1
|
Nagai T, Sato M, Nishita M. miR-200c-141 induces a hybrid E/M state and promotes collective cell migration in MDA-MB-231 cells. Biochem Biophys Res Commun 2024; 709:149829. [PMID: 38552553 DOI: 10.1016/j.bbrc.2024.149829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
The microRNA-200 (miR-200) family is a potent suppressor of epithelial-to-mesenchymal transition (EMT). While its role as a tumor suppressor has been well documented, recent studies suggested that it can promote cancer progression in several stages. In this study, we investigated whether the miR-200 family members play a role in the acquisition of a hybrid epithelial/mesenchymal (E/M) state, which is reported to be associated with cancer malignancy, in mesenchymal MDA-MB-231 cells. Our results demonstrated that the induction of miR-200c-141, a cluster of the miR-200 family member, can induce the expression of epithelial gene and cell-cell junction while mesenchymal markers are retained. Moreover, induction of miR-200c-141 promoted collective migration accompanied by the formation of F-actin cables anchored by adherens junction. These results suggest that the miR-200 family can induce a hybrid E/M state and endows with the ability of collective cell migration in mesenchymal cancer cells.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University, School of Medicine, Fukushima, 960-1295, Japan.
| | - Misa Sato
- Department of Biochemistry, Fukushima Medical University, School of Medicine, Fukushima, 960-1295, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University, School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
2
|
Yadav V, Jena MK, Parashar G, Parashar NC, Joshi H, Ramniwas S, Tuli HS. Emerging role of microRNAs as regulators of protein kinase C substrate MARCKS and MARCKSL1 in cancer. Exp Cell Res 2024; 434:113891. [PMID: 38104645 DOI: 10.1016/j.yexcr.2023.113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have emerged as pivotal regulators of gene expression, playing essential roles in diverse cellular processes, including the development and progression of cancer. Among the numerous proteins influenced by miRNAs, the MARCKS/MARCKSL1 protein, a key regulator of cellular cytoskeletal dynamics and membrane-cytosol communication, has garnered significant attention due to its multifaceted involvement in various cancer-related processes, including cell migration, invasion, metastasis, and drug resistance. Motivated by the encouraging early clinical success of peptides targeting MARCKS in several pathological conditions, this review article delves into the intricate interplay between miRNAs and the MARCKS protein in cancer. Herein, we have highlighted the latest findings on specific miRNAs that modulate MARCKS/MARCKSL1 expression, providing a comprehensive overview of their roles in different cancer types. We have underscored the need for in-depth investigations into the therapeutic feasibility of targeting the miRNA-MARCKS axis in cancer, taking cues from the successes witnessed in related fields. Unlocking the full potential of miRNA-mediated MARCKS regulation could pave the way for innovative and effective therapeutic interventions against various cancer types.
Collapse
Affiliation(s)
- Vikas Yadav
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, 4000, Liège, Belgium; Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE 20213, Malmö, Sweden.
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Parashar
- Division of Biomedical & Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biosciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Hardeep Singh Tuli
- Department of Biosciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
3
|
dos Santos EC, Rohan P, Binato R, Abdelhay E. Integrated Network Analysis of microRNAs, mRNAs, and Proteins Reveals the Regulatory Interaction between hsa-mir-200b and CFL2 Associated with Advanced Stage and Poor Prognosis in Patients with Intestinal Gastric Cancer. Cancers (Basel) 2023; 15:5374. [PMID: 38001634 PMCID: PMC10670725 DOI: 10.3390/cancers15225374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Intestinal gastric cancer (IGC) carcinogenesis results from a complex interplay between environmental and molecular factors, ultimately contributing to disease development. We used integrative bioinformatic analysis to investigate IGC high-throughput molecular data to uncover interactions among differentially expressed genes, microRNAs, and proteins and their roles in IGC. An integrated network was generated based on experimentally validated microRNA-gene/protein interaction data, with three regulatory circuits involved in a complex network contributing to IGC progression. Key regulators were determined, including 23 microRNA and 15 gene/protein hubs. The regulatory circuit networks were associated with hallmarks of cancer, e.g., cell death, apoptosis and the cell cycle, the immune response, and epithelial-to-mesenchymal transition, indicating that different mechanisms of gene regulation impact similar biological functions. Altered expression of hubs was related to the clinicopathological characteristics of IGC patients and showed good performance in discriminating tumors from adjacent nontumor tissues and in relation to T stage and overall survival (OS). Interestingly, expression of upregulated hub hsa-mir-200b and its downregulated target hub gene/protein CFL2 were related not only to pathological T staging and OS but also to changes during IGC carcinogenesis. Our study suggests that regulation of CFL2 by hsa-miR-200b is a dynamic process during tumor progression and that this control plays essential roles in IGC development. Overall, the results indicate that this regulatory interaction is an important component in IGC pathogenesis. Also, we identified a novel molecular interplay between microRNAs, proteins, and genes associated with IGC in a complex biological network and the hubs closely related to IGC carcinogenesis as potential biomarkers.
Collapse
Affiliation(s)
- Everton Cruz dos Santos
- Stem Cell Laboratory, Division of Specialized Laboratories, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil; (P.R.); (R.B.); (E.A.)
| | | | | | | |
Collapse
|
4
|
Qin M, Yu-Wai-Man C. Glaucoma: Novel antifibrotic therapeutics for the trabecular meshwork. Eur J Pharmacol 2023; 954:175882. [PMID: 37391006 PMCID: PMC10804937 DOI: 10.1016/j.ejphar.2023.175882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Glaucoma is a chronic and progressive neurodegenerative disease characterized by the loss of retinal ganglion cells and visual field defects, and currently affects around 1% of the world's population. Elevated intraocular pressure (IOP) is the best-known modifiable risk factor and a key therapeutic target in hypertensive glaucoma. The trabecular meshwork (TM) is the main site of aqueous humor outflow resistance and therefore a critical regulator of IOP. Fibrosis, a reparative process characterized by the excessive deposition of extracellular matrix components and contractile myofibroblasts, can impair TM function and contribute to the pathogenesis of primary open-angle glaucoma (POAG) as well as the failure of minimally invasive glaucoma surgery (MIGS) devices. This paper provides a detailed overview of the current anti-fibrotic therapeutics targeting the TM in glaucoma, along with their anti-fibrotic mechanisms, efficacy as well as the current research progress from pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Mengqi Qin
- King's College London, London, SE1 7EH, UK
| | | |
Collapse
|
5
|
Fotakopoulos G, Georgakopoulou VE, Spandidos DA, Papalexis P, Angelopoulou E, Aravantinou-Fatorou A, Trakas N, Trakas I, Brotis AG. Role of miR‑200 family in brain metastases: A systematic review. Mol Clin Oncol 2023; 18:15. [PMID: 36798467 PMCID: PMC9926042 DOI: 10.3892/mco.2023.2611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Brain metastasis (BM) represents the single most severe neurological complication of systemic cancer. The prognosis of patients with BM is poor, irrespective of the implemented treatment. The present study performed a systematic review of the literature using three online databases (PubMed, Scopus and Web of Science). Recently, a number of small RNA molecules, the microRNAs (miRNAs/miRs), have attracted increasing scientific attention. Members of the miR-200 family, which includes five miRNAs (miR-141, miR-200a, miR-200b, miR-200c and miR-429) appear to play pivotal roles in cancer initiation and metastasis. Indeed, a systematic review of the pertinent literature revealed that miR-200 family members regulate the brain metastatic cascade, particularly by modulating epithelial-to-mesenchymal transition. That holds true for the major representatives of BM, including lung and breast cancer, as well as for other less frequent secondary lesions originating from melanoma and the gastrointestinal tract. Therefore, the miRNAs may serve as potential diagnostic and/or prognostic markers, and under specific circumstances, as invaluable therapeutic targets. However, the available clinical evidence is relatively limited. A number of studies have suggested that the miR-200 family members are accurate prognostic markers of survival and resistance to chemotherapy in patients with breast cancer. Similarly, they may prove helpful in differentiating a metastatic lesion from a malignant glioma, or a hemangioblastoma from a renal cell carcinoma in patients with von Hippel Lindau syndrome, based on a cerebrospinal fluid sample. However, currently, there is no known therapeutic role for miR-200 family members in the setting of BM.
Collapse
Affiliation(s)
- George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece,Correspondence to: Dr George Fotakopoulos, Department of Neurosurgery, General University Hospital of Larissa, Mezourlo, 41221 Larissa, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Efthalia Angelopoulou
- Department of Neurology, Eginitio University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Aikaterini Aravantinou-Fatorou
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Ilias Trakas
- Department of Infectious Diseases and COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros G. Brotis
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| |
Collapse
|
6
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
7
|
Methylation Status of Gene Bodies of Selected microRNA Genes Associated with Neoplastic Transformation in Equine Sarcoids. Cells 2022; 11:cells11121917. [PMID: 35741046 PMCID: PMC9221590 DOI: 10.3390/cells11121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Horses are of great importance in recreation, livestock production, as working animals in poorly developed countries, and for equine-assisted therapy. Equine sarcoids belong to the most commonly diagnosed tumors in this species. They may cause discomfort, pain, and can lead to the permanent impairment of motor function. The molecular bases of their formation are still under investigation. Our previous studies revealed altered microRNA (miRNA) expression and DNA methylation levels in sarcoid tumors. Abnormal patterns of methylation may be responsible for changes in gene expression levels, including microRNAs. Recently, the DNA methylation of gene bodies has also been shown to have an impact on gene expression. Thus, the aim of the study was to investigate the methylation pattern of gene bodies of chosen miRNAs identified in sarcoid tissue (miR-101, miR-10b, miR-200a, and miR-338-3p), which have also been established to play roles in neoplastic transformation. To this end, we applied qRT-PCR, Bisulfite Sequencing PCR (BSP), and Mquant methods. As a result, we identified the statistically significant downregulation of pri-mir-101-1, pri-mir-10b, and pri-mir-200a in the sarcoid samples in comparison to the control. The DNA methylation analysis revealed their hypermethylation. This suggests that DNA methylation may be one mechanism responsible for the downregulation of theses miRNAs. However, the identified differences in the methylation levels are not very high, which implies that other mechanisms may also underlie the downregulation of the expression of these miRNAs in equine sarcoids. For the first time, the results obtained shed light on microRNA expression regulation by gene body methylation in equine sarcoids and provide bases for further deeper studies on other mechanisms influencing the miRNA repertoire.
