1
|
Justicia-Lirio P, Tristán-Manzano M, Maldonado-Pérez N, Barbero-Jiménez C, Cortijo-Gutiérrez M, Pavlovic K, Molina-Estevez FJ, Muñoz P, Hinckley-Boned A, Rodriguez-Madoz JR, Prosper F, Griñán-Lison C, Navarro-Marchal SA, Panisello C, Muñoz-Ballester J, González-Sierra PA, Herrera C, Marchal JA, Martín F. First-in-class transactivator-free, doxycycline-inducible IL-18-engineered CAR-T cells for relapsed/refractory B cell lymphomas. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102308. [PMID: 39640015 PMCID: PMC11617245 DOI: 10.1016/j.omtn.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/12/2024] [Indexed: 12/07/2024]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy has revolutionized type B cancer treatment, efficacy remains limited in various lymphomas and solid tumors. Reinforcing conventional CAR-T cells to release cytokines can improve their efficacy but also increase safety concerns. Several strategies have been developed to regulate their secretion using minimal promoters that are controlled by chimeric proteins harboring transactivators. However, these chimeric proteins can disrupt the normal physiology of T cells. Here, we present the first transactivator-free anti-CD19 CAR-T cells able to control IL-18 expression (iTRUCK19.18) under ultra-low doses of doxycycline and without altering cellular fitness. Interestingly, IL-18 secretion requires T cell activation in addition to doxycycline, allowing the external regulation of CAR-T cell potency. This effect was translated into an increased CAR-T cell antitumor activity against aggressive hematologic and solid tumor models. In a clinically relevant context, we generated patient-derived iTRUCK19.18 cells capable of eradicating primary B cells tumors in a doxycycline-dependent manner. Furthermore, IL-18-releasing CAR-T cells polarized pro-tumoral macrophages toward an antitumoral phenotype, suggesting potential for modulating the tumor microenvironment. In summary, we showed that our platform can generate exogenously controlled CAR-T cells with enhanced potency and in the absence of transactivators.
Collapse
Affiliation(s)
- Pedro Justicia-Lirio
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - María Tristán-Manzano
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - Noelia Maldonado-Pérez
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Av. de la Investigación, 11, 18006 Granada, Spain
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - Carmen Barbero-Jiménez
- LentiStem Biotech, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - Kristina Pavlovic
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofía University Hospital, University of Cordoba, Av. Menéndez Pidal, 14004 Cordoba, Spain
| | - Francisco J. Molina-Estevez
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Av. de Madrid 15, 18012 Granada, Spain
| | - Pilar Muñoz
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Av. de Madrid 15, 18012 Granada, Spain
- Department of Cellular Biology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva, 18071 Granada, Spain
| | - Ana Hinckley-Boned
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - Juan R. Rodriguez-Madoz
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Felipe Prosper
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Hematology and Cell Therapy Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Carmen Griñán-Lison
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Av. de Madrid 15, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Saúl A. Navarro-Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Av. de Madrid 15, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carla Panisello
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Julia Muñoz-Ballester
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Av. de Madrid 15, 18012 Granada, Spain
- Hematology and Hemotherapy Unit, Virgen de las Nieves University Hospital, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - Pedro A. González-Sierra
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Av. de Madrid 15, 18012 Granada, Spain
- Hematology and Hemotherapy Unit, Virgen de las Nieves University Hospital, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofía University Hospital, University of Cordoba, Av. Menéndez Pidal, 14004 Cordoba, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Av. de Madrid 15, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Av. de la Investigación 11, 18006 Granada, Spain
| | - Francisco Martín
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Av. de la Investigación, 11, 18006 Granada, Spain
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, Av. de Madrid 15, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Tristán-Manzano M, Justicia-Lirio P, Maldonado-Pérez N, Cortijo-Gutiérrez M, Benabdellah K, Martin F. Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Front Immunol 2020; 11:2044. [PMID: 33013864 PMCID: PMC7498544 DOI: 10.3389/fimmu.2020.02044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is a very promising therapeutic approach against cancer that is particularly effective when combined with gene therapy. Immuno-gene therapy approaches have led to the approval of four advanced therapy medicinal products (ATMPs) for the treatment of p53-deficient tumors (Gendicine and Imlygic), refractory acute lymphoblastic leukemia (Kymriah) and large B-cell lymphomas (Yescarta). In spite of these remarkable successes, immunotherapy is still associated with severe side effects for CD19+ malignancies and is inefficient for solid tumors. Controlling transgene expression through an externally administered inductor is envisioned as a potent strategy to improve safety and efficacy of immunotherapy. The aim is to develop smart immunogene therapy-based-ATMPs, which can be controlled by the addition of innocuous drugs or agents, allowing the clinicians to manage the intensity and durability of the therapy. In the present manuscript, we will review the different inducible, versatile and externally controlled gene delivery systems that have been developed and their applications to the field of immunotherapy. We will highlight the advantages and disadvantages of each system and their potential applications in clinics.
