1
|
Mahood T, Pascoe CD, Karakach TK, Jha A, Basu S, Ezzati P, Spicer V, Mookherjee N, Halayko AJ. Integrating Proteomes for Lung Tissues and Lavage Reveals Pathways That Link Responses in Allergen-Challenged Mice. ACS OMEGA 2021; 6:1171-1189. [PMID: 33490776 PMCID: PMC7818314 DOI: 10.1021/acsomega.0c04269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
To capture interplay between biological pathways, we analyzed the proteome from matched lung tissues and bronchoalveolar lavage fluid (BALF) of individual allergen-naïve and house dust mite (HDM)-challenged BALB/c mice, a model of allergic asthma. Unbiased label-free liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis quantified 2675 proteins from tissues and BALF of allergen-naïve and HDM-exposed mice. In comparing the four datasets, we found significantly greater diversity in proteins between lung tissues and BALF than in the changes induced by HDM challenge. The biological pathways enriched after allergen exposure were compartment-dependent. Lung tissues featured innate immune responses and oxidative stress, while BALF most strongly revealed changes in metabolism. We combined lung tissues and BALF proteomes, which principally highlighted oxidation reduction (redox) pathways, a finding influenced chiefly by the lung tissue dataset. Integrating lung and BALF proteomes also uncovered new proteins and biological pathways that may mediate lung tissue and BALF interactions after allergen challenge, for example, B-cell receptor signaling. We demonstrate that enhanced insight is fostered when different biological compartments from the lung are investigated in parallel. Integration of proteomes from lung tissues and BALF compartments reveals new information about protein networks in response to environmental challenge and interaction between intracellular and extracellular processes.
Collapse
Affiliation(s)
- Thomas
H. Mahood
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Christopher D. Pascoe
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Tobias K. Karakach
- Bioinformatics
Core Laboratory, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E
3P4, Canada
| | - Aruni Jha
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Sujata Basu
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Peyman Ezzati
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Victor Spicer
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Neeloffer Mookherjee
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Manitoba
Centre for Proteomics and Systems Biology, Department of Internal
Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| | - Andrew J. Halayko
- Department
of Physiology & Pathophysiology, University
of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- DEVOTION
Network, Winnipeg, Manitoba R3E 3P4, Canada
- Biology
of Breathing Group, Children’s Hospital
Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Canadian
Respiratory Research Network, Ottawa, Ontario K2E 7V7, Canada
| |
Collapse
|
2
|
Liao HY, Da CM, Wu ZL, Zhang HH. Ski: Double roles in cancers. Clin Biochem 2020; 87:1-12. [PMID: 33188772 DOI: 10.1016/j.clinbiochem.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The Ski (Sloan-Kettering Institute) is an evolutionarily conserved protein that plays a dual role as an oncoprotein and tumor suppressor gene in the development of human cancer. The Ski oncogene was first identified as a transforming protein of the avian Sloan-Kettering retrovirus in 1986. Since its discovery, Ski has been identified as a carcinogenic regulator in a variety of malignant tumors. Later, it was reported that Ski regulates the occurrence and development of some cancers by acting as an oncogene. Ski mediates the proliferation, differentiation, metastasis, and invasion of numerous cancer cells through various mechanisms. Several studies have shown that Ski expression is correlated with the clinical characteristics of cancer patients and is a promising biomarker and therapeutic target for cancer. In this review, we summarize the mechanisms and potential clinical implications of Ski in dimorphism, cancer occurrence, and progression in various types of cancer.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
3
|
Rass M, Oestreich S, Guetter S, Fischer S, Schneuwly S. The Drosophila fussel gene is required for bitter gustatory neuron differentiation acting within an Rpd3 dependent chromatin modifying complex. PLoS Genet 2019; 15:e1007940. [PMID: 30730884 PMCID: PMC6382215 DOI: 10.1371/journal.pgen.1007940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/20/2019] [Accepted: 01/07/2019] [Indexed: 01/14/2023] Open
Abstract