Collapse
|
8
|
Gebrekiristos M, Melson J, Jiang A, Buckingham L. DNA methylation and miRNA expression in colon adenomas compared with matched normal colon mucosa and carcinomas. Int J Exp Pathol 2022; 103:74-82. [PMID: 35229372 DOI: 10.1111/iep.12432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 01/28/2023] Open
Abstract
Dysregulation of DNA methylation patterns and non-coding RNA, including miRNAs, has been implicated in colon cancer, and these changes may occur early in the development of carcinoma. In this study, the role of epigenetics as early changes in colon tumorigenesis was examined through paired sample analysis of patient-matched normal, adenoma and carcinoma samples. Global methylation was assessed by genomic 5-methyl cytosine (5-mC) and long interspersed nuclear element-1 (LINE-1) promoter methylation by pyrosequencing. KRAS mutations were also assessed by pyrosequencing. Expression of miRNA, specifically, two microRNA genes-miR-200a and let-7c-was analysed using RT-qPCR. Differences in global methylation in adenomas were not observed, compared with normal tissue. However, LINE-1 methylation was decreased in adenomas (p = .056) and carcinomas (p = .011) compared with normal tissue. Expressions of miRNA, miR-200a and let-7c were significantly higher in adenomas than normal tissues (p = .008 and p = .045 respectively). Thus the significant changes in LINE-1 methylation and microRNA expression in precancerous lesions support an early role for epigenetic changes in the carcinogenic process. Epigenetic characteristics in adenomas may provide potential diagnostic and prognostic therapeutic targets early in cancer development at the adenoma stage.
Collapse
Affiliation(s)
- Mezgebe Gebrekiristos
- Department of Medical Laboratory Science, Rush University College of Health Sciences, Chicago, Illinois, USA
| | - Joshua Melson
- Department of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Alice Jiang
- Department of Gastroenterology, Rush University Medical Center, Chicago, Illinois, USA
| | - Lela Buckingham
- Department of Medical Laboratory Science, Rush University College of Health Sciences, Chicago, Illinois, USA
| |
Collapse
|
9
|
Dika E, Broseghini E, Porcellini E, Lambertini M, Riefolo M, Durante G, Loher P, Roncarati R, Bassi C, Misciali C, Negrini M, Rigoutsos I, Londin E, Patrizi A, Ferracin M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis 2021; 12:473. [PMID: 33980826 PMCID: PMC8115306 DOI: 10.1038/s41419-021-03764-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.
Collapse
Affiliation(s)
- Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Lambertini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roberta Roncarati
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
- CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Cristian Bassi
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Cosimo Misciali
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Annalisa Patrizi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Wen B, Zhu R, Jin H, Zhao K. Differential expression and role of miR-200 family in multiple tumors. Anal Biochem 2021; 626:114243. [PMID: 33964251 DOI: 10.1016/j.ab.2021.114243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 01/02/2023]
Abstract
microRNA (miRNA) can maintain the homeostasis of the human by participating in the regulation of cell proliferation, apoptosis, differentiation, and metabolism. During the entire stage of tumorigenesis, miRNA can maintain the heterogeneity of cancer stem cells by regulating the formation and metastasis of the tumor, which leads to chemotherapy resistance. miR-200 family consists of five members, which can regulate the proliferation, invasion, and migration of cancer cells by inhibiting the transcription of downstream genes (including zinc finger E-box binding homeobox 1 and 2, E-cadherin, N-cadherin, transforming growth factor-β, and cancer stem cell related-proteins). Meanwhile, Long non-coding RNA can bind to miR-200s to regulate the proliferation and apoptosis of cancer cells. Besides, the expression of the miR-200 family can affect the mechanism of chemotherapy resistance.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Rong Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
11
|
Liang XL, Wang YL, Wang PR. MiR-200a with CDC7 as a direct target declines cell viability and promotes cell apoptosis in Wilm's tumor via Wnt/β-catenin signaling pathway. Mol Cell Biochem 2021; 476:2409-2420. [PMID: 33599894 DOI: 10.1007/s11010-021-04090-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
MiR-200a acts as a key role in tumor malignant progression. This work purposed to assess the function of miR-200a in Wilm's tumor. Based on bioinformatics analysis, the expression, prognostic value and related pathways of miR-200a and CDC7 (a potential downstream molecule of miR-200a) in Wilm's tumor were analyzed. qRT-PCR was conducted to confirm the miR-200a level in Wilm's tumor cells. The luciferase reporter assay was carried out to verify the binding of miR-200a to 3'-UTR of CDC7. Then, the impacts of miR-200a and CDC7 on cell viability and apoptosis were measured using CCK-8 and flow cytometry assays. Also, western blot was applied to measure the expression of CDC7 as well as Wnt/β-catenin signaling pathway-related proteins and apoptosis proteins. Herein, we revealed that miR-200a was lowly expressed in Wilm's tumor tissues and cells and the low miR-200a expression is closely bound up with death and poor outcomes. Moreover, miR-200a directly targeted and inhibited CDC7 in Wilm's tumor cells. Biological function experiments illustrated that overexpression of miR-200a reduced the viability and elevated the apoptosis of Wilm's tumor cells, while overexpression of CDC7 reversed the inhibitory impact of miR-200a on cell viability and the promoting impact of miR-200a on cell apoptosis. Besides, we revealed that miR-200a/CDC7 axis can decrease the expression of β-Catenin, Cyclin D1 and C-Myc as well as the phosphorylation of GSK-3β, thus inhibiting the Wnt/β-catenin signaling pathway. Furthermore, blocking the Wnt/β-catenin signaling pathway caused an increase on cell apoptosis, while overexpression of CDC7 can reverse these impacts. Collectively, miR-200a/CDC7 axis involved in regulating the malignant phenotype of Wilm's tumor through Wnt/β-catenin signaling pathway, which provides a theoretical basis for targeted molecular therapy of Wilm's tumor.
Collapse
Affiliation(s)
- Xiu-Ling Liang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China.,Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, People's Republic of China
| | - Yu-Long Wang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China
| | - Pei-Rong Wang
- Department of Pediatrics, Second Hospital Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, People's Republic of China.
| |
Collapse
|
12
|
Zhu J, Deng J, Zhang L, Zhao J, Zhou F, Liu N, Cai R, Wu J, Shu B, Qi S. Reconstruction of lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional lncRNAs in skin cutaneous melanoma. BMC Cancer 2020; 20:927. [PMID: 32993558 PMCID: PMC7523354 DOI: 10.1186/s12885-020-07302-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human skin cutaneous melanoma is the most common and dangerous skin tumour, but its pathogenesis is still unclear. Although some progress has been made in genetic research, no molecular indicators related to the treatment and prognosis of melanoma have been found. In various diseases, dysregulation of lncRNA is common, but its role has not been fully elucidated. In recent years, the birth of the "competitive endogenous RNA" theory has promoted our understanding of lncRNAs. METHODS To identify the key lncRNAs in melanoma, we reconstructed a global triple network based on the "competitive endogenous RNA" theory. Gene Ontology and KEGG pathway analysis were performed using DAVID (Database for Annotation, Visualization, and Integration Discovery). Our findings were validated through qRT-PCR assays. Moreover, to determine whether the identified hub gene signature is capable of predicting the survival of cutaneous melanoma patients, a multivariate Cox regression model was performed. RESULTS According to the "competitive endogenous RNA" theory, 898 differentially expressed mRNAs, 53 differentially expressed lncRNAs and 16 differentially expressed miRNAs were selected to reconstruct the competitive endogenous RNA network. MALAT1, LINC00943, and LINC00261 were selected as hub genes and are responsible for the tumorigenesis and prognosis of cutaneous melanoma. CONCLUSIONS MALAT1, LINC00943, and LINC00261 may be closely related to tumorigenesis in cutaneous melanoma. In addition, MALAT1 and LINC00943 may be independent risk factors for the prognosis of patients with this condition and might become predictive molecules for the long-term treatment of melanoma and potential therapeutic targets.
Collapse
Affiliation(s)
- Junyou Zhu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jin Deng
- Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong 510095 People’s Republic of China
| | - Lijun Zhang
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jingling Zhao
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Fei Zhou
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Ning Liu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Ruizhao Cai
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Jun Wu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Bin Shu
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Shaohai Qi
- Department of Burn, The First Affiliated Hospital, Sun yat-sen University, Guangzhou, Guangdong 510080 People’s Republic of China
| |
Collapse
|
13
|
Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, Wang J, Zhang E, Deng L. MicroRNAs target the Wnt/β‑catenin signaling pathway to regulate epithelial‑mesenchymal transition in cancer (Review). Oncol Rep 2020; 44:1299-1313. [PMID: 32700744 PMCID: PMC7448411 DOI: 10.3892/or.2020.7703] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial‑mesenchymal transition (EMT), during which cancer cells lose the epithelial phenotype and gain the mesenchymal phenotype, has been verified to result in tumor migration and invasion. Numerous studies have shown that dysregulation of the Wnt/β‑catenin signaling pathway gives rise to EMT, which is characterized by nuclear translocation of β‑catenin and E‑cadherin suppression. Wnt/β‑catenin signaling was confirmed to be affected by microRNAs (miRNAs), several of which are down‑ or upregulated in metastatic cancer cells, indicating their complex roles in Wnt/β‑catenin signaling. In this review, we demonstrated the targets of various miRNAs in altering Wnt/β‑catenin signaling to promote or inhibit EMT, which may elucidate the underlying mechanism of EMT regulation by miRNAs and provide evidence for potential therapeutic targets in the treatment of invasive tumors.
