of a common regulatory mechanism.
Collapse
Affiliation(s)
- Amita Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,Department of Biochemistry and Centre for Innovation in Infectious Diseases Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, 110021, India.
| | - Balaji Venkataraman
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| | - Kiran Gopinath Bankar
- Genome Informatics Research Group, Bionivid Technology Pvt Ltd, Bengaluru, 560043, India
| |
Collapse
|
23
|
Physical and Functional Interplay between MazF 1Bif and Its Noncognate Antitoxins from Bifidobacterium longum. Appl Environ Microbiol 2017; 83:AEM.03232-16. [PMID: 28213540 DOI: 10.1128/aem.03232-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/09/2017] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium longum strain JDM301, a widely used commercial strain in China, encodes at least two MazEF-like modules and one RelBE-like toxin-antitoxin (TA) system in its chromosome, designated MazE1F1Bif, MazE2F2Bif, and RelBEBif, respectively. Bacterial TA systems play an important role in several stress responses, but the relationship between these TA systems is largely unknown. In this study, the interactions between MazF1Bif and MazE2Bif or RelBBif were assessed in B. longum strain JDM301. MazF1Bif caused the degradation of tufABif mRNA, and its toxicity was inhibited by forming a protein complex with its cognate antitoxin, MazE1Bif Notably, MazF1Bif toxicity was also partially neutralized when jointly expressed with noncognate antitoxin MazE2Bif or RelBBif Our results show that the two noncognate antitoxins also inhibited mRNA degradation caused by MazF1Bif toxin. Furthermore, the physical interplay between MazF1Bif and its noncognate antitoxins was confirmed by immunoprecipitation. These results suggest that MazF1Bif can arrest cell growth and that MazF1Bif toxicity can be neutralized by its cognate and noncognate antitoxins. These results imply that JDM301 uses a sophisticated toxin-antitoxin interaction network to alter its physiology when coping with environmental stress.IMPORTANCE Although toxin-antitoxin (TA) systems play an important role in several stress responses, the regulatory mechanisms of multiple TA system homologs in the bacterial genome remain largely unclear. In this study, the relationships between MazE1F1Bif and the other two TA systems of Bifidobacterium longum strain JDM301 were explored, and the interactions between MazF1Bif and MazE2Bif or RelBBif were characterized. In addition, the mRNA degradation activity of MazF1Bif was demonstrated. In particular, the interaction of the toxin with noncognate antitoxins was shown, even between different TA families (MazF1Bif toxin and RelBBif antitoxin) in JDM301. This work provides insight into the regulatory mechanisms of TA systems implicated in the stress responses of bifidobacteria.
Collapse
|
24
|
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, uses various tactics to resist on antibiotics and evade host immunity. To control tuberculosis, antibiotics with novel mechanisms of action are urgently needed. Emerging new antibiotics and underlying novel drug targets are summarized in this paper.
Collapse
Affiliation(s)
- Nzungize Lambert
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Abualgasim Elgaili Abdalla
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China.,b Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman , Islamic University , Omdurman , Sudan
| | - Xiangke Duan
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Jianping Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| |
Collapse
|
25
|
Zeng J, Deng W, Yang W, Luo H, Duan X, Xie L, Li P, Wang R, Fu T, Abdalla AE, Xie J. Mycobacterium tuberculosis Rv1152 is a Novel GntR Family Transcriptional Regulator Involved in Intrinsic Vancomycin Resistance and is a Potential Vancomycin Adjuvant Target. Sci Rep 2016; 6:28002. [PMID: 27349953 PMCID: PMC4923875 DOI: 10.1038/srep28002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 05/27/2016] [Indexed: 12/16/2022] Open
Abstract
Novel factors involved in Mycobacteria antibiotics resistance are crucial for better targets to combat the ever-increasing drug resistant strains. Mycobacterium tuberculosis Rv1152, a novel GntR family transcriptional regulator and a promising vancomycin adjuvant target, was firstly characterized in our study. Overexpression of Rv1152 in Mycobacterium smegmatis decreased bacterial susceptibility to vancomycin. Moreover, a deficiency in MSMEG_5174, an Rv1152 homolog made M. smegmatis more sensitive to vancomycin, which was reverted by complementing the MSMEG_5174 deficiency with Rv1152 of M. tuberculosis. Rv1152 negatively regulated four vancomycin responsive genes, namely genes encoding the ribosome binding protein Hsp, small unit of sulfate adenylyltransferase CysD, L-lysine-epsilon aminotransferase Lat, and protease HtpX. Taken together, Rv1152 controls the expression of genes required for the susceptibility to vancomycin. This is the first report that links the GntR family transcriptional factor with vancomycin susceptibility. Inhibitors of Rv1152 might be ideal vancomycin adjuvants for controlling multi-drug resistant Mycobacterial infections.