Members of the Ski/Sno protein family are classified as proto-oncogenes and act as negative regulators of the TGF-ß/BMP-pathways in vertebrates and invertebrates. A newly identified member of this protein family is fussel (fuss), the Drosophila homologue of the human functional Smad suppressing elements (fussel-15 and fussel-18). We and others have shown that Fuss interacts with SMAD4 and that overexpression leads to a strong inhibition of Dpp signaling. However, to be able to characterize the endogenous Fuss function in Drosophila melanogaster, we have generated a number of state of the art tools including anti-Fuss antibodies, specific fuss-Gal4 lines and fuss mutant fly lines via the CRISPR/Cas9 system. Fuss is a predominantly nuclear, postmitotic protein, mainly expressed in interneurons and fuss mutants are fully viable without any obvious developmental phenotype. To identify potential target genes or cells affected in fuss mutants, we conducted targeted DamID experiments in adult flies, which revealed the function of fuss in bitter gustatory neurons. We fully characterized fuss expression in the adult proboscis and by using food choice assays we were able to show that fuss mutants display defects in detecting bitter compounds. This correlated with a reduction of gustatory receptor gene expression (Gr33a, Gr66a, Gr93a) providing a molecular link to the behavioral phenotype. In addition, Fuss interacts with Rpd3, and downregulation of rpd3 in gustatory neurons phenocopies the loss of Fuss expression. Surprisingly, there is no colocalization of Fuss with phosphorylated Mad in the larval central nervous system, excluding a direct involvement of Fuss in Dpp/BMP signaling. Here we provide a first and exciting link of Fuss function in gustatory bitter neurons. Although gustatory receptors have been well characterized, little is known regarding the differentiation and maturation of gustatory neurons. This work therefore reveals Fuss as a pivotal element for the proper differentiation of bitter gustatory neurons acting within a chromatin modifying complex.
Collapse
Affiliation(s)
- Mathias Rass
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Svenja Oestreich
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Severin Guetter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Susanne Fischer
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
4
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
5
|
Manandhar D, Song L, Kabadi A, Kwon JB, Edsall LE, Ehrlich M, Tsumagari K, Gersbach CA, Crawford GE, Gordân R. Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies. Nucleic Acids Res 2017; 45:11684-11699. [PMID: 28977539 PMCID: PMC5714206 DOI: 10.1093/nar/gkx773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.
Collapse
Affiliation(s)
- Dinesh Manandhar
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Ami Kabadi
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jennifer B Kwon
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Lee E Edsall
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Melanie Ehrlich
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA.,Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Koji Tsumagari
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles A Gersbach
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham NC 27708, USA
| |
Collapse
|
6
|
Walldén K, Nyman T, Hällberg BM. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex. Sci Rep 2017; 7:46370. [PMID: 28397834 PMCID: PMC5387736 DOI: 10.1038/srep46370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Karin Walldén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tomas Nyman
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology, DESY-Campus, 22603 Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| |
Collapse
|
7
|
Chaikuad A, Bullock AN. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022111. [PMID: 27549117 DOI: 10.1101/cshperspect.a022111] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
8
|
Allen MD, Freund SMV, Zinzalla G, Bycroft M. The SWI/SNF Subunit INI1 Contains an N-Terminal Winged Helix DNA Binding Domain that Is a Target for Mutations in Schwannomatosis. Structure 2015; 23:1344-9. [PMID: 26073604 PMCID: PMC4509781 DOI: 10.1016/j.str.2015.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
