1
|
Dutra RC. Kinin receptors: Key regulators of autoimmunity. Autoimmun Rev 2017; 16:192-207. [DOI: 10.1016/j.autrev.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023]
|
2
|
Avolio E, Spinetti G, Madeddu P. Training monocytes by physical exercise: good practice for improving collateral artery development and postischemic outcomes. Arterioscler Thromb Vasc Biol 2015. [PMID: 26203159 DOI: 10.1161/atvbaha.115.306034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elisa Avolio
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom (E.A., P.M.); and MultiMedica Research Institute, Milan, Italy (G.S.)
| | - Gaia Spinetti
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom (E.A., P.M.); and MultiMedica Research Institute, Milan, Italy (G.S.)
| | - Paolo Madeddu
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom (E.A., P.M.); and MultiMedica Research Institute, Milan, Italy (G.S.).
| |
Collapse
|
3
|
Cejkova P, Nemeckova I, Broz J, Cerna M. TLR2 and TLR4 expression on CD14(++) and CD14(+) monocyte subtypes in adult-onset autoimmune diabetes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 160:76-83. [PMID: 25942429 DOI: 10.5507/bp.2015.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/01/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Peripheral blood monocytes are key effectors of innate immunity. Dysfunction, changes in their counts or altered expression of cytokines and pattern-recognition receptors on monocytes may contribute to the development of the autoimmune type of diabetes mellitus (AD). AIMS We aimed to analyze the counts and proportions of the two main subtypes of monocyte cells, CD14(++) and CD14(+), and to look for potential changes in the expression of toll-like receptors 2 (TLR2) and 4 (TLR4) as well as cytokine prolactin (PRL) in adult-onset AD, including diabetes mellitus type 1 (T1DM) and latent autoimmune diabetes in adults (LADA). METHODS We examined 21 T1DM patients, 9 patients with LADA, 16 control patients with type 2 diabetes mellitus (T2DM) and 24 healthy individuals. All diabetic patients were diagnosed after the age of 18 years. Expression at the mRNA level was determined by quantitative PCR. Flow cytometry was used to ascertain membrane expression and cell counts. RESULTS T1DM patients had fewer CD14(++) (P < 0.01) and CD14(+) (P < 0.0001) monocytes whereas T2DM subjects showed decreased counts of CD14(+) monocytes compared to healthy controls (P < 0.001). TLR2 protein expression was significantly increased in T1DM CD14(+) monocytes compared to healthy controls (P < 0.05), while TLR4 expression in T1DM CD14(++) cells was significantly lower (P < 0.0001). There was no significant difference between the groups in terms of PRL mRNA expression in monocytes. CONCLUSIONS The observed changes in the proportions of both immune cell types and in the expression of functional pattern-recognition receptors on monocytes in the subjects examined may arise as a consequence of chronic inflammation that accompanies long-term diabetes.
Collapse
Affiliation(s)
- Pavlina Cejkova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University in Prague, Czech Republic.,Department of General Biology and Genetics, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Iva Nemeckova
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jan Broz
- 2nd Department of Internal Medicine, Diabetes Center, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Marie Cerna
- Department of General Biology and Genetics, Third Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
4
|
Ascione R, Rowlinson J, Avolio E, Katare R, Meloni M, Spencer HL, Mangialardi G, Norris C, Kränkel N, Spinetti G, Emanueli C, Madeddu P. Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction. Stem Cell Res Ther 2015; 6:53. [PMID: 25889213 PMCID: PMC4440500 DOI: 10.1186/s13287-015-0028-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/04/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Chemokine-directed migration is crucial for homing of regenerative cells to the infarcted heart and correlates with outcomes of cell therapy trials. Hence, transplantation of chemokine-responsive bone marrow cells may be ideal for treatment of myocardial ischemia. To verify the therapeutic activity of bone marrow mononuclear cells (BM-MNCs) selected by in vitro migration towards the chemokine stromal cell-derived factor-1 (SDF-1) in a mouse model of myocardial infarction (MI), we used BM-MNCs from patients with previous large MI recruited in the TransACT-1&2 cell therapy trials. METHODS Unfractioned BM-MNCs, SDF-1-responsive, and SDF-1-nonresponsive BM-MNCs isolated by patients recruited in the TransACT-1&2 cell therapy trials were tested in Matrigel assay to evaluate angiogenic potential. Secretome and antigenic profile were characterized by flow cytometry. Angiogenin expression was measured by RT-PCR. Cells groups were also intramyocardially injected in an in vivo model of MI (8-week-old immune deficient CD1-FOXN1(nu/nu) mice). Echocardiography and hemodynamic measurements were performed before and at 14 days post-MI. Arterioles and capillaries density, infiltration of inflammatory cells, interstitial fibrosis, and cardiomyocyte proliferation and apoptosis were assessed by immunohistochemistry. RESULTS In vitro migration enriched for monocytes, while CD34(+) and CD133(+) cells and T lymphocytes remained mainly confined in the non-migrated fraction. Unfractioned total BM-MNCs promoted angiogenesis on Matrigel more efficiently than migrated or non-migrated cells. In mice with induced MI, intramyocardial injection of unfractionated or migrated BM-MNCs was more effective in preserving cardiac contractility and pressure indexes than vehicle or non-migrated BM-MNCs. Moreover, unfractioned BM-MNCs enhanced neovascularization, whereas the migrated fraction was unique in reducing the infarct size and interstitial fibrosis. In vitro studies on isolated cardiomyocytes suggest participation of angiogenin, a secreted ribonuclease that inhibits protein translation under stress conditions, in promotion of cardiomyocyte survival by migrated BM-MNCs. CONCLUSIONS Transplantation of bone marrow cells helps post-MI healing through distinct actions on vascular cells and cardiomyocytes. In addition, the SDF-1-responsive fraction is enriched with angiogenin-expressing monocytes, which may improve cardiac recovery through activation of cardiomyocyte response to stress. Identification of factors linking migratory and therapeutic outcomes could help refine regenerative approaches.