Collapse
Affiliation(s)
- Jie Zeng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Wenmin Yang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Hongping Luo
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ping Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Tiwei Fu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Abualgasim Elgaili Abdalla
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.,Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
26
|
Li G, Shen M, Lu S, Le S, Tan Y, Wang J, Zhao X, Shen W, Guo K, Yang Y, Zhu H, Rao X, Hu F, Li M. Identification and Characterization of the HicAB Toxin-Antitoxin System in the Opportunistic Pathogen Pseudomonas aeruginosa. Toxins (Basel) 2016; 8:113. [PMID: 27104566 PMCID: PMC4848639 DOI: 10.3390/toxins8040113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 12/26/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic modules that are widely distributed in the genomes of bacteria and archaea and have been proposed to fulfill numerous functions. Here, we describe the identification and characterization of a type II TA system, comprising the hicAB locus in the human opportunistic pathogen Pseudomonas aeruginosa. The hicAB locus consists of genes hicA and hicB encoding a toxin and its cognate antitoxin, respectively. BLAST analysis revealed that hicAB is prevalent in approximately 36% of P. aeruginosa strains and locates in the same genomic region. RT-PCR demonstrated that hicAB forms a bicistronic operon that is cotranscribed under normal growth conditions. Overproduction of HicA inhibited the growth of Escherichia coli, and this effect could be counteracted by co-expression of HicB. The Escherichia coli kill/rescue assay showed that the effect of HicA is bacteriostatic, rather than bactericidal. Deletion of hicAB had no effect on the biofilm formation and virulence of P. aeruginosa in a mice infection model. Collectively, this study presents the first characterization of the HicAB system in the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Gang Li
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Mengyu Shen
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Jing Wang
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Xia Zhao
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Wei Shen
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Keke Guo
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Yuhui Yang
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Hongbin Zhu
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| | - Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
27
|
Abstract
Most bacterial toxins derived from chromosomally encoded toxin-antitoxin (TA) systems that have been studied to date appear to protect cells from relatively short pulses of stress by triggering a reversible state of growth arrest. In contrast to many bacterial toxins that are produced as defense mechanisms and secreted from their hosts, TA toxins exert their protective effect from within the cell that produces them. TA toxin-mediated growth arrest is most frequently achieved through their ability to selectively cleave RNA species that participate in protein synthesis. Until very recently, it was thought that the primary conduit for toxin-mediated translation inhibition was cleavage of a single class of RNA, mRNA, thus depleting transcripts and precluding production of essential proteins. This minireview focuses on how the development and implementation of a specialized RNA-seq method to study Mycobacterium tuberculosis TA systems enabled the identification of unexpected RNA targets for toxins, i.e. a handful of tRNAs that are cleaved into tRNA halves. Our result brings to light a new perspective on how these toxins may act in this pathogen and uncovers a striking parallel to signature features of the eukaryotic stress response.
Collapse
Affiliation(s)
- Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
28
|
The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol 2015; 53:783-95. [PMID: 26502963 DOI: 10.1007/s12275-015-5333-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Toxin-antitoxin (TA) genes are ubiquitous among bacteria and are associated with persistence and dormancy. Following exposure to unfavorable environmental stimuli, several species (Escherichia coli, Staphylococcus aureus, Myxococcus xanthus) employ toxin proteins such as RelE and MazF to downregulate growth or initiate cell death. Mycobacterium tuberculosis possesses three Rel TA modules (Rel Mtb ): RelBE Mtb , RelFG Mtb and RelJK Mtb (Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, respectively), which inhibit mycobacterial growth when the toxin gene (relE, relG, relK) is expressed independently of the antitoxin gene (relB, relF, relJ). In the present study, we examined the in vivo mechanism of the RelE Mtb toxin protein, the impact of RelE Mtb on M. tuberculosis physiology and the environmental conditions that regulate all three rel Mtb modules. RelE Mtb negatively impacts growth and the structural integrity of the mycobacterial envelope, generating cells with aberrant forms that are prone to extensive aggregation. At a time coincident with growth defects, RelE Mtb mediates mRNA degradation in vivo resulting in significant changes to the proteome. We establish that rel Mtb modules are stress responsive, as all three operons are transcriptionally activated following mycobacterial exposure to oxidative stress or nitrogen-limiting growth environments. Here we present evidence that the rel Mtb toxin:antitoxin family is stress-responsive and, through the degradation of mRNA, the RelE Mtb toxin influences the growth, proteome and morphology of mycobacterial cells.
Collapse
|
29
|
Aakre CD, Herrou J, Phung TN, Perchuk BS, Crosson S, Laub MT. Evolving new protein-protein interaction specificity through promiscuous intermediates. Cell 2015; 163:594-606. [PMID: 26478181 DOI: 10.1016/j.cell.2015.09.055] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
Interacting proteins typically coevolve, and the identification of coevolving amino acids can pinpoint residues required for interaction specificity. This approach often assumes that an interface-disrupting mutation in one protein drives selection of a compensatory mutation in its partner during evolution. However, this model requires a non-functional intermediate state prior to the compensatory change. Alternatively, a mutation in one protein could first broaden its specificity, allowing changes in its partner, followed by a specificity-restricting mutation. Using bacterial toxin-antitoxin systems, we demonstrate the plausibility of this second, promiscuity-based model. By screening large libraries of interface mutants, we show that toxins and antitoxins with high specificity are frequently connected in sequence space to more promiscuous variants that can serve as intermediates during a reprogramming of interaction specificity. We propose that the abundance of promiscuous variants promotes the expansion and diversification of toxin-antitoxin systems and other paralogous protein families during evolution.