Collapse
Affiliation(s)
- Yuhe Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lei Chen
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Ge Zhang
- Department of Big Data Research of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Aiyun Shan
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Chunfeng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Liang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jiayu Sun
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Xin Liao
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Changfeng Zhu
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Yueyue Chen
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Jing Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Enxin Zhang
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
14
|
Lazaridou MF, Gonschorek E, Massa C, Friedrich M, Handke D, Mueller A, Jasinski-Bergner S, Dummer R, Koelblinger P, Seliger B. Identification of miR-200a-5p targeting the peptide transporter TAP1 and its association with the clinical outcome of melanoma patients. Oncoimmunology 2020; 9:1774323. [PMID: 32923135 PMCID: PMC7458634 DOI: 10.1080/2162402x.2020.1774323] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/23/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor escape is often associated with abnormalities in the surface expression of the human leukocyte antigen class I (HLA-I) antigens thereby limiting CD8+ cytotoxic T cell responses. This impaired HLA-I surface expression can be mediated by deficient expression of components of the antigen processing and presentation machinery (APM) due to epigenetic, transcriptional and/or post-transcriptional processes. Since a discordant mRNA and protein expression pattern of APM components including the peptide transporter associated with antigen processing 1 (TAP1) has been frequently described in tumors of distinct origin, a post-transcriptional control of APM components caused by microRNAs (miR) was suggested. Using an in silico approach, miR-200a-5p has been identified as a candidate miR binding to the 3' untranslated region (UTR) of TAP1. Luciferase reporter assays demonstrated a specific binding of miR-200a-5p to the TAP1 3'-UTR. Furthermore, the miR-200a-5p expression is inversely correlated with the TAP1 protein expression in HEK293T cells and in a panel of melanoma cell lines as well as in primary melanoma lesions. High levels of miR-200a-5p expression were associated with a shorter overall survival of melanoma patients. Overexpression of miR-200a-5p reduced TAP1 levels, which was accompanied by a decreased HLA-I surface expression and an enhanced NK cell sensitivity of melanoma cells. These data show for the first time a miR-mediated control of the peptide transporter subunit TAP1 in melanoma thereby leading to a reduced HLA-I surface expression accompanied by an altered immune recognition and reduced patients' survival. Abbreviations Ab: antibody; ACTB: β-actin; APM: antigen processing and presentation machinery; ATCC: American tissue culture collection; β2-m: β2-microglobulin; BSA: bovine serum albumin; CTL: cytotoxic T lymphocyte; FCS: fetal calf serum; FFL: firefly luciferase; FFPE: formalin-fixed paraffin-embedded; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HC: heavy chain; HLA: human leukocyte antigen; HLA-I: HLA class I; HRP: horseradish peroxidase; IFN: interferon; im-miR: immune modulatory miRNA; LMP: low molecular weight protein; luc: luciferase; MFI: mean fluorescence intensity; MHC: major histocompatibility complex; miR: microRNA; NC: negative control; NK: natural killer; NSCLC: non-small cell lung carcinoma; OS: overall survival; PBMC: peripheral blood mononuclear cells; RBP: RNA-binding proteins; RL: Renilla; RLU: relative light units; TAP: transporter associated with antigen processing; tpn: tapasin; UTR: untranslated region.
Collapse
Affiliation(s)
| | - Evamaria Gonschorek
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Reinhard Dummer
- Institute of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital Salzburg, Salzburg, Austria
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
15
|
Chen G, Zhang M, Liang Z, Chen S, Chen F, Zhu J, Zhao M, He J, Hua W, Duan P. Association of polymorphisms in MALAT1 with the risk of endometrial cancer in Southern Chinese women. J Clin Lab Anal 2020; 34:e23146. [PMID: 31880028 PMCID: PMC7171330 DOI: 10.1002/jcla.23146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Endometrial cancer is the most common gynecologic malignancy worldwide. Polymorphisms in MALAT1 have been demonstrated to play critical roles in cancer. However, the roles of MALAT1 polymorphisms in the etiology of endometrial cancer have not been well documented. METHODS We genotyped three MALAT1 polymorphisms in 249 endometrial cancer cases and 446 cancer-free female controls using quantitative polymerase chain reaction with TaqMan probes. To estimate the association between MALAT1 polymorphisms (rs591291 C>T, rs664589 C>G, and rs4102217 G>C) and the risk of endometrial cancer, an unconditional logistic regression model was conducted to calculate the odds ratio (OR) and the 95% confidence interval (CI), adjusting for surgery history, menopause, number of deliveries, BMI, and FIGO stage. RESULTS We found that the MALAT1 rs664589 C>G polymorphism was significantly associated with endometrial cancer risk (heterogeneous: adjusted OR = 0.57, 95% CI = 0.34-0.93, P = .026; homogenous: adjusted OR = 3.74, 95% CI = 1.12-12.45, P = .032; and recessive: adjusted OR = 4.06, 95% CI = 1.22-13.48, P = .022). Stratified analysis further demonstrated that the MALAT1 rs664589 C>G polymorphism significantly increased the risk of endometrial cancer susceptibility in patients with no history of surgery, more deliveries, BMI between 25 and 29.9, and FIGO stages II-III. Compared with the wild-type GCG haplotype carriers, individuals with CGG haplotypes had a higher risk of developing endometrial cancer. CONCLUSION The MALAT1 rs664589 C>G polymorphism was associated with a significant increase in endometrial cancer risk.
Collapse
Affiliation(s)
- Guange Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Mingyao Zhang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zongwen Liang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Sailing Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Feng Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiawei Zhu
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Manman Zhao
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Institute of PediatricsGuangzhou Medical UniversityGuangzhouChina
| | - Wenfeng Hua
- Department of Laboratory Medicine and Central LaboratoriesGuangdong Second Provincial General HospitalGuangzhouChina
| | - Ping Duan
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
16
|
Rahimi M, Sharifi-Zarchi A, Zarghami N, Geranpayeh L, Ebrahimi M, Alizadeh E. Down-Regulation of miR-200c and Up-Regulation of miR-30c Target both Stemness and Metastasis Genes in Breast Cancer. CELL JOURNAL 2020; 21:467-478. [PMID: 31376329 PMCID: PMC6722452 DOI: 10.22074/cellj.2020.6406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 09/27/2018] [Indexed: 12/03/2022]
Abstract
OBJECTIVE microRNAs (miRNAs) play important role in progression of tumorigenesis. They can target self-renewal and epithelial-mesenchymal transition (EMT) abilities in tumor cells, especially in cancer stem cells (CSCs). The objective of this study was to implement data mining to identify important miRNAs for targeting both self-renewal and EMT. We also aimed to evaluate these factors in mammospheres as model of breast cancer stem cells (BCSCs) and metastatic tumor tissues. MATERIALS AND METHODS In this experimental study, mammospheres were derived from MCF-7 cells and characterized for the CSCs properties. Then expression pattern of the selected miRNAs in spheroids were evaluated, using the breast tumor cells obtained from seven patients. Correlation of miRNAs with self-renewal and EMT candidate genes were assessed in mammospheres and metastatic tumors. RESULTS The results showed that mammospheres represented more colonogenic and spheroid formation potential than MCF-7 cells (P<0.05). Additionally, they had enhanced migration and invasive capabilities. Our computational analyses determined that miR-200c and miR-30c could be candidates for targeting both stemness and EMT pathways. Expression level of miR-200c was reduced, while miR-30c expression level was enhanced in mammospheres, similar to the breast tumor tissues isolated from three patients with grade II/III who received neo-adjuvant treatment. Expression level of putative stem cell markers (OCT4, SOX2, c-MYC) and EMT-related genes (SNAIL1, CDH2, TWIST1/2) were also significantly increased in mammospheres and three indicated patients (P<0.05). CONCLUSION Simultaneous down-regulation and up-regulation of respectively miR-200c and miR-30c might be signature of BCSC enrichment in patients post neo-adjuvant therapy. Therefore, targeting both miR-200c and miR-30c could be useful for developing new therapeutic approaches, against BCSCs.
Collapse
Affiliation(s)
- Mahsa Rahimi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.Electronic Address:
| | - Effat Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic Address:
| |
Collapse
|
17
|
MicroRNA Regulation of the Autotaxin-Lysophosphatidic Acid Signaling Axis. Cancers (Basel) 2019; 11:cancers11091369. [PMID: 31540086 PMCID: PMC6770380 DOI: 10.3390/cancers11091369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
The revelation that microRNAs (miRNAs) exist within the human genome uncovered an underappreciated mechanism of gene expression. For cells to regulate expression of their genes, miRNA molecules and argonaute proteins bind to mRNAs and interfere with efficient translation of the RNA transcript. Although miRNAs have important roles in normal tissues, miRNAs may adopt aberrant functions in malignant cells depending on their classification as either a tumor suppressor or oncogenic miRNA. Within this review, the current status of miRNA regulation is described in the context of signaling through the lysophosphatidic acid receptors, including the lysophosphatidic acid-producing enzyme, autotaxin. Thus far, research has revealed miRNAs that increase in response to lysophosphatidic acid stimulation, such as miR-21, miR-30c-2-3p, and miR-122. Other miRNAs inhibit the translation of lysophosphatidic acid receptors, such as miR-15b, miR-23a, and miR200c, or proteins that are downstream of lysophosphatidic acid signaling, such as miR-146 and miR-21. With thousands of miRNAs still uncharacterized, it is anticipated that the complex regulation of lysophosphatidic acid signaling by miRNAs will continue to be elucidated. RNA-based therapeutics have entered the clinic with enormous potential in precision medicine. This exciting field is rapidly emerging and it will be fascinating to witness its expansion in scope.