SWI/SNF complexes use the energy of ATP hydrolysis to remodel chromatin. In mammals they play a central role in regulating gene expression during differentiation and proliferation. Mutations in SWI/SNF subunits are among the most frequent gene alterations in cancer. The INI1/hSNF5/SMARCB1 subunit is mutated in both malignant rhabdoid tumor, a highly aggressive childhood cancer, and schwannomatosis, a tumor-predisposing syndrome characterized by mostly benign tumors of the CNS. Here, we show that mutations in INI1 that cause schwannomatosis target a hitherto unidentified N-terminal winged helix DNA binding domain that is also present in the BAF45a/PHF10 subunit of the SWI/SNF complex. The domain is structurally related to the SKI/SNO/DAC domain, which is found in a number of metazoan chromatin-associated proteins. INI1 and its metazoan homologs contain a variant winged helix DNA binding domain A homologous domain is present in the BAF45a/PHF10 subunit of the SWI/SNF complex Structurally related domains are found in other metazoan chromatin-associated proteins INI1 mutations that cause schwannomatosis map to the winged helix domain
Collapse
Affiliation(s)
- Mark D Allen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Giovanna Zinzalla
- Centre for Advanced Cancer Therapies, Department of Microbiology, Cell and Tumour Biology and Science for Life Laboratory, Karolinska Institutet, Tomtebodavägen 23, Stockholm 171 65, Sweden
| | - Mark Bycroft
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
9
|
Bonni S, Bonni A. SnoN signaling in proliferating cells and postmitotic neurons. FEBS Lett 2012; 586:1977-83. [PMID: 22710173 DOI: 10.1016/j.febslet.2012.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/28/2023]
Abstract
The transcriptional regulator SnoN plays a fundamental role as a modulator of transforming growth factor beta (TGFβ)-induced signal transduction and biological responses. In recent years, novel functions of SnoN have been discovered in both TGFβ-dependent and TGFβ-independent settings in proliferating cells and postmitotic neurons. Accumulating evidence suggests that SnoN plays a dual role as a corepressor or coactivator of TGFβ-induced transcription. Accordingly, SnoN exerts oncogenic or tumor-suppressive effects in epithelial tissues. At the cellular level, SnoN antagonizes or mediates the ability of TGFβ to induce cell cycle arrest in a cell-type specific manner. SnoN also exerts key effects on epithelial-mesenchymal transition (EMT), with implications in cancer biology. Recent studies have expanded SnoN functions to postmitotic neurons, where SnoN orchestrates key aspects of neuronal development in the mammalian brain, from axon growth and branching to neuronal migration and positioning. In this review, we will highlight our understanding of SnoN biology at the crossroads of cancer biology and neurobiology.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
10
|
Band AM, Laiho M. SnoN oncoprotein enhances estrogen receptor-α transcriptional activity. Cell Signal 2011; 24:922-30. [PMID: 22227247 DOI: 10.1016/j.cellsig.2011.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022]
Abstract
Estrogen receptor-α (ERα) and transforming growth factor-beta (TGF-β) signaling pathways are essential regulators during mammary gland development and tumorigenesis. Ski-related novel gene (SnoN) is an oncoprotein and a negative feedback inhibitor of TGF-β signaling. We have previously reported that low expression of SnoN in ERα positive breast carcinomas is associated with favorable prognosis (Zhang et al. Cancer Res. (2003) 63, 5005-5010). Here we have studied the mechanism of a possible cross-talk between ERα and SnoN. We find that SnoN interacts with the estrogen-activated form of ERα in the nucleus. SnoN contains two highly conserved nuclear receptor binding LxxLL-like motifs and we show that mutations in these motifs reduce the interaction of SnoN with ERα. Over-expression of SnoN enhanced the transcriptional activity of ERα in estrogen response element (ERE)-reporter assays, augmented the expression of several ERα target genes and increased the proliferation of MCF7 breast carcinoma cells in an estrogen-dependent manner. Chromatin immunoprecipitation demonstrated that SnoN interacts with ERα at the TTF1 (pS2) gene promoter. Conversely, silencing of SnoN reduced both ERE-reporter activity and the expression of ERα target genes in MCF7 and T-47D breast cancer cells. Histone deacetylase inhibition increased the level of SnoN and SnoN-dependent enhancement of ERα-dependent transcription and SnoN supported the recruitment of p300 histone acetylase to ERα. This study reveals a novel mechanism that interconnects ERα and TGF-β signaling pathways by SnoN. Accordingly, the results indicate that high SnoN level promotes ERα signaling and possibly breast cancer progression.
Collapse
Affiliation(s)
- Arja M Band
- Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
11
|
Bonnon C, Atanasoski S. c-Ski in health and disease. Cell Tissue Res 2011; 347:51-64. [DOI: 10.1007/s00441-011-1180-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 01/28/2023]
|