Collapse
Affiliation(s)
- Christopher D Aakre
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tuyen N Phung
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barrett S Perchuk
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Hu J, Zhao L, Yang M. A GntR family transcription factor positively regulates mycobacterial isoniazid resistance by controlling the expression of a putative permease. BMC Microbiol 2015; 15:214. [PMID: 26474554 PMCID: PMC4609117 DOI: 10.1186/s12866-015-0556-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/08/2015] [Indexed: 01/13/2023] Open
Abstract
Background Bacteria use transcriptional regulation to respond to environmental stresses. Specifically, exposure to antibacterial drugs is deemed to be an atypical stress, and altering transcriptional regulation in response to such stress can increase bacterial drug resistance. However, only a few transcription factors that regulate drug resistance have been reported. Results In the present study, a GntR family transcription factor, encoded by the MSMEG_0535 (Ms0535) gene, was shown to be an isoniazid (INH) resistance regulator in Mycobacterium smegmatis. When the Ms0535 gene was overexpressed, cells showed a significant increase in INH resistance. First, the interaction between Ms0535 and its own promoter was determined, and a conserved 26-bp palindromic DNA binding motif was identified using electrophoretic mobility shift and DNaseI footprinting assays. Second, quantitative reverse transcription-PCR assays showed that Ms0535 acted as a transcriptional activator, and positively regulated its own expression, as well as that of a permease encoded by the MSMEG_0534 (Ms0534) gene. Similar to the case for the Ms0535 gene, a recombinant Ms0534-overexpressing strain also exhibited increased INH resistance compared with the wild-type strain. Furthermore, we showed that Ms0535 and Ms0534 deletion strains were more sensitive to INH than the wild-type strain. Interestingly, overexpressing Ms0534 in the Ms0535 deletion strain enhanced its INH resistance. In contrast, the Ms0534 deletion strain was still sensitive to INH even when Ms0535 was overexpressed. These findings suggest that Ms0534 is an effector protein that affects INH resistance in M. smegmatis. Conclusions In summary, the GntR transcriptional regulator Ms0535 positively regulates INH resistance by transcriptionally regulating the expression of the Ms0534 permease in M. smegmatis. These results improve our understanding of the role of transcriptional regulation in INH drug resistance in mycobacteria. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0556-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jialing Hu
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lei Zhao
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Min Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Yang M, Gao CH, Hu J, Zhao L, Huang Q, He ZG. InbR, a TetR family regulator, binds with isoniazid and influences multidrug resistance in Mycobacterium bovis BCG. Sci Rep 2015; 5:13969. [PMID: 26353937 PMCID: PMC4564863 DOI: 10.1038/srep13969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/12/2015] [Indexed: 02/03/2023] Open
Abstract
Isoniazid (INH), an anti-tuberculosis (TB) drug, has been widely used for nearly 60 years. However, the pathway through which Mycobacterium tuberculosis responds INH remain largely unclear. In this study, we characterized a novel transcriptional factor, InbR, which is encoded by Rv0275c and belongs to the TetR family, that is directly responsive to INH. Disrupting inbR made mycobacteria more sensitive to INH, whereas overexpressing inbR decreased bacterial susceptibility to the drug. InbR could bind specifically to the upstream region of its own operon at two inverted repeats and act as an auto-repressor. Furthermore, InbR directly bind with INH, and the binding reduced InbR’s DNA-binding ability. Interestingly, susceptibilities were also changed by InbR for other anti-TB drugs, such as rifampin, implying that InbR may play a role in multi-drug resistance. Additionally, microarray analyses revealed a portion genes of the inbR regulon have similar expression patterns in inbR-overexpressing strain and INH-treated wild type strain, suggesting that these genes, for example iniBAC, may be responsible to the drug resistance of inbR-overexpressing strain. The regulation of these genes by InbR were further assessed by ChIP-seq assay. InbR may regulate multiple drug resistance of mycobacteria through the regulation of these genes.
