1
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
2
|
Wei YS, Liu HR, Yang Q, Zhi Z, Yu Y. Anp32b Deficiency Suppresses Ocular Development by Repression of Pax6. Ophthalmic Res 2024; 67:644-653. [PMID: 39504945 DOI: 10.1159/000542447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION This study aimed to elucidate the role and molecular mechanisms of acidic leucine-rich nuclear phosphoprotein 32 kDa B (Anp32b) deficiency in ocular development. METHODS We used constitutive C57BL/6-derived Anp32b-/- mice to elucidate the role of Anp32b in ocular development, including the phenotype and proportion of eye malformation in different genotypes. RNA-seq analysis and rescue experiments were performed to investigate the underlying mechanisms of Anp32b. RESULTS Deletion of Anp32b contributes to severe defects in ocular development, including anophthalmia and microphthalmia. Moreover, Anp32b is highly expressed in the lens, and Anp32b-/- embryos with microphthalmia often exhibit severely impaired lens development. Mechanistically, ANP32B directly interacts with paired box protein 6 (PAX6), a master transcriptional regulator, and enhances its transcriptional activity. Overexpression of PAX6 partially but significantly reverses the inhibition of proliferation observed in ANP32B knockdown lens epithelial cells. CONCLUSIONS Our findings indicate that Anp32b deficiency suppresses ocular development by repressing Pax6 and identify that Anp32b is a viable therapeutic target for ocular developmental defects.
Collapse
Affiliation(s)
- Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Qian Yang
- Medical School of Chinese PLA, Beijing, China
| | - Zhe Zhi
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yun Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
3
|
Wei J, Shan Y, Xiao Z, Wen L, Tao Y, Fang X, Luo H, Tang C, Li Y. Anp32e promotes renal interstitial fibrosis by upregulating the expression of fibrosis-related proteins. Int J Biol Sci 2022; 18:5897-5912. [PMID: 36263179 PMCID: PMC9576520 DOI: 10.7150/ijbs.74431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Acidic nuclear phosphoprotein 32 family member e (Anp32e) has been reported to contribute to early mammalian development and cancer metastasis. However, the pathophysiological role of Anp32e in renal interstitial fibrosis (RIF) is poorly understood. Here, we demonstrated that Anp32e was highly expressed in the region of RIF in patients with IgA nephropathy, unilateral ureteral obstruction (UUO) mouse kidneys, and Boston University mouse proximal tubular (BUMPT) cells when treated with TGF-β1; this upregulation was positively correlated with the total fibrotic area of the kidneys. The overexpression of Anp32e enhanced the TGF-β1-induced production of fibrosis-related proteins (fibronectin (Fn) and collagen type I (Col-I)) in BUMPT cells whereas the knockdown of Anp32e suppressed the deposition of these fibrosis-related proteins in UUO mice and TGF-β1-stimulated BUMPT cells. In particular, Anp32e overexpression alone induced the deposition of Fn and Col-I in both mouse kidneys and BUMPT cells without TGF-β1 stimulation. Furthermore, we revealed that the overexpression of Anp32e induced the expression of TGF-β1 and p-Smad3 while TGF-β1 inhibitor SB431542 reversed the Anp32e-induced upregulation of Fn and Col-I in BUMPT cells without TGF-β1 stimulation. Collectively, our data demonstrate that Anp32e promotes the deposition of fibrosis-related proteins by regulating the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Ju Wei
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China
| | - Yi Shan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China
| | - Zheng Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China
| | - Lu Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China
| | - Yilin Tao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China
| | - Xi Fang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China
| | - Hanwen Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan, China.,✉ Corresponding author: Ying Li. Address: Department of Nephrology, the Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China. Tel: +86-731-85294184.
| |
Collapse
|
4
|
Liu X, Zhang J, Zhou J, Bu G, Zhu W, He H, Sun Q, Yu Z, Xiong W, Wang L, Wu D, Dou C, Yu L, Zhou K, Wang S, Fan Z, Wang T, Hu R, Hu T, Zhang X, Miao Y. Hierarchical Accumulation of Histone Variant H2A.Z Regulates Transcriptional States and Histone Modifications in Early Mammalian Embryos. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200057. [PMID: 35717671 PMCID: PMC9376818 DOI: 10.1002/advs.202200057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Indexed: 05/09/2023]
Abstract
Early embryos undergo extensive epigenetic reprogramming to achieve gamete-to-embryo transition, which involves the loading and removal of histone variant H2A.Z on chromatin. However, how does H2A.Z regulate gene expression and histone modifications during preimplantation development remains unrevealed. Here, by using ultra-low-input native chromatin immunoprecipitation and sequencing, the genome-wide distribution of H2A.Z is delineated in mouse oocytes and early embryos. These landscapes indicate that paternal H2A.Z is removed upon fertilization, followed by unbiased accumulation on parental genomes during zygotic genome activation (ZGA). Remarkably, H2A.Z exhibits hierarchical accumulation as different peak types at promoters: promoters with double H2A.Z peaks are colocalized with H3K4me3 and indicate transcriptional activation; promoters with a single H2A.Z peak are more likely to occupy bivalent marks (H3K4me3+H3K27me3) and indicate development gene suppression; promoters with no H2A.Z accumulation exhibit persisting gene silencing in early embryos. Moreover, H2A.Z depletion changes the enrichment of histone modifications and RNA polymerase II binding at promoters, resulting in abnormal gene expression and developmental arrest during lineage commitment. Furthermore, similar transcription and accumulation patterns between mouse and porcine embryos indicate that a dual role of H2A.Z in regulating the epigenome required for proper gene expression is conserved during mammalian preimplantation development.