Collapse
|
18
|
Carter JV, O'Brien SJ, Burton JF, Oxford BG, Stephen V, Hallion J, Bishop C, Galbraith NJ, Eichenberger MR, Sarojini H, Hattab E, Galandiuk S. The microRNA-200 family acts as an oncogene in colorectal cancer by inhibiting the tumor suppressor RASSF2. Oncol Lett 2019; 18:3994-4007. [PMID: 31565080 PMCID: PMC6759516 DOI: 10.3892/ol.2019.10753] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to determine whether manipulation of the microRNA-200 (miR-200) family could influence colon adenocarcinoma cell behavior. The miR-200 family has a significant role in tumor suppression and functions as an oncogene. In vitro studies on gain and loss of function with small interfering RNA demonstrated that the miR-200 family could regulate RASSF2 expression. Knockdown of the miR-200 family in the HT-29 colon cancer cell line increased KRAS expression but decreased signaling in the MAPK/ERK signaling pathway through reduced ERK phosphorylation. Increased expression of the miR-200 family in the CCD-841 colon epithelium cell line increased KRAS expression and led to increased signaling in the MAPK/ERK signaling pathway but increased ERK phosphorylation. Functionally, knockdown of the miR-200 family led to decreased cell proliferation in the HT-29 cells; therefore, increased miR-200 family expression could increase cell proliferation in the CCD-841 cell line. The present study included a large paired miR array dataset (n=632), in which the miR-200 family was significantly found to be increased in colon cancer when compared with normal adjacent colon epithelium. In a miR-seq dataset (n=199), the study found that miR-200 family expression was increased in localized colon cancer compared with metastatic disease. Decreased expression was associated with poorer overall survival. The miR-200 family directly targeted RASSF2 and was inversely correlated with RASSF2 expression (n=199, all P<0.001). Despite the well-defined role of the miR-200 family in tumor suppression, the present findings demonstrated a novel function of the miR-200 family in tumor proliferation.
Collapse
Affiliation(s)
- Jane V Carter
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Department of Surgery, North Cumbria University Hospitals NHS Trust, Carlisle, Cumbria CA2 7HY, UK
| | - Stephen J O'Brien
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - James F Burton
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Brent G Oxford
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA.,School of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Vince Stephen
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA.,School of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jake Hallion
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Campbell Bishop
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Norman J Galbraith
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Department of Surgery, University Hospital Wishaw, Wishaw, North Lanarkshire ML2 0DP, UK
| | - Maurice R Eichenberger
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Harshini Sarojini
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Eyas Hattab
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Susan Galandiuk
- Price Institute of Surgical Research, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
19
|
Yin S, Yang M, Li X, Zhang K, Tian J, Luo C, Bai R, Lu Y, Wang M. Peripheral blood circulating microRNA-4636/-143 for the prognosis of cervical cancer. J Cell Biochem 2019; 121:596-608. [PMID: 31407404 DOI: 10.1002/jcb.29305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/27/2019] [Indexed: 01/29/2023]
Abstract
Cervical cancer is the third leading cause of female death in the world. Serum microRNAs (miRNAs) are currently considered to be valuable as noninvasive cancer biomarkers, but their role in the prognosis of cervical cancer has not been elucidated. We aimed to find serum miRNAs that can be used as prognostic factors for cervical cancer. A traumatic pathological biopsy is the only reliable method for determining the severity of cervical cancer currently. Thus, noninvasive diagnostic markers are needed. The serological expression of candidate miRNAs were measured in 90 participants, including 60 patients with cervical cancer and 50 patients with cervical intraepithelial neoplasia. Two patients with cervical cancer were excluded from the study because of lack of data. miRNAs were evaluated by quantitative reverse transcription polymerase chain reaction. miR-143/-4636 appeared specific for cervical cancer compared with cervical intraepithelial neoplasia (P < .001). The classification performance of validated miRNAs for cervical cancer [Area under the receiver operating characteristic curve (AUC) = 0.942] was better than that reached by squamous cell carcinoma antigen (SCC-Ag; AUC = 0.727). Poor-differentiation group has lower miR-143/-4636 levels in serum (P < .05). miR-4636 level was correlated gross tumor volume and the depth of invasion (P < .0001). In our study, we found a combination of miR-143 and miR-4636 that is independently and strongly associated with cervical cancer prognosis and can be used as a clinically prognostic factor.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Min Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Kan Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Jingjing Tian
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Can Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Ruiyang Bai
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Yangfan Lu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
20
|
Du Y, Chi X, An W. Downregulation of microRNA-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating expression of RECK and inactivating the AKT signaling pathway. Chem Biol Interact 2019; 307:223-233. [PMID: 31018114 DOI: 10.1016/j.cbi.2019.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the role of mircoRNA-200c-3p (miR-200c-3p) on hippocampal neuron injury in epileptic rats through the regulation of the AKT signaling pathway by targeting RECK. METHODS The epilepsy rat model was induced by intraperitoneal injection of lithium chloride-pilocarpine. Successful modeled rats were injected with miR-200c-3p inhibitors, inhibitors NC, siRNA-negative control (NC) and RECK-siRNA. The astrocyte activation, levels of oxidative stress indexes, contents of inflammatory factors and the AKT signaling pathway-related proteins in hippocampus tissues were evaluated. RESULTS High expression of miR-200c-3p and low expression of RECK were found in the hippocampus tissues of epileptic rats. Downregulation of miR-200c-3p or upregulation of RECK decreased apoptosis of hippocampal neurons, expression of GFAP, content of MDA and increased the activities of GSH-Px and SOD, decreased expression of TNF-α, IL-1β and IL-6 as well as expression of p-PI3K/t-PI3K and p-Akt/t-Akt in hippocampus tissues of epileptic rats. CONCLUSION Our study provides evidence that downregulation of miR-200c-3p reduces damage of hippocampal neurons in epileptic rats by upregulating RECK and inactivating the AKT signaling pathway.
Collapse
Affiliation(s)
- Yumin Du
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China.
| | - Xiaowen Chi
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Wen An
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| |
Collapse
|
21
|
Gajos-Michniewicz A, Czyz M. Role of miRNAs in Melanoma Metastasis. Cancers (Basel) 2019; 11:E326. [PMID: 30866509 PMCID: PMC6468614 DOI: 10.3390/cancers11030326] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour metastasis is a multistep process. Melanoma is a highly aggressive cancer and metastasis accounts for the majority of patient deaths. microRNAs (miRNAs) are non-coding RNAs that affect the expression of their target genes. When aberrantly expressed they contribute to the development of melanoma. While miRNAs can act locally in the cell where they are synthesized, they can also influence the phenotype of neighboring melanoma cells or execute their function in the direct tumour microenvironment by modulating ECM (extracellular matrix) and the activity of fibroblasts, endothelial cells, and immune cells. miRNAs are involved in all stages of melanoma metastasis, including intravasation into the lumina of vessels, survival during circulation in cardiovascular or lymphatic systems, extravasation, and formation of the pre-metastatic niche in distant organs. miRNAs contribute to metabolic alterations that provide a selective advantage during melanoma progression. They play an important role in the development of drug resistance, including resistance to targeted therapies and immunotherapies. Distinct profiles of miRNA expression are detected at each step of melanoma development. Since miRNAs can be detected in liquid biopsies, they are considered biomarkers of early disease stages or response to treatment. This review summarizes recent findings regarding the role of miRNAs in melanoma metastasis.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
22
|
Kim JS, Kim EJ, Lee S, Tan X, Liu X, Park S, Kang K, Yoon JS, Ko YH, Kurie JM, Ahn YH. MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp Mol Med 2019; 51:1-10. [PMID: 30700696 PMCID: PMC6353903 DOI: 10.1038/s12276-018-0203-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/21/2018] [Accepted: 10/17/2018] [Indexed: 01/02/2023] Open
Abstract
Three miR-34 family members (miR-34a, miR-34b, and miR-34c) are clustered on two different chromosomal loci, Mir34a and Mir34b/c. These miRNAs have identical seed sequences, which are predicted to target the same set of genes. However, miR-34a and miR-34c have different sets of negatively correlated genes in lung adenocarcinoma data from The Cancer Genome Atlas. Therefore, we hypothesized that the individual miR-34 family members, which are tumor suppressive miRNAs, would have varying effects on lung tumorigenesis. To show this, we overexpressed each miR-34 cluster in murine lung cancer cells. MiR-34b/c enhanced cancer cell attachment and suppressed cell growth and invasion compared with miR-34a. In a syngeneic mouse model, both miR-34a and miR-34b/c blocked lung metastasis. However, miR-34b/c suppressed tumor growth more than miR-34a. MiR-34b/c also decreased the expression of mesenchymal markers (Cdh2 and Fn1) and increased the expression of epithelial markers (Cldn3, Dsp, and miR-200) to a greater degree than miR-34a. These results imply that miR-34b and miR-34c inhibit epithelial-to-mesenchymal transition. Furthermore, knockout of all three miR-34 members promoted mutant Kras-driven lung tumor progression in mice. Similarly, lung adenocarcinoma patients with higher miR-34a/b/c levels had better survival rates than did those with lower levels. In summary, we suggest that miR-34b and miR-34c are more effective tumor suppressors than miR-34a. Exploring the effects of three similar small RNA molecules called micro-RNAs (miRNAs) that can restrict the activity of specific genes reveals how they might be used in cancer treatment. RNA is best known as messenger RNA, which carries a copy of a gene’s information into the cell cytoplasm to direct protein manufacture. Many small RNAs play less well-known but crucial roles by binding to messenger RNA molecules to regulate their activity. Researchers in South Korea and USA, led by Young-Ho Ahn at Ewha Womans University in Seoul, investigated how these miRNAs can suppress lung cancer in mice. Their results reveal details of how the miRNAs inhibit the expression of specific tumor-supporting genes. They suggest that three of the RNAs administered together might treat cancer more effectively than using only one as in previous trials.