Collapse
Affiliation(s)
- Min Yang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Hui Gao
- School of Life Sciences and CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jialing Hu
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhao
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng-Guo He
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
32
|
Wessner F, Lacoux C, Goeders N, Fouquier d'Hérouel A, Matos R, Serror P, Van Melderen L, Repoila F. Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biol 2015; 12:1099-108. [PMID: 26305399 DOI: 10.1080/15476286.2015.1084465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We discovered a chromosomal locus containing 2 toxin-antitoxin modules (TAs) with an antisense transcriptional organization in the E. faecalis clinical isolate V583. These TAs are homologous to the type I txpA-ratA system and the type II mazEF, respectively. We have shown that the putative MazF is toxic for E. coli and triggers RNA degradation, and its cognate antitoxin MazE counteracts toxicity. The second module, adjacent to mazEF, expresses a toxin predicted to belong to the TxpA type I family found in Firmicutes, and the antisense RNA antidote, RatA. Genomic analysis indicates that the cis-association of mazEF and txpA-ratA modules has been favored during evolution, suggesting a selective advantage for this TA organization in the E. faecalis species. We showed regulatory interplays between the 2 modules, involving transcription control and RNA stability. Remarkably, our data reveal that MazE and MazEF have a dual transcriptional activity: they act as autorepressors and activate ratA transcription, most likely in a direct manner. RatA controls txpA RNA levels through stability. Our data suggest a pivotal role of MazEF in the coordinated expression of mazEF and txpA-ratA modules in V583. To our knowledge, this is the first report describing a crosstalk between type I and II TAs.
Collapse
Affiliation(s)
- Françoise Wessner
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Caroline Lacoux
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Nathalie Goeders
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | | | - Renata Matos
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Pascale Serror
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Laurence Van Melderen
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | - Francis Repoila
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| |
Collapse
|
33
|
Islam S, Benedik MJ, Wood TK. Orphan toxin OrtT (YdcX) of Escherichia coli reduces growth during the stringent response. Toxins (Basel) 2015; 7:299-321. [PMID: 25643179 PMCID: PMC4344625 DOI: 10.3390/toxins7020299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 01/23/2023] Open
Abstract
Toxin/antitoxin (TA) systems are nearly universal in prokaryotes; toxins are paired with antitoxins which inactivate them until the toxins are utilized. Here we explore whether toxins may function alone; i.e., whether a toxin which lacks a corresponding antitoxin (orphan toxin) is physiologically relevant. By focusing on a homologous protein of the membrane-damaging toxin GhoT of the Escherichia coli GhoT/GhoS type V TA system, we found that YdcX (renamed OrtT for orphan toxin related to tetrahydrofolate) is toxic but is not part of TA pair. OrtT is not inactivated by neighboring YdcY (which is demonstrated to be a protein), nor is it inactivated by antitoxin GhoS. Also, OrtT is not inactivated by small RNA upstream or downstream of ortT. Moreover, screening a genomic library did not identify an antitoxin partner for OrtT. OrtT is a protein and its toxicity stems from membrane damage as evidenced by transmission electron microscopy and cell lysis. Furthermore, OrtT reduces cell growth and metabolism in the presence of both antimicrobials trimethoprim and sulfamethoxazole; these antimicrobials induce the stringent response by inhibiting tetrahydrofolate synthesis. Therefore, we demonstrate that OrtT acts as an independent toxin to reduce growth during stress related to amino acid and DNA synthesis.
Collapse
Affiliation(s)
- Sabina Islam
- Department of Chemical Engineering, the Pennsylvania State University, University Park, PA 16802-4400, USA.
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| | - Thomas K Wood
- Department of Chemical Engineering, the Pennsylvania State University, University Park, PA 16802-4400, USA.
| |
Collapse
|
34
|
A novel marRAB operon contributes to the rifampicin resistance in Mycobacterium smegmatis. PLoS One 2014; 9:e106016. [PMID: 25153492 PMCID: PMC4143341 DOI: 10.1371/journal.pone.0106016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/25/2014] [Indexed: 12/30/2022] Open
Abstract
The multiple-antibiotic resistance regulator (MarR) plays an important role in modulating bacterial antibiotic resistance. However, the regulatory model of the marRAB operon in mycobacteria remains to be characterized. Here we report that a MarR, encoded by Ms6508, and its marRAB operon specifically contribute to rifampicin (RIF) resistance in Mycobacterium smegmatis. We show that the MarR recognizes a conserved 21-bp palindromic motif and negatively regulates the expression of two ABC transporters in the operon, encoded by Ms6509–6510. Unlike other known drug efflux pumps, overexpression of these two ABC transporters unexpectedly increased RIF sensitivity and deletion of these two genes increased mycobacterial resistance to the antibiotic. No change can be detected for the sensitivity of recombinant mycobacterial strains to three other anti-TB drugs. Furthermore, HPLC experiments suggested that Ms6509–Ms6510 could pump RIF into the mycobacterial cells. These findings indicated that the mycobacterial MarR functions as a repressor and constitutively inhibits the expression of the marRAB operon, which specifically contributes to RIF resistance in M. smegmatis. Therefore, our data suggest a new regulatory mechanism of RIF resistance and also provide the new insight into the regulatory model of a marRAB operon in mycobacteria.