Collapse
Affiliation(s)
- Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Jonathan Rowlinson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Elisa Avolio
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Rajesh Katare
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Marco Meloni
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Helen L Spencer
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Giuseppe Mangialardi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Caroline Norris
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | | | | | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| |
Collapse
|
5
|
Effects of glucose control and variability on endothelial function and repair in adolescents with type 1 diabetes. ISRN ENDOCRINOLOGY 2013; 2013:876547. [PMID: 24490081 PMCID: PMC3893838 DOI: 10.1155/2013/876547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/08/2013] [Indexed: 12/27/2022]
Abstract
Background. Endothelial dysfunction and increased inflammation are precursors of cardiovascular disease in type 1 diabetes (T1D) and occur even in adolescents with T1D. The goal of this study was to determine the relationship of endothelial dysfunction to various measures of glycemia. Research Design and Methods. Forearm blood flow (FBF, venous occlusion plethysmography) was measured before and after 5 min of upper arm vascular occlusion in 17 adolescents with uncomplicated type 1 diabetes. Endothelial function was assessed as postocclusion FBF and forearm vascular resistance (FVR, mean arterial pressure/FBF). Fasting glucose, 72 hour mean glucose and standard deviation from continuous glucose monitoring, hemoglobin A1c, and hemoglobin A1c by duration area under the curve were used to assess immediate, short-term, and intermediate- and long-term glycemia. Results. Postocclusion FBF (r = −0.53, P = 0.030) negatively correlated and postocclusion FVR positively correlated (r = 0.52, P = 0.031) with hemoglobin A1c levels. FVR was positively associated with log 3 day mean glucose (r = 0.55, P = 0.027). Postocclusion FBF (2.8 ± 1.1 versus 3.4 ± 0.5 mL/dL/min, mean ± SE, P = 0.084) tended to be lower and FVR (31.4 ± 10.4 versus 23.9 ± 4.4 mmHg dL min/mL, P = 0.015) was significantly higher in subjects with hemoglobin A1c above the median (8.3%) compared to those with lower hemoglobin A1c levels. Conclusions. These results demonstrate that poor intermediate-term glycemic control is associated with impaired endothelial function.
Collapse
|
6
|
Mangialardi G, Monopoli A, Ongini E, Spinetti G, Fortunato O, Emanueli C, Madeddu P. Nitric oxide-donating statin improves multiple functions of circulating angiogenic cells. Br J Pharmacol 2012; 164:570-83. [PMID: 21486281 DOI: 10.1111/j.1476-5381.2011.01423.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Statins, a major component of the prevention of cardiovascular disease, aid progenitor cell functions in vivo and in vitro. Statins bearing a NO-releasing moiety were developed for their enhanced anti-inflammatory/anti-thrombotic properties. Here, we investigated if the NO-donating atorvastatin (NCX 547) improved the functions of circulating angiogenic cells (CACs). EXPERIMENTAL APPROACH Circulating angiogenic cells (CACs) were prepared from peripheral blood monocytes of healthy volunteers and type-2 diabetic patients and were cultured in low (LG) or high glucose (HG) conditions, in presence of atorvastatin or NCX 547 (both at 0.1 µM) or vehicle. Functional assays (outgrowth, proliferation, viability, senescence and apoptosis) were performed in presence of the endothelial NOS inhibitor L-NIO, the NO scavenger c-PTIO or vehicle. KEY RESULTS Culturing in HG conditions lowered NO in CACs, inhibited outgrowth, proliferation, viability and migration, and induced cell senescence and apoptosis. NCX 547 fully restored NO levels and functions of HG-cultured CACs, while atorvastatin prevented only apoptosis in CACs. The activity of Akt, a pro-survival kinase, was increased by atorvastatin in LG-cultured but not in HG-cultured CACs, whereas NCX 547 increased Akt activity in both conditions. L-NIO partially blunted and c-PTIO prevented NCX 547-induced improvements in CAC functions. Finally, NCX 547 improved outgrowth and migration of CACs prepared from patients with type 2 diabetes. CONCLUSIONS AND IMPLICATIONS NCX 547 was more effective than atorvastatin in preserving functions of CACs. This property adds to the spectrum of favourable actions that would make NO-releasing statins more effective agents for treating cardiovascular disease.