Collapse
Affiliation(s)
- Jeong Seon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Korea.,Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Eun Ju Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Korea.,Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Sieun Lee
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Korea.,Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanghui Park
- Department of Pathology, College of Medicine, Ewha Womans University, Seoul, 07985, Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Chungnam, 31116, Korea
| | - Jung-Sook Yoon
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Korea. .,Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Korea.
| |
Collapse
|
23
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
24
|
Liu J, Wang L, Li X. HMGB3 promotes the proliferation and metastasis of glioblastoma and is negatively regulated by miR-200b-3p and miR-200c-3p. Cell Biochem Funct 2018; 36:357-365. [PMID: 30232806 DOI: 10.1002/cbf.3355] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/30/2018] [Accepted: 08/08/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jianxun Liu
- Department of Neurology; Daqing Oilfield General Hospital; Daqing China
| | - Liling Wang
- Department of Neurology; Daqing Oilfield General Hospital; Daqing China
| | - Xuesong Li
- Department of Neurology; Daqing Oilfield General Hospital; Daqing China
| |
Collapse
|
25
|
Bao S, Wang X, Wang Z, Yang J, Liu F, Yin C. MicroRNA-30 mediates cell invasion and metastasis in breast cancer. Biochem Cell Biol 2018; 96:825-831. [PMID: 29894647 DOI: 10.1139/bcb-2018-0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the great progress in recent years, many aspects of the pathogenesis and progression of breast cancer remain unclear. A better understanding on the molecular mechanisms underlying metastasis and recurrence is crucial to improve the treatment of this lethal disease. MCF-7 cells were xenografted into mice until visible tumors developed, and the cells from tumor tissue and adjacent normal tissue were cultured with 3 passages as mass tumor (MT) cells and invasive tumor (IT) cells, respectively. Microarray analysis was performed to detect several viable microRNAs in these 2 types of cells. Further, miR-30 knockdown was used to investigate its role in tumor aggression. Relative levels of miR-30 were significantly higher in IT cells than MT cells. Knockdown of miR-30 in both MT and IT cells lowered cell proliferation and cell invasion abilities, and thus increased the survival time of mice xenografted with tumor cells. This study suggested that the knockdown of miR-30 decreased proliferation and invasion of carcinoma cells, giving rise to the potential of miR-30 as a tumor target or marker candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Shuangzhen Bao
- a General Surgery Department, Harrison International Peace Hospital, 180 Renmin Dong Road, Taocheng District, Hengshui 053000, Hebei, China
| | - Xinying Wang
- b Department of Neurology, Harrison International Peace Hospital, 180 Renmin Dong Road, Taocheng District, Hengshui 053000, Hebei, China
| | - Zhichao Wang
- c Department of Radiotherapy, The Second People's Hospital of Hengshui, 666 Jingheng Nan Street, Taocheng District, Hengshui 053000, Hebei, China
| | - Jinqiang Yang
- a General Surgery Department, Harrison International Peace Hospital, 180 Renmin Dong Road, Taocheng District, Hengshui 053000, Hebei, China
| | - Fangzhen Liu
- a General Surgery Department, Harrison International Peace Hospital, 180 Renmin Dong Road, Taocheng District, Hengshui 053000, Hebei, China
| | - Changheng Yin
- a General Surgery Department, Harrison International Peace Hospital, 180 Renmin Dong Road, Taocheng District, Hengshui 053000, Hebei, China
| |
Collapse
|
26
|
Prognostic role of NF-YA splicing isoforms and Lamin A status in low grade endometrial cancer. Oncotarget 2018; 8:7935-7945. [PMID: 27974701 PMCID: PMC5352372 DOI: 10.18632/oncotarget.13854] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Although most cases of low grade (G1) endometrial cancer (EC) do not behave aggressively, in rare instances, can progress in a highly aggressive manner. In this study we analyzed formalin-fixed, paraffin-embedded (FFPE) EC tissues to find novel clinical and biological features to help diagnosis and treatment of G1 ECs s in order to better stratify patient risk of recurrence. A retrospective cohort of FFPE specimens from patients with EC (n=87) and benign tissue specimens (NE) from patients who underwent a hysterectomy to treat other benign disease (n = 13) were collected. Total RNA and proteins were extracted and analyzed, respectively, by quantitative PCR and western blotting. NF-YAs is expressed and lamin A is down-modulated in all high grade (G2 and G3) ECs. In G1 ECs, NF-YAs expression is heterogeneous being expressed only in a subset of these tumours. Interestingly, the G1 ECs that express NF-YAs display low levels of lamin A similar to those present in G2 and G3 ECs. Of note, this pattern of NF-YAs and lamin A expression correlates with tumor aggressiveness assessed by comparative analysis with estrogen receptor (ER) status and epithelial-mesenchymal transition (EMT) markers thus suggesting its potential role as biomarker of tumour aggressiveness in G1 EC. In all grade ECs, lamin A is strongly downmodulated, being its expression inversely correlated with tumor aggressiveness and its loss of expression. We identified NF-YAs and lamin A expression levels as novel potential biomarkers useful to identify G1 ECs patients with risk of recurrence.
Collapse
|
27
|
miR-200b is a key regulator of tumor progression and metabolism targeting lactate dehydrogenase A in human malignant glioma. Oncotarget 2018; 7:48423-48431. [PMID: 27374173 PMCID: PMC5217028 DOI: 10.18632/oncotarget.10301] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/04/2016] [Indexed: 11/25/2022] Open
Abstract
Lactate dehydrogenase A (LDHA) is involved in various cancers. In this study, we investigated the expression and function of LDHA in glioma. We found that LDHA was up-regulated in glioma samples. Furthermore, we found that overexpression of LDHA promoted proliferation, invasion and glycolysis in glioma cells. Luciferase reporter assays confirmed that LDHA was a direct target of miR-200b. miR-200b was found to be down-regulated in glioma samples, which was inversely correlated with LDHA expression. Repression of LDHA by miR-200b suppressed the glycolysis, cell proliferation and invasion of glioma cells. These results provide evidence that miR-200b acts as a tumor suppressor in glioma through the inhibition of LDHA both in vitro and in vivo. Targeting LDHA through miR-200b could be a potential therapeutic strategy in glioma.
Collapse
|
28
|
Thyagarajan A, Shaban A, Sahu RP. MicroRNA-Directed Cancer Therapies: Implications in Melanoma Intervention. J Pharmacol Exp Ther 2018; 364:1-12. [PMID: 29054858 PMCID: PMC5733457 DOI: 10.1124/jpet.117.242636] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Acquired tumor resistance to cancer therapies poses major challenges in the treatment of cancers including melanoma. Among several signaling pathways or factors that affect neocarcinogenesis, cancer progression, and therapies, altered microRNAs (miRNAs) expression has been identified as a crucial player in modulating the key pathways governing these events. While studies in the miRNA field have grown exponentially in the last decade, much remains to be discovered, particularly with respect to their roles in cancer therapies. Since immune and nonimmune signaling cascades prevail in cancers, identification and evaluation of miRNAs, their molecular mechanisms and cellular targets involved in the underlying development of cancers, and acquired therapeutic resistance would help in devising new strategies for the prognosis, treatment, and an early detection of recurrence. Importantly, in-depth validation of miRNA-targeted molecular events could lead to the development of accurate progression-risk biomarkers, improved effectiveness, and improved patient responses to standard therapies. The current review focuses on the roles of miRNAs with recent updates on regulated cell cycle and proliferation, immune responses, oncogenic/epigenetic signaling pathways, invasion, metastasis, and apoptosis, with broader attention paid to melanomagenesis and melanoma therapies.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio (A.T., R.P.S.); and Department of Pharmacology, Faculty of veterinary medicine, Zagazig University, Zagazig, Egypt (A.S.)
| | - Ahmed Shaban
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio (A.T., R.P.S.); and Department of Pharmacology, Faculty of veterinary medicine, Zagazig University, Zagazig, Egypt (A.S.)
| | - Ravi Prakash Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio (A.T., R.P.S.); and Department of Pharmacology, Faculty of veterinary medicine, Zagazig University, Zagazig, Egypt (A.S.)
| |
Collapse
|
29
|
Rodríguez-Cerdeira C, Molares-Vila A, Carnero-Gregorio M, Corbalán-Rivas A. Recent advances in melanoma research via "omics" platforms. J Proteomics 2017; 188:152-166. [PMID: 29138111 DOI: 10.1016/j.jprot.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 02/09/2023]
Abstract
Melanoma has a high mortality rate and metastatic melanoma is highly resistant to conventional therapies. "Omics" fields such as proteomics and microRNA and exosome studies have provided new knowledge to complement the information generated by genomic studies. This work aimed to review the current status of biomarker discovery for melanoma through multi-"omics" platforms. A few sets of novel microRNAs and proteins are described, some of them with important implications in suppressing melanoma at different stages. Upregulation of genes involved in angiogenesis, immunosuppressive factors, modification of stroma, capture of melanoma cells in lymph nodes and factors responsible for tumour cell recruitment have been identified in exosomes, among molecules with other functions. A remarkable series of proteins involved in epithelial-mesenchymal/mesenchymal-epithelial transitions, inflammation, motility, proliferation and progression processes, centrosome amplification, aneuploidy, inhibition of CD8+ effector T-cells, and metastasis in general were identified. Genomic and protein-protein interactions or metabolome levels were not analysed. Proteomics tools such as Orbitrap shotgun mass spectrometry or deep mining proteomic analysis utilizing high-resolution reversed phase nanoseparation in combination with mass spectrometry are also discussed. The application of these tools together with bioinformatics approaches applied to the clinical setting will enable the implementation of personalized medicine in the near future.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain.