Collapse
|
35
|
Liang Y, Gao Z, Wang F, Zhang Y, Dong Y, Liu Q. Structural and functional characterization of Escherichia coli toxin-antitoxin complex DinJ-YafQ. J Biol Chem 2014; 289:21191-202. [PMID: 24923448 DOI: 10.1074/jbc.m114.559773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxin YafQ functions as a ribonuclease in the dinJ-yafQ toxin-antitoxin system of Escherichia coli. Antitoxin DinJ neutralizes YafQ-mediated toxicity by forming a stable protein complex. Here, crystal structures of the (DinJ)2-(YafQ)2 complex and the isolated YafQ toxin have been determined. The structure of the heterotetrameric complex (DinJ)2-(YafQ)2 revealed that the N-terminal region of DinJ folds into a ribbon-helix-helix motif and dimerizes for DNA recognition, and the C-terminal portion of each DinJ exclusively wraps around a YafQ molecule. Upon incorporation into the heterotetrameric complex, a conformational change of YafQ in close proximity to the catalytic site of the typical microbial ribonuclease fold was observed and validated. Mutagenesis experiments revealed that a DinJ mutant restored YafQ RNase activity in a tetramer complex in vitro but not in vivo. An electrophoretic mobility shift assay showed that one of the palindromic sequences present in the upstream intergenic region of DinJ served as a binding sequences for both the DinJ-YafQ complex and the antitoxin DinJ alone. Based on structure-guided and site-directed mutagenesis of DinJ-YafQ, we showed that two pairs of amino acids in DinJ were important for DNA binding; the R8A and K16A substitutions and the S31A and R35A substitutions in DinJ abolished the DNA binding ability of the DinJ-YafQ complex.
Collapse
Affiliation(s)
- Yajing Liang
- From the School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China, the Multidiscipline Research Center, Institute of High Energy Physics of the Chinese Academy of Sciences, 19B Yuequan Road, Beijing 100049, China, and
| | - Zengqiang Gao
- the Multidiscipline Research Center, Institute of High Energy Physics of the Chinese Academy of Sciences, 19B Yuequan Road, Beijing 100049, China, and
| | - Fei Wang
- the Multidiscipline Research Center, Institute of High Energy Physics of the Chinese Academy of Sciences, 19B Yuequan Road, Beijing 100049, China, and
| | - Yangli Zhang
- the Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, YiXueYuanlu-1, Chongqing 400016, China
| | - Yuhui Dong
- the Multidiscipline Research Center, Institute of High Energy Physics of the Chinese Academy of Sciences, 19B Yuequan Road, Beijing 100049, China, and
| | - Quansheng Liu
- the Multidiscipline Research Center, Institute of High Energy Physics of the Chinese Academy of Sciences, 19B Yuequan Road, Beijing 100049, China, and
| |
Collapse
|
36
|
Yang M, Gao CH, Hu J, Dong C, He ZG. Characterization of the interaction between a SirR family transcriptional factor ofMycobacterium tuberculosis, encoded by Rv2788, and a pair of toxin-antitoxin proteins RelJ/K, encoded by Rv3357 and Rv3358. FEBS J 2014; 281:2726-37. [DOI: 10.1111/febs.12815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/30/2014] [Accepted: 04/09/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Min Yang
- National Key Laboratory of Agricultural Microbiology; Proteomics Research Center; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| | - Chun-Hui Gao
- National Key Laboratory of Agricultural Microbiology; Proteomics Research Center; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| | - Jialing Hu
- National Key Laboratory of Agricultural Microbiology; Proteomics Research Center; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| | - Chao Dong
- National Key Laboratory of Agricultural Microbiology; Proteomics Research Center; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| | - Zheng-Guo He
- National Key Laboratory of Agricultural Microbiology; Proteomics Research Center; College of Life Science and Technology; Huazhong Agricultural University; Wuhan China
| |
Collapse
|
37
|
HU-induced polymorphous filamentation in fish pathogen Edwardsiella tarda leading to reduced invasion and virulence in zebrafish. Vet Microbiol 2014; 171:165-74. [PMID: 24793099 DOI: 10.1016/j.vetmic.2014.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 02/03/2023]
Abstract
Edwardsiella tarda is a rod-shaped Gram-negative pathogenic bacterium that causes hemorrhagic septicemia in fish. Nucleoid-associated protein HU is a basic DNA-binding protein with structural specificity in regulating genes expression. In wild-type E. tarda EIB202, HU is composed of two subunits HUα (hupA) and HUβ (hupB), and exists in homodimer or heterodimer forms. Different from the wild-type and ΔhupB mutant, ΔhupA mutant was found to be defective in cell growth, H2S production, acid adaptation, and exhibited abnormal cell division resulting in a filamentous phenotype in log phase bacteria. The qRT-PCR result showed that deletion of hupA significantly up-regulated the transcription levels of recA and sulA, which in turn stimulated RecA-dependent pathway to prevent cell division, resulting in filamentous morphology in E. tarda. Furthermore, the elongated ΔhupA cells showed a striking defect in EPC cell invasion, and the adhesion and internalization rates were reduced to 25% and 27% of the wild-type in log phase cultures. Confocal laser scanning microscopy revealed that filamentous bacteria failed to adhere to and could not be internalized into EPC. When some of the bacteria regained the rod-shape morphology in stationary cultures, the ΔhupA mutants showed increased adhesion and internalization rates into EPC. Moreover, ΔhupA mutant exhibited delayed mortalities (for two days) in zebrafish but the LD50 increased 17 folds. Immunohistochemical analysis showed that ΔhupA mutant reduced proliferation abilities in the muscle, liver and intestine of zebrafish. This study indicates that HU protein and strains morphology play essential roles in the virulence network of E. tarda.