Collapse
Affiliation(s)
- G Mangialardi
- Chair Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Gian Paolo Fadini
- Department of Clinical and Experimental Medicine, Metabolic Division, University of Padova, Medical School-Padova, Italy.
| |
Collapse
|
8
|
Spinetti G, Fortunato O, Cordella D, Portararo P, Kränkel N, Katare R, Sala-Newby GB, Richer C, Vincent MP, Alhenc-Gelas F, Tonolo G, Cherchi S, Emanueli C, Madeddu P. Tissue kallikrein is essential for invasive capacity of circulating proangiogenic cells. Circ Res 2011; 108:284-93. [PMID: 21164105 PMCID: PMC3596779 DOI: 10.1161/circresaha.110.236786] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 12/06/2010] [Indexed: 01/20/2023]
Abstract
RATIONALE Homing of proangiogenic cells (PACs) is guided by chemoattractants and requires proteases to disrupt the extracellular matrix. The possibility that PAC recruitment involves an interaction between proteases and chemotactic factor receptors remains largely unexplored. OBJECTIVE To determine the role of human tissue kallikrein (hK1) in PAC invasion and its dependency on kinin receptor signaling. METHODS AND RESULTS Human mononuclear cells (MNCs) and culture-selected PACs express and release mature hK1 protein. HK1 gene (KLK1) silencing reduced PACs migratory, invasive, and proangiogenic activities. KLK1-knockout mouse bone marrow-derived MNCs showed similar impairments and were unable to support reparative angiogenesis in a mouse model of peripheral ischemia. Conversely, adenovirus-mediated KLK1 (Ad.KLK1) gene transfer enhanced PAC-associated functions, whereas the catalytically inactive variant R53H-KLK1 was ineffective. HK1-induced effects are mediated by a kinin B(2) receptor (B(2)R)-dependent mechanism involving inducible nitric oxide synthase and metalloproteinase-2 (MMP2). Lower hK1 protein levels were observed in PACs from type 2 diabetic (T2D) patients, whereas KLK1 mRNA levels were similar to those of healthy subjects, suggesting a post-transcriptional defect. Furthermore, B(2)R is normally expressed on T2D-PACs but remains uncoupled from downstream signaling. Importantly, whereas Ad.KLK1 alone could not restore T2D-PAC invasion capacity, combined KLK1 and B(2)R expression rescued the diabetic phenotype. CONCLUSIONS This study reveals new interactive components of the PACs invasive machinery, acting via protease- and kinin receptor-dependent mechanisms.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Case-Control Studies
- Cell Movement/physiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Down-Regulation
- Female
- Hindlimb/blood supply
- Humans
- Ischemia/metabolism
- Kallikreins/genetics
- Kallikreins/metabolism
- Kinins/metabolism
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Models, Animal
- Neovascularization, Physiologic/physiology
- Nitric Oxide Synthase/metabolism
- RNA, Messenger/metabolism
- Receptor, Bradykinin B2/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Gaia Spinetti
- Chair of Experimental Cardiovascular Medicine, University of Bristol, Bristol BS28HW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Spinetti G, Fortunato O, Kraenkel N, Madeddu P. Close encounters of the third kind: progenitor cells land on the platelet-enriched vascular surface. Arterioscler Thromb Vasc Biol 2011; 31:243-4. [PMID: 21248281 DOI: 10.1161/atvbaha.110.219097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Kränkel N, Spinetti G, Amadesi S, Madeddu P. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther 2011; 129:62-81. [PMID: 20965213 PMCID: PMC3017934 DOI: 10.1016/j.pharmthera.2010.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.
Collapse
Affiliation(s)
- Nicolle Kränkel
- Institute of Physiology/Cardiovascular Research, University of Zürich, and Cardiovascular Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | | | - Silvia Amadesi
- Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|