Collapse
Affiliation(s)
- María Tristán-Manzano
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Pedro Justicia-Lirio
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,LentiStem Biotech, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Noelia Maldonado-Pérez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Marina Cortijo-Gutiérrez
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Karim Benabdellah
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Francisco Martin
- Gene and Cell Therapy Unit, Genomic Medicine Department, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| |
Collapse
|
5
|
Heller G, Rommer A, Steinleitner K, Etzler J, Hackl H, Heffeter P, Tomasich E, Filipits M, Steinmetz B, Topakian T, Klingenbrunner S, Ziegler B, Spittler A, Zöchbauer-Müller S, Berger W, Wieser R. EVI1 promotes tumor growth via transcriptional repression of MS4A3. J Hematol Oncol 2015; 8:28. [PMID: 25886616 PMCID: PMC4389965 DOI: 10.1186/s13045-015-0124-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/26/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The transcription factor Ecotropic Virus Integration site 1 (EVI1) regulates cellular proliferation, differentiation, and apoptosis, and its overexpression contributes to an aggressive course of disease in myeloid leukemias and other malignancies. Notwithstanding, knowledge about the target genes mediating its biological and pathological functions remains limited. We therefore aimed to identify and characterize novel EVI1 target genes in human myeloid cells. METHODS U937T_EVI1, a human myeloid cell line expressing EVI1 in a tetracycline regulable manner, was subjected to gene expression profiling. qRT-PCR was used to confirm the regulation of membrane-spanning-4-domains subfamily-A member-3 (MS4A3) by EVI1. Reporter constructs containing various parts of the MS4A3 upstream region were employed in luciferase assays, and binding of EVI1 to the MS4A3 promoter was investigated by chromatin immunoprecipitation. U937 derivative cell lines experimentally expressing EVI1 and/or MS4A3 were generated by retroviral transduction, and tested for their tumorigenicity by subcutaneous injection into severe combined immunodeficient mice. RESULTS Gene expression microarray analysis identified 27 unique genes that were up-regulated, and 29 unique genes that were down-regulated, in response to EVI1 induction in the human myeloid cell line U937T. The most strongly repressed gene was MS4A3, and its down-regulation by EVI1 was confirmed by qRT-PCR in additional, independent experimental model systems. MS4A3 mRNA levels were also negatively correlated with those of EVI1 in several published AML data sets. Reporter gene assays and chromatin immunoprecipitation showed that EVI1 regulated MS4A3 via direct binding to a promoter proximal region. Experimental re-expression of MS4A3 in an EVI1 overexpressing cell line counteracted the tumor promoting effect of EVI1 in a murine xenograft model by increasing the rate of apoptosis. CONCLUSIONS Our data reveal MS4A3 as a novel direct target of EVI1 in human myeloid cells, and show that its repression plays a role in EVI1 mediated tumor aggressiveness.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Anna Rommer
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Katarina Steinleitner
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Julia Etzler
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria.
| | - Petra Heffeter
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Erwin Tomasich
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Martin Filipits
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Birgit Steinmetz
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Thais Topakian
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Simone Klingenbrunner
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Barbara Ziegler
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Sabine Zöchbauer-Müller
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| | - Walter Berger
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
- Department of Medicine I, Institute of Cancer Research, and Research Platform "Translational Cancer Therapy Research", Borschkegasse 8A, 1090, Vienna, Austria.
| | - Rotraud Wieser
- Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria.
| |
Collapse
|