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Miguel Carnero-Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics & Immunology, Universidade de Vigo (UVIGO), Spain
| | - Alberte Corbalán-Rivas
- Nursery Department, Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| |
Collapse
|
30
|
Kurata A, Yamada M, Ohno SI, Inoue S, Hashimoto H, Fujita K, Takanashi M, Kuroda M. Expression level of microRNA-200c is associated with cell morphology in vitro and histological differentiation through regulation of ZEB1/2 and E-cadherin in gastric carcinoma. Oncol Rep 2017; 39:91-100. [PMID: 29138864 PMCID: PMC5783608 DOI: 10.3892/or.2017.6093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
Scirrhous type gastric cancer is characterized by diffuse infiltration of poorly differentiated adenocarcinoma cells and poor prognosis. Although association of poorly differentiated histology with reduction in E-cadherin expression, as well as association of microRNA (miR)-200c with E-cadherin through regulation of ZEB1/2, has been reported, participation of miR-200c in gastric carcinogenesis is not fully understood. We used 6 cell lines originating from gastric cancers, and investigated levels of miR-200c along with its target mRNAs ZEB1/2 and E-cadherin by qRT-PCR. ZEB1 and E-cadherin protein expression was also assessed via western blotting. Furthermore, we investigated the expression levels of miR-200c by in situ hybridization, along with the expression of ZEB1 and E-cadherin by immunohistochemistry, in 97 gastric adenocarcinoma tissues. Inverse correlation between miR-200c and ZEB1 levels were obtained by qRT-PCR in cell lines (P<0.05). Cell lines with low miR-200c and high ZEB1 exhibited low E-cadherin expression in both qRT-PCR and western blotting, and exhibited spindle-shaped morphology, in contrast to round cell morphology in those cell lines with high miR-200c levels. Inverse correlations were also obtained between miR-200c and ZEB1 as well as between ZEB1 and E-cadherin levels in tissue samples (P<0.001). Cancer tissues with low miR-200c, high ZEB1, and low E-cadherin expression were associated with poorly differentiated histology, in contrast to tubular form in cancers with high miR-200c expression levels (P<0.001). Our data revealed that downregulation of miR-200c primarily regulated cell morphology by downregulation of E-cadherin through upregulation of ZEB1, leading to poorly differentiated histology in gastric cancer.
Collapse
Affiliation(s)
- Atsushi Kurata
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masatoshi Yamada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shigeru Inoue
- Department of Preventive Medicine and Public Health, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hirotsugu Hashimoto
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
31
|
Grisard E, Nicoloso MS. Following MicroRNAs Through the Cancer Metastatic Cascade. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:173-228. [PMID: 28729025 DOI: 10.1016/bs.ircmb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately a decade ago the first MicroRNAs (MiRNAs) participating in cancer metastasis were identified and metastmiRs were initially only a handful. Since those first reports, MiRNA research has explosively thrived, mainly due to their revolutionary mechanism of action and the hope of having at hand a novel tool to control cancer aggressiveness. This has ultimately led to delineate an almost impenetrable regulatory network: hundreds of MiRNAs transversally dominating every aspect of normal and cancer biology, each MiRNA having hundreds of targets and context-dependent activity. Providing a comprehensive description of MiRNA roles in cancer metastasis is a daunting task; nevertheless, we still believe that grasping the big picture of MiRNAs in cancer metastasis can give a different perspective on the potential insights and approaches that MiRNAs can offer to understand cancer complexity (e.g., as predictive and prognostic markers) and to tackle cancer metastasis (e.g., as therapeutic targets or tools). This chapter presents a schematic overview of the role of MiRNAs in governing cancer metastasis, describing step by step the cellular and molecular processes whereby cancer cells conquer distant organs and can grow as secondary tumors at different distant sites, and for each step, we will introduce how MiRNAs impinge on each one of them. We deeply apologize with our colleagues for any of their research work that, for clarity, for our effort to streamline and due to space limitations, we did not cite.
Collapse
|
32
|
Yang SJ, Yang SY, Wang DD, Chen X, Shen HY, Zhang XH, Zhong SL, Tang JH, Zhao JH. The miR-30 family: Versatile players in breast cancer. Tumour Biol 2017; 39:1010428317692204. [PMID: 28347244 DOI: 10.1177/1010428317692204] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microRNA family, miR-30, plays diverse roles in regulating key aspects of neoplastic transformation, metastasis, and clinical outcomes in different types of tumors. Accumulating evidence proves that miR-30 family is pivotal in the breast cancer development by controlling critical signaling pathways and relevant oncogenes. Here, we review the roles of miR-30 family members in the tumorigenesis, metastasis, and drug resistance of breast cancer, and their application to predict the prognosis of breast cancer patients. We think miR-30 family members would be promising biomarkers for breast cancer and may bring a novel insight in molecular targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Su-Jin Yang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Su-Yu Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hong-Yu Shen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiao-Hui Zhang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
33
|
|
34
|
Zhang H, Sun Z, Li Y, Fan D, Jiang H. MicroRNA-200c binding to FN1 suppresses the proliferation, migration and invasion of gastric cancer cells. Biomed Pharmacother 2017; 88:285-292. [PMID: 28113080 DOI: 10.1016/j.biopha.2017.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
We aimed to investigate the effects of miR-200c binding to fibronectin 1 (FN1) on proliferation, migration and invasion of gastric cancer (GC) cells. A total of 52 GC tissues and their corresponding normal adjacent tissue samples were collected. Then, miR-200c and FN1 were tested using quantitative real-time RT-PCR in the clinical specimens and GC cells, while immunohistochemistry and western blotting assay were carried out to detect FN1 expressions. Dual luciferase reporter gene assay was used to assess the effect of miR-200c on the luciferase activity of FN1 3'UTR. BGC-823 cells were transfected with miR-200c mimics, miR-200c inhibitors and FN1 siRNA, respectively. The effects of miR-200c inhibitors and FN1 siRNA on cellular proliferation, migration and invasion were detected through MTT assay and Transwell assay. Compared to normal tissues and cells, miR-200c was significantly down-regulated and FN1 was significantly up-regulated (P<0.01). Dual luciferase reporter gene assay showed that miR-200c could specifically bind to the 3'-UTR of FN1 and significantly repress the luciferase activity (P<0.01). Both mRNA and protein expressions of FN1 were decreased significantly in GC cells when miR-200c was over expressed. The proliferation, migration and invasion of GC cells could be suppressed by over-expression of miR-200c or down-regulation of FN1. In conclusion, miR-200c was significantly down-regulated in both GC tissues and cell lines, while FN1 presented the opposite trends. Besides, miR-200c inhibited the proliferation, migration and invasion of GC cells through binding to FN1.
Collapse
Affiliation(s)
- Hengchun Zhang
- Department of General Surgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, China
| | - Zhiguo Sun
- Department of General Surgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, China
| | - Yan Li
- Department of General Surgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, China
| | - Dong Fan
- Department of General Surgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, China
| | - Hao Jiang
- Department of General Surgery, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, China.
| |
Collapse
|
35
|
Li Q, Zhang C, Chen R, Xiong H, Qiu F, Liu S, Zhang M, Wang F, Wang Y, Zhou X, Xiao G, Wang X, Jiang Q. Disrupting MALAT1/miR-200c sponge decreases invasion and migration in endometrioid endometrial carcinoma. Cancer Lett 2016; 383:28-40. [PMID: 27693631 DOI: 10.1016/j.canlet.2016.09.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/17/2023]
Abstract
Endometrioid endometrial carcinoma (EEC) is the most common gynecologic malignancy around the world. Epithelial-to-mesenchymal transition (EMT) is a core process during EEC cell invasion. The abnormal expression of the long noncoding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) or miR-200 family members were shown to facilitate EMT in multiple human cancers, but the regulatory mechanism by which MALAT1 and miR-200 act remains unknown. Previous studies have shown that miR-200 family members are enriched in EEC as well as melanoma and some ovarian carcinomas. In the present study, we first showed that miR-200c levels were higher in most EEC specimens than in non-tumor tissues, while MALAT1 levels were lower. Moreover, we found that miR-200c bound directly to MALAT1 using luciferase reporter and qRT-PCR assays. MALAT1 and miR-200c are reciprocally repressed, and TGF-β increased MALAT1 expression by inhibiting miR-200c. When the interaction between miR-200c/MALAT1 was interrupted, the invasive capacity of EEC cells was decreased and EMT markers expression were altered in vitro. A xenograft tumor model was used to show that targeting the miR-200c/MALAT1 axis inhibited EEC growth and EMT-associated protein expression in vivo. In summary, miR-200c/MALAT1 axis is a target with therapeutic potential in EEC. However, different expression model of miR-200c and MALAT1 in EEC with that in other organ carcinomas needs further mechanism researches.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Binding Sites
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Transforming Growth Factor beta/pharmacology
- Tumor Burden
Collapse
Affiliation(s)
- Qiulian Li
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; Department of Obstetrics and gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Chao Zhang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Ruichao Chen
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Hanzhen Xiong
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Fuman Qiu
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Shaoyan Liu
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Minfen Zhang
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Fang Wang
- Key Laboratory of Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yu Wang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Xuan Zhou
- Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guohong Xiao
- Key Laboratory of Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
| | - Xudong Wang
- Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Qingping Jiang
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
36
|
Andrews MC, Cursons J, Hurley DG, Anaka M, Cebon JS, Behren A, Crampin EJ. Systems analysis identifies miR-29b regulation of invasiveness in melanoma. Mol Cancer 2016; 15:72. [PMID: 27852308 PMCID: PMC5112703 DOI: 10.1186/s12943-016-0554-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Background In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs. However, it remains a challenge to identify which miR-mRNA interactions are active at endogenous expression levels, and of biological consequence. Methods We developed a workflow to integrate TargetScan and DIANA-microT predictions into the analysis of data-driven associations calculated from transcript abundance (RNASeq) data, specifically the mutual information and Pearson’s correlation metrics. We use this workflow to identify putative relationships of miR-mediated mRNA repression with strong support from both lines of evidence. Applying this approach systematically to a large, published collection of unique melanoma cell lines – the Ludwig Melbourne melanoma (LM-MEL) cell line panel – we identified putative miR-mRNA interactions that may contribute to invasiveness. This guided the selection of interactions of interest for further in vitro validation studies. Results Several miR-mRNA regulatory relationships supported by TargetScan and DIANA-microT demonstrated differential activity across cell lines of varying matrigel invasiveness. Strong negative statistical associations for these putative regulatory relationships were consistent with target mRNA inhibition by the miR, and suggest that differential activity of such miR-mRNA relationships contribute to differences in melanoma invasiveness. Many of these relationships were reflected across the skin cutaneous melanoma TCGA dataset, indicating that these observations also show graded activity across clinical samples. Several of these miRs are implicated in cancer progression (miR-211, -340, -125b, −221, and -29b). The specific role for miR-29b-3p in melanoma has not been well studied. We experimentally validated the predicted miR-29b-3p regulation of LAMC1 and PPIC and LASP1, and show that dysregulation of miR-29b-3p or these mRNA targets can influence cellular invasiveness in vitro. Conclusions This analytic strategy provides a comprehensive, systems-level approach to identify miR-mRNA regulation in high-throughput cancer data, identifies novel putative interactions with functional phenotypic relevance, and can be used to direct experimental resources for subsequent experimental validation. Computational scripts are available: http://github.com/uomsystemsbiology/LMMEL-miR-miner Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0554-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miles C Andrews
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Cursons
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel G Hurley
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonathan S Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia. .,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.