Collapse
|
38
|
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 2014; 6:1002-20. [PMID: 24662523 PMCID: PMC3968373 DOI: 10.3390/toxins6031002] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.
Collapse
|
39
|
Zhang H, Zhang Z, Yang J, He ZG. Functional characterization of DnaB helicase and its modulation by single-stranded DNA binding protein in Mycobacterium tuberculosis. FEBS J 2014; 281:1256-66. [PMID: 24387047 DOI: 10.1111/febs.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022]
Abstract
DnaB is important in the initiation and extension stages of DNA replication. Although DnaB has been studied in many bacterial species, its function in the devastating human pathogen Mycobacterium tuberculosis remains unclear. In this study, an intein-deleted form of M. tuberculosis DnaB (MtbDnaB) was cloned, expressed and characterized. MtbDnaB exhibited strong 5' to 3' helicase and ATPase activities, suggesting that MtbDnaB is a functional homolog of Escherichia coli DnaB. A physical interaction between MtbSSB (single-stranded binding protein of M. tuberculosis) and MtbDnaB was further identified in vivo and in vitro. The MtbSSB C-terminal fragment was found to have a critical function in this interaction. Moreover, the helicase activity of MtbDnaB was stimulated by MtbSSB at low concentrations and inhibited at high concentrations. An MtbSSB mutant with decreased binding affinity for ssDNA can stimulate the helicase activity of MtbDnaB over a wider concentration range than wild-type MtbSSB. These results suggest that MtbSSB assists in the loading of MtbDnaB on the DNA replication fork in M. tuberculosis.
Collapse
Affiliation(s)
- Hua Zhang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | |
Collapse
|
40
|
Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 2014; 6:304-24. [PMID: 24434905 PMCID: PMC3920263 DOI: 10.3390/toxins6010304] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/05/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic modules usually composed of a toxin and an antitoxin counteracting the activity of the toxic protein. These systems are widely spread in bacterial and archaeal genomes. TA systems have been assigned many functions, ranging from persistence to DNA stabilization or protection against mobile genetic elements. They are classified in five types, depending on the nature and mode of action of the antitoxin. In type I and III, antitoxins are RNAs that either inhibit the synthesis of the toxin or sequester it. In type II, IV and V, antitoxins are proteins that either sequester, counterbalance toxin activity or inhibit toxin synthesis. In addition to these interactions between the antitoxin and toxin components (RNA-RNA, protein-protein, RNA-protein), TA systems interact with a variety of cellular factors, e.g., toxins target essential cellular components, antitoxins are degraded by RNAses or ATP-dependent proteases. Hence, TA systems have the capacity to interact with each other at different levels. In this review, we will discuss the different interactions in which TA systems are involved and their implications in TA system functions and evolution.
Collapse
|
41
|
Schnappinger D, Ehrt S. Regulated Expression Systems for Mycobacteria and Their Applications. Microbiol Spectr 2014; 2:03. [PMID: 25485177 PMCID: PMC4254785 DOI: 10.1128/microbiolspec.mgm2-0018-2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Indexed: 11/20/2022] Open
Abstract
For bacterial model organisms like Escherichia coli and Bacillus subtilis genetic tools to experimentally manipulate the activity of individual genes existed for decades. But for genetically less tractable yet medically important bacteria such as M. tuberculosis such tools have rarely been available. More recently several groups developed genetic switches that function efficiently in M. tuberculosis and other mycobacteria. Together these systems utilize six different transcription factors, eight different regulated promoters, and three different regulatory principles. Here we describe their design features, review their main applications, and discuss advantages and disadvantages of regulating transcription, translation, or protein stability for controlling gene activities in bacteria.
Collapse
Affiliation(s)
- Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Medical College, and Program in Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Medical College, and Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065
| |
Collapse
|
42
|
Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti. J Bacteriol 2013; 196:811-24. [PMID: 24317400 DOI: 10.1128/jb.01104-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toxin and antitoxin (TA) gene pairs are addiction systems that are present in many microbial genomes. Sinorhizobium meliloti is an N2-fixing bacterial symbiont of alfalfa and other leguminous plants, and its genome consists of three large replicons, a circular chromosome (3.7 Mb) and the megaplasmids pSymA (1.4 Mb) and pSymB (1.7 Mb). S. meliloti carries 211 predicted type II TA genes, each encoding a toxin or an antitoxin. We constructed defined deletion strains that collectively removed the entire pSymA and pSymB megaplasmids except for their oriV regions. Of approximately 100 TA genes on pSymA and pSymB, we identified four whose loss was associated with cell death or stasis unless copies of the genes were supplied in trans. Orthologs of three of these loci have been characterized in other organisms (relB/E [sma0471/sma0473], Fic [DOC] [sma2105], and VapC [PIN] [orf2230/sma2231]), and this report contains the first experimental proof that RES/Xre (smb21127/smb21128) loci can function as a TA system. Transcriptome sequencing (RNA-seq) analysis did not reveal transcriptional differences between the TA systems to account for why deletion of the four "active" systems resulted in cell toxicity. These data suggest that severe cell growth phenotypes result from the loss of a few TA systems and that loss of most TA systems may result in more subtle phenotypes. These four TA systems do not appear to play a direct role in the S. meliloti-alfalfa symbiosis, as strains lacking these TA systems had a symbiotic N2 fixation phenotype that was indistinguishable from the wild type.