| | - Edmund J Crampin
- Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia. .,Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science, University of Melbourne, Parkville, VIC, 3010, Australia. .,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia. .,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
37
|
Qian C, Dang X, Wang X, Xu W, Pang G, Chen Y, Liu C. Molecular Mechanism of MicroRNA-200c Regulating Transforming Growth Factor-β (TGF-β)/SMAD Family Member 3 (SMAD3) Pathway by Targeting Zinc Finger E-Box Binding Homeobox 1 (ZEB1) in Hypospadias in Rats. Med Sci Monit 2016; 22:4073-4081. [PMID: 27794206 PMCID: PMC5091215 DOI: 10.12659/msm.896958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to explore effects of microRNA-200c regulating TGF-β/Smad3 pathway by targeting Zeb1 on the occurrence and development of hypospadias and to evaluate the relationship between microRNA-200c and occurrence of hypospadias. Material/Methods Pregnant rats with a gestational age of 12 days were allocated into 2 groups; one received gavage of DEHP-contained soybean oil (1 ml/day, 8 days; Group A) and the other had gavage of normal soybean oil (1 ml/day, 8 days; Group B). Baby rats with hypospadias from Group A were assigned to the model group (n=20) and healthy baby rats from Group B were assigned to the control group (n=20). Real-time quantitative polymerase chain reaction (qRT-PCR), immunohistochemistry and Western blot analysis were performed to detect microRNA-200c, Zeb1, TGF-β, and Smad3 mRNA and protein expressions in the model group (n=20) and the control group (n=20). The relationship between microRNA-200c and Zeb1 was detected using a dual-luciferase reporter gene experiment. After the in vitro intervention experiment in fetal rat penises, Western blot was used to detect the expression of Zeb1, TGF-β, and Smad3. Results In the model group, microRNA-200c was expressed at a low level, and microRNA-200c expression in control group was 2.1 times higher than in the model group (P<0.05). When compared with the control group, mRNA expressions, protein expressions, and positive rates of Zeb1, TGF-β, and Smad3 were higher in the model group (all P<0.01). Luciferase gene report determined that Zeb1 is a target gene of microRNA-200c. The in vitro intervention experiment in fetal rat penises found that a high concentration of microRNA-200c inhibited hypospadias occurrence by suppressing the expression of Zeb1, TGF-β, and Smad3. Conclusions MicroRNA-200c was expressed in hypospadias penis tissues at low levels and was negatively correlated with Zeb1 expression. MicroRNA-200c up-regulated Zeb1 expression to regulate the TGF-β/Smad3 pathway, which led to the occurrence of hypospadias.
Collapse
Affiliation(s)
- Chong Qian
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi, China (mainland)
| | - Xiangyang Dang
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi, China (mainland)
| | - Xianglin Wang
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi, China (mainland)
| | - Wei Xu
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi, China (mainland)
| | - Guijian Pang
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi, China (mainland)
| | - Yifeng Chen
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi, China (mainland)
| | - Chengbei Liu
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi, China (mainland)
| |
Collapse
|
38
|
Varamo C, Occelli M, Vivenza D, Merlano M, Lo Nigro C. MicroRNAs role as potential biomarkers and key regulators in melanoma. Genes Chromosomes Cancer 2016; 56:3-10. [PMID: 27561079 DOI: 10.1002/gcc.22402] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma (MM) is a highly aggressive skin cancer with high incidence worldwide. It originates from melanocytes and is characterized by invasion, early metastasis and despite the use of new drugs it is still characterized by high mortality. Since an early diagnosis determines a better prognosis, it is important to explore novel prognostic markers in the management of patients with MM. microRNAs (miRNAs) are small (∼22 nucleotides) single-stranded non-coding RNAs that negatively regulate the expression of more than 60% of human genes.miRNAs alterations are involved in several cancers, including MM, where a differential expression for some of them has been reported between healthy controls and MM patients. Moreover, since miRNAs are stable and easily detectable in body fluids, they might be considered as robust candidate biomarkers useful to identify risk of MM, to diagnose an early lesion and/or an early metastatic disease. This review highlights the importance of miRNAs as risk factors, prognostic factors and their role as molecular regulator in the development and progression of MM. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Varamo
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Marcella Occelli
- Medical Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Daniela Vivenza
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Marco Merlano
- Medical Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| | - Cristiana Lo Nigro
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital, Cuneo, 12100, Italy
| |
Collapse
|
39
|
The cancer/testis antigen MAGEC2 promotes amoeboid invasion of tumor cells by enhancing STAT3 signaling. Oncogene 2016; 36:1476-1486. [PMID: 27775077 DOI: 10.1038/onc.2016.314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
The biological function of MAGEC2, a cancer/testis antigen highly expressed in various cancers, remains largely unknown. Here we demonstrate that expression of MAGEC2 induces rounded morphology and amoeboid-like movement of tumor cells in vitro and promotes tumor metastasis in vivo. The pro-metastasis effect of MAGEC2 was mediated by signal transducer and activator of transcription 3 (STAT3) activation. Mechanistically, MAGEC2 interacts with STAT3 and inhibits the polyubiquitination and proteasomal degradation of STAT3 in the nucleus of tumor cells, resulting in accumulation of phosphorylated STAT3 and enhanced transcriptional activity. Notably, expression levels of MAGEC2 and phosphorylated STAT3 are positively correlated and both are associated with incidence of metastasis in human hepatocellular carcinoma. This study not only reveals a previously unappreciated role of MAGEC2 in promoting tumor metastasis, but also identifies a new molecular mechanism by which MAGEC2 sustains hyperactivation of STAT3 in the nucleus of tumor cells. Thus, MAGEC2 may represent a new antitumor metastasis target for treatment of cancer.
Collapse
|
40
|
Chatterjee A, Stockwell PA, Rodger EJ, Parry MF, Eccles MR. scan_tcga tools for integrated epigenomic and transcriptomic analysis of tumor subgroups. Epigenomics 2016; 8:1315-1330. [DOI: 10.2217/epi-2016-0063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: The Cancer Genome Atlas contains multiple levels of genomic data (mutation, gene expression, DNA methylation, copy number variation) for 33 cancer types for almost 11,000 patients. However, a dearth of appropriate software tools makes it difficult for bench scientists to use these data effectively. Materials & methods: Here, we present a suite of flexible, fast and command line-based scripts that will allow retrieval and analysis of DNA methylation (tool: scan_tcga_methylation.awk), mRNA (tool: scan_tcga_mRNA.awk) and miRNA expression (tool: scan_tcga_miRNAs.awk) from cancer genome atlas network level 3 data. Results: We demonstrate the utility of these tools by analyzing DNA methylation and mRNA expression signatures of 60 frequently deregulated cancer genes and also of 30 miRNAs in primary (n = 102) and metastatic melanoma patients (n = 367). Conclusion: Our analysis illustrates the validity of the scan_tcga tools and reveals the epigenomic signatures and importance of identifying smaller patient subgroups with distinct molecular profiles.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, level 2, 3A Symonds Street, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, level 2, 3A Symonds Street, Auckland, New Zealand
| | - Matthew F Parry
- Department of Mathematics & Statistics, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, level 2, 3A Symonds Street, Auckland, New Zealand
| |
Collapse
|
41
|
Cheng Y, Zhang X, Li P, Yang C, Tang J, Deng X, Yang X, Tao J, Lu Q, Li P. MiR-200c promotes bladder cancer cell migration and invasion by directly targeting RECK. Onco Targets Ther 2016; 9:5091-9. [PMID: 27574450 PMCID: PMC4993393 DOI: 10.2147/ott.s101067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Increasing evidence suggests that the dysregulation of certain microRNAs plays an important role in tumorigenesis and metastasis. MiR-200c exhibits a disordered expression in many tumors and presents dual roles in bladder cancer (BC). Therefore, the definite role of miR-200c in BC needs to be investigated further. Materials and methods Quantitative reverse transcription polymerase chain reaction was used to assess miR-200c expression. Cell invasion and migration were evaluated using wound healing and transwell assays. The luciferase reporter assay was used to identify the direct target of miR-200c. The expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK) in BC tissues and adjacent nontumor tissues, as well as in BC cell lines, was detected through quantitative reverse transcription polymerase chain reaction, Western blot assay, and immunohistochemistry. Results The miR-200c expression was significantly upregulated in the BC tissues compared with the adjacent nontumor tissues. The downregulation of miR-200c significantly inhibited cell migration and invasion in the BC cell lines. The luciferase reporter assay showed that RECK was a direct target of miR-200c. The knockdown of RECK in the BC cell lines treated with anti-miR-200c elevated the previously attenuated cell migration and invasion. Conclusion Our findings indicated that miR-200c functions as oncogenes in BC and may provide a novel therapeutic strategy for the treatment of BC.