Collapse
|
43
|
Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev 2013. [PMID: 23204366 DOI: 10.1128/mmbr.00030-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pneumococcal infections cause up to 2 million deaths annually and raise a large economic burden and thus constitute an important threat to mankind. Because of the increase in the antibiotic resistance of Streptococcus pneumoniae clinical isolates, there is an urgent need to find new antimicrobial approaches to triumph over pneumococcal infections. Toxin-antitoxin (TA) systems (TAS), which are present in most living bacteria but not in eukaryotes, have been proposed as an effective strategy to combat bacterial infections. Type II TAS comprise a stable toxin and a labile antitoxin that form an innocuous TA complex under normal conditions. Under stress conditions, TA synthesis will be triggered, resulting in the degradation of the labile antitoxin and the release of the toxin protein, which would poison the host cells. The three functional chromosomal TAS from S. pneumoniae that have been studied as well as their molecular characteristics are discussed in detail in this review. Furthermore, a meticulous bioinformatics search has been performed for 48 pneumococcal genomes that are found in public databases, and more putative TAS, homologous to well-characterized ones, have been revealed. Strikingly, several unusual putative TAS, in terms of components and genetic organizations previously not envisaged, have been discovered and are further discussed. Previously, we reported a novel finding in which a unique pneumococcal DNA signature, the BOX element, affected the regulation of the pneumococcal yefM-yoeB TAS. This BOX element has also been found in some of the other pneumococcal TAS. In this review, we also discuss possible relationships between some of the pneumococcal TAS with pathogenicity, competence, biofilm formation, persistence, and an interesting phenomenon called bistability.
Collapse
|
44
|
Schuessler DL, Cortes T, Fivian-Hughes AS, Lougheed KEA, Harvey E, Buxton RS, Davis EO, Young DB. Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol 2013; 90:195-207. [PMID: 23927792 PMCID: PMC3912914 DOI: 10.1111/mmi.12358] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
Collapse
Affiliation(s)
- Dorothée L Schuessler
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang L, He ZG. Radiation-sensitive gene A (RadA) targets DisA, DNA integrity scanning protein A, to negatively affect cyclic Di-AMP synthesis activity in Mycobacterium smegmatis. J Biol Chem 2013; 288:22426-36. [PMID: 23760274 DOI: 10.1074/jbc.m113.464883] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic di-AMP has been recognized as a ubiquitous second messenger involved in the regulation of bacterial signal transduction. However, little is known about the control of its synthesis and its physiological role in bacteria. In this study, we report a novel mechanism of control of c-di-AMP synthesis and its effects on bacterial growth in Mycobacterium smegmatis. We identified a DisA homolog in M. smegmatis, MsDisA, as an enzyme involved in c-di-AMP synthesis. Furthermore, MsRadA, a RadA homolog in M. smegmatis was found to act as an antagonist of the MsDisA protein. MsRadA can physically interact with MsDisA and inhibit the c-di-AMP synthesis activity of MsDisA. Overexpression of MsdisA in M. smegmatis led to cell expansion and bacterial aggregation as well as loss of motility. However, co-expression of MsradA and MsdisA rescued these abnormal phenotypes. Furthermore, we show that the interaction between RadA and DisA and its role in inhibiting c-di-AMP synthesis may be conserved in bacteria. Our findings enhance our understanding of the control of c-di-AMP synthesis and its physiological roles in bacteria.
Collapse
Affiliation(s)
- Lei Zhang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
46
|
Speculative strategies for new antibacterials: all roads should not lead to Rome. J Antibiot (Tokyo) 2013; 66:371-86. [PMID: 23612725 DOI: 10.1038/ja.2013.27] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/28/2022]
Abstract
In concert with improvements in personal hygiene and public sanitation, the discovery and development of antibiotics during the latter half of the last century has reduced substantially the morbidity and mortality associated with bacterial diseases. However, the past decade has witnessed a sharp reduction in interest in antibacterial drug development by 'big pharma', compounded by a decline in the breadth of chemical space for new antibacterial molecules and a failure to exploit the plethora of cellular processes potentially targetable by novel classes of antibacterial molecules. This review focuses on some strategies relating to antibacterial chemotherapy, paths less trodden, which the author considers worthy of further exploration.
Collapse
|
47
|
Sala A, Calderon V, Bordes P, Genevaux P. TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones. Cell Stress Chaperones 2013; 18:129-35. [PMID: 23264229 PMCID: PMC3581621 DOI: 10.1007/s12192-012-0396-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/27/2023] Open
Abstract
Bacterial type II toxin-antitoxins (TAs) are two-component systems that modulate growth in response to specific stress conditions, thus promoting adaptation and persistence. The major human pathogen Mycobacterium tuberculosis potentially encodes 75 TAs and it has been proposed that persistence induced by active toxins might be relevant for its pathogenesis. In this work, we focus on the newly discovered toxin-antitoxin-chaperone (TAC) system of M. tuberculosis, an atypical stress-responsive TA system tightly controlled by a molecular chaperone that shows similarity to the canonical SecB chaperone involved in Sec-dependent protein export in Gram-negative bacteria. We performed a large-scale genome screening to reconstruct the evolutionary history of TAC systems and found that TAC is not restricted to mycobacteria and seems to have disseminated in diverse taxonomic groups by horizontal gene transfer. Our results suggest that TAC chaperones are evolutionary related to the solitary chaperone SecB and have diverged to become specialized toward their cognate antitoxins.
Collapse
Affiliation(s)
- Ambre Sala
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Virginie Calderon
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique and Université Paul Sabatier, 31000 Toulouse, France
- Laboratoire de Microbiologie et Génétique Moléculaires, IBCG, CNRS, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse cedex 09, France
| |
Collapse
|
48
|
Zhang L, Li W, He ZG. DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J Biol Chem 2012; 288:3085-96. [PMID: 23250743 DOI: 10.1074/jbc.m112.428110] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclic dinucleotides, including cyclic di-AMP (c-di-AMP), are known to be ubiquitous second messengers involved in bacterial signal transduction. However, no transcriptional regulator has been characterized as a c-di-AMP receptor/effector to date. In the present study, using a c-di-AMP/transcription factor binding screen, we identified Ms5346, a TetR family regulator in Mycobacterium smegmatis, as a c-di-AMP receptor in bacteria. Ms5346 could specifically bind c-di-AMP with K(d) of 2.3 ± 0.5 μM. Using EMSA and DNase I footprinting assays, c-di-AMP was found to stimulate the DNA binding activity of Ms5346 and to enhance its ability to protect its target DNA sequence. A conserved 14-bp palindromic motif was identified as the DNA-binding site for Ms5346. Further, Ms5346 was found to negatively regulate expression of three target genes including Ms5347 (encoding a major facilitator family transporter), Ms5348 (encoding a medium chain fatty acyl-CoA ligase), and Ms5696 (encoding a cold shock protein, CspA). Ms5346 is the first cyclic di-AMP receptor regulator to be identified in bacteria, and we have designated it as DarR. Our findings enhance our understanding of the function and regulatory mechanism of the second messenger c-di-AMP in bacteria.
Collapse
Affiliation(s)
- Lei Zhang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
49
|
Yang Q, Huang F, Hu L, He ZG. Physical and functional interactions between 3-methyladenine DNA glycosylase and topoisomerase I in mycobacteria. BIOCHEMISTRY (MOSCOW) 2012; 77:378-87. [PMID: 22809157 DOI: 10.1134/s0006297912040098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA glycosylases play important roles in DNA repair in a variety of organisms, including humans. However, the function and regulation of these enzymes in the pathogenic bacterium Mycobacterium tuberculosis and related species are poorly understood. In the present study, the physical and functional interactions between 3-methyladenine DNA glycosylase (MAG) and topoisomerase I (TopA) in M. tuberculosis and M. smegmatis were characterized. MAG was found to inhibit the function of TopA in relaxing supercoiled DNA. In contrast, TopA stimulated the cleavage function of MAG on a damaged DNA substrate that contains hypoxanthine. The interaction between the two proteins was conserved between the two mycobacterial species. Several mutations in MAG that led to the loss of its interaction with and activity regulation of TopA were also characterized. The results of this study further elucidate glycosylase regulation in both M. smegmatis and M. tuberculosis.
Collapse
Affiliation(s)
- Qiong Yang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
50
|
Li W, He ZG. LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis. Nucleic Acids Res 2012; 40:11292-307. [PMID: 23047950 PMCID: PMC3526308 DOI: 10.1093/nar/gks923] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In a bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)/transcription factor binding screen, we identified Mycobacterium smegmatis Ms6479 as the first c-di-GMP-responsive transcriptional factor in mycobacteria. Ms6479 could specifically bind with c-di-GMP and recognize the promoters of 37 lipid transport and metabolism genes. c-di-GMP could enhance the ability of Ms6479 to bind to its target DNA. Furthermore, our results establish Ms6479 as a global activator that positively regulates the expression of diverse target genes. Overexpression of Ms6479 in M. smegmatis significantly reduced the permeability of the cell wall to crystal violet and increased mycobacterial resistance to anti-tuberculosis antibiotics. Interestingly, Ms6479 lacks the previously reported c-di-GMP binding motifs. Our findings introduce Ms6479 (here designated LtmA for lipid transport and metabolism activator) as a new c-di-GMP-responsive regulator.
Collapse
Affiliation(s)
- Weihui Li
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|