Collapse
Affiliation(s)
- Yidong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaolei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Peng Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chengdi Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinyuan Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaheng Deng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Pengchao Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
42
|
Sundararajan V, Gengenbacher N, Stemmler MP, Kleemann JA, Brabletz T, Brabletz S. The ZEB1/miR-200c feedback loop regulates invasion via actin interacting proteins MYLK and TKS5. Oncotarget 2016; 6:27083-96. [PMID: 26334100 PMCID: PMC4694975 DOI: 10.18632/oncotarget.4807] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental process which is aberrantly activated during cancer invasion and metastasis. Elevated expression of EMT-inducers like ZEB1 enables tumor cells to detach from the primary tumor and invade into the surrounding tissue. The main antagonist of ZEB1 in controlling EMT is the microRNA-200 family that is reciprocally linked to ZEB1 in a double negative feedback loop. Here, we further elucidate how the ZEB1/miR-200 feedback loop controls invasion of tumor cells. The process of EMT is attended by major changes in the actin cytoskeleton. Via in silico screening of genes encoding for actin interacting proteins, we identified two novel targets of miR-200c - TKS5 and MYLK (MLCK). Co-expression of both genes with ZEB1 was observed in several cancer cell lines as well as in breast cancer patients and correlated with low miR-200c levels. Depletion of TKS5 or MYLK in breast cancer cells reduced their invasive potential and their ability to form invadopodia. Whereas TKS5 is known to be a major component, we could identify MYLK as a novel player in invadopodia formation. In summary, TKS5 and MYLK represent two mediators of invasive behavior of cancer cells that are regulated by the ZEB1/miR-200 feedback loop.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Department of Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | - Julia A Kleemann
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
43
|
Sigloch FC, Burk UC, Biniossek ML, Brabletz T, Schilling O. miR-200c dampens cancer cell migration via regulation of protein kinase A subunits. Oncotarget 2016. [PMID: 26203557 PMCID: PMC4695158 DOI: 10.18632/oncotarget.4381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression of miR-200c is a molecular switch to determine cellular fate towards a mesenchymal or epithelial phenotype. miR-200c suppresses the early steps of tumor progression by preventing epithelial-mesenchymal transition (EMT) and intravasation of tumor cells. Unraveling the underlying molecular mechanisms might pinpoint to novel therapeutic options. To better understand these mechanisms it is crucial to identify targets of miR-200c. Here, we employ a combination of quantitative proteomic and bioinformatic strategies to identify novel miR-200c targets. We identify and confirm two subunits of the central cellular kinase protein kinase A (PKA), namely PRKAR1A and PRKACB, to be directly regulated by miR-200c. Notably, siRNA-mediated downregulation of both proteins phenocopies the migratory behavior of breast cancer cells after miR-200c overexpression. Patient data from publicly accessible databases supports a miR-200c-PKA axis. Thus, our study identifies the PKA heteroprotein as an important mediator of miR-200c induced repression of migration in breast cancer cells. By bioinformatics, we define a miRNA target cluster consisting of PRKAR1A, PRKAR2B, PRKACB, and COF2, which is targeted by a group of 14 miRNAs.
Collapse
Affiliation(s)
- Florian Christoph Sigloch
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ulrike Christina Burk
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Martin Lothar Biniossek
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Trans-nonachlor decreases miR-141-3p levels in human melanocytes in vitro promoting melanoma cell characteristics and shows a multigenerational impact on miR-8 levels in Drosophila. Toxicology 2016; 368-369:129-141. [DOI: 10.1016/j.tox.2016.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023]
|
45
|
Latchana N, del Campo SEM, Grignol VP, Clark JR, Albert SP, Zhang J, Wei L, Aldrink JH, Nicol KK, Ranalli MA, Peters SB, Gru A, Trihka P, Payne PRO, Howard JH, Carson WE. Classification of Indeterminate Melanocytic Lesions by MicroRNA Profiling. Ann Surg Oncol 2016; 24:347-354. [DOI: 10.1245/s10434-016-5476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 11/18/2022]
|
46
|
Deng Z, Hao J, Lei D, He Y, Lu L, He L. Pivotal MicroRNAs in Melanoma: A Mini-Review. Mol Diagn Ther 2016; 20:449-55. [DOI: 10.1007/s40291-016-0219-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Abstract
PURPOSE OF REVIEW Over the last years, our understanding in molecular biology of melanoma has grown significantly and many genetic alterations have been identified affecting melanoma pathogenesis. This growing evidence has led to the development of targeted therapies which are showing promising clinical results. In addition to genetic alterations, an increasing number of studies have recently demonstrated the role of epigenetics in melanoma development and progression. Here, we summarize the current data on epigenetic research in melanoma. RECENT FINDINGS MicroRNA (miRNA) expression profiling studies have identified several miRNAs implicated in melanoma cell cycle and proliferation, cell migration and invasion, as well as miRNAs involved in apoptosis and immune response. Abnormal methylation profiling has been associated with melanoma progression and to date aberrant hypermethylation in more than 70 genes has been described. Recent works have highlighted the increasing evidence of the role of histone modification as a central regulatory event in melanoma pathogenesis. SUMMARY Many of these epigenetic biomarkers may have potential diagnostic, prognostic and therapeutic implications. Future approach might be using a combination of genetic and epigenetic biomarkers.
Collapse
|
48
|
Saldanha G, Elshaw S, Sachs P, Alharbi H, Shah P, Jothi A, Pringle JH. microRNA-10b is a prognostic biomarker for melanoma. Mod Pathol 2016; 29:112-21. [PMID: 26743475 DOI: 10.1038/modpathol.2015.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer. Recently, drug therapy of advanced disease has been revolutionized by new agents. More therapeutic options, coupled with the desire to extend treatment to the adjuvant setting mean that prognostic biomarkers that can be assayed from formalin-fixed paraffin-embedded clinical would be valuable. microRNAs have potential to fill this need. We analyzed 377 microRNAs in 79 primary melanomas and 32 metastases using a split sample discovery strategy. From a discovery analysis using 40 thick primary melanomas (20 cases with metastasis and 20 controls without metastasis at 5 years), microRNA expression was measured by quantitative RT-PCR (QRT-PCR). MiR-10b emerged as a candidate prognostic microRNA. This was confirmed in an independent validation set of thick primary melanomas (20 cases with metastasis and 19 controls without metastasis at 5 years). In the combined discovery and validation cohorts (n=79), miR-10b expression showed a 3.7-fold increase in expression between cases and controls (P=0.005) and showed a trend of increasing expression between primary melanomas and their matched metastases (P<0.001). In situ hybridization showed expression was in melanoma cells and correlated with expression measured by QRT-PCR (P=0.0005). We used the combined discovery and validation samples to verify the prognostic value of additional candidate microRNAs identified from other studies, and proceeded to analyze miR-200b. We demonstrated that miR-10b and miR-200b showed independent prognostic value (P=0.002 and 0.047, respectively) in multivariable analysis alongside known clinico-pathological prognostic features (eg, Breslow thickness) using a Cox proportional hazards regression model. Furthermore, the addition of these microRNAs to the clinico-pathological features led to an improved regression model with better identification of aggressive thick melanomas. Taken together, these data suggest that miR-10b is a new prognostic microRNA for melanoma and that there could be a place for microRNA analysis in stratifying melanoma for therapy.
Collapse
Affiliation(s)
- Gerald Saldanha
- Department of Cancer Studies, University of Leicester, Leicester, UK
- EMPATH, University Hospitals of Leicester, Leicester, UK
| | - Shona Elshaw
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Parysatis Sachs
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Hisham Alharbi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Prashant Shah
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Ann Jothi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - J Howard Pringle
- Department of Cancer Studies, University of Leicester, Leicester, UK
| |
Collapse
|
49
|
Mirzaei H, Gholamin S, Shahidsales S, Sahebkar A, Jaafari MR, Mirzaei HR, Hassanian SM, Avan A. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2015; 53:25-32. [PMID: 26693896 DOI: 10.1016/j.ejca.2015.10.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Abstract
Melanoma is a life-threatening malignancy with poor prognosis and a relatively high burden of mortality in advanced stages. The efficacy of current available therapeutic strategies is limited, with a survival rate of less than 10%. Despite rapid advances in biomarker-guided drug development in different tumour types, including melanoma, only a very small number of biomarkers have been identified. Recently, microRNAs (miRNAs) have emerged as a molecular regulator in the development and progression of melanoma. Aberrant activation of some known miRNAs, e.g. let-7a and b, miR-148, miR-155, miR-182, miR-200c, miR-211, miR-214, miR-221 and 222, has been recognised to be linked with melanoma-associated genes such as NRAS, microphthalmia-associated transcription factor, receptor tyrosine kinase c-KIT, AP-2 transcription factor, etc. There is accumulating evidence suggesting the potential impact of circulating miRNAs as diagnostic and therapeutic markers in diseases. In addition, miRNAs have turned out to play important roles in drug-resistance mechanisms; suggesting their modulation as a potential approach to overcome chemoresistance. This review highlights recent preclinical and clinical studies on circulating miRNAs and their potential role as diagnosis, and therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sharareh Gholamin
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Soodabeh Shahidsales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahdi Hassanian
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis. Sci Rep 2015; 5:17379. [PMID: 26627083 PMCID: PMC4667179 DOI: 10.1038/srep17379] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).
Collapse
|