Collapse
|
5
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
6
|
Tachiwana H, Dacher M, Maehara K, Harada A, Seto Y, Katayama R, Ohkawa Y, Kimura H, Kurumizaka H, Saitoh N. Chromatin structure-dependent histone incorporation revealed by a genome-wide deposition assay. eLife 2021; 10:66290. [PMID: 33970102 PMCID: PMC8110306 DOI: 10.7554/elife.66290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, histone variant distribution within the genome is the key epigenetic feature. To understand how each histone variant is targeted to the genome, we developed a new method, the RhIP (Reconstituted histone complex Incorporation into chromatin of Permeabilized cell) assay, in which epitope-tagged histone complexes are introduced into permeabilized cells and incorporated into their chromatin. Using this method, we found that H3.1 and H3.3 were incorporated into chromatin in replication-dependent and -independent manners, respectively. We further found that the incorporation of histones H2A and H2A.Z mainly occurred at less condensed chromatin (open), suggesting that condensed chromatin (closed) is a barrier for histone incorporation. To overcome this barrier, H2A, but not H2A.Z, uses a replication-coupled deposition mechanism. Our study revealed that the combination of chromatin structure and DNA replication dictates the differential histone deposition to maintain the epigenetic chromatin states.
Collapse
Affiliation(s)
- Hiroaki Tachiwana
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mariko Dacher
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Seto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
7
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
8
|
Hupfer A, Brichkina A, Adhikary T, Lauth M. The mammalian Hedgehog pathway is modulated by ANP32 proteins. Biochem Biophys Res Commun 2021; 553:78-84. [PMID: 33761414 DOI: 10.1016/j.bbrc.2021.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Transcriptional profiling has so far delineated four major MB subgroups of which one is driven by uncontrolled Hedgehog (Hh) signaling (SHH-MB). This pathway is amenable to drug targeting, yet clinically approved compounds exclusively target the transmembrane component Smoothened (SMO). Unfortunately, drug resistance against SMO inhibitors is encountered frequently, making the identification of novel Hh pathway components mandatory, which could serve as novel drug targets in the future. Here, we have used MB as a tool to delineate novel modulators of Hh signaling and have identified the Acidic Nuclear Phosphoprotein 32 (ANP32) family of proteins as novel regulators. The expression of all three family members (ANP32A, ANP32B, ANP32E) is increased in Hh-induced MB and their expression level is negatively associated with overall survival in SHH-MB patients. Mechanistically, we could find that ANP32 proteins function as positive modulators of mammalian Hh signaling upstream of GLI transcription factors. These findings add hitherto unknown regulators to the mammalian Hh signaling cascade and might spur future translational efforts to combat Hh-driven malignancies.
Collapse
Affiliation(s)
- Anna Hupfer
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany
| | - Anna Brichkina
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany
| | - Till Adhikary
- Philipps University Marburg, Center for Tumor Biology and Immunology (ZTI), Institute of Medical Bioinformatics and Biostatistics, Institute of Molecular Biology and Tumor Research, Germany
| | - Matthias Lauth
- Philipps University Marburg, Center for Tumor- and Immune Biology (ZTI), Clinics of Gastroenterology, Endocrinology, Metabolism and Infectiology, Germany.
| |
Collapse
|
9
|
Genome-wide chromatin accessibility is restricted by ANP32E. Nat Commun 2020; 11:5063. [PMID: 33033242 PMCID: PMC7546623 DOI: 10.1038/s41467-020-18821-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Genome-wide chromatin state underlies gene expression potential and cellular function. Epigenetic features and nucleosome positioning contribute to the accessibility of DNA, but widespread regulators of chromatin state are largely unknown. Our study investigates how coordination of ANP32E and H2A.Z contributes to genome-wide chromatin state in mouse fibroblasts. We define H2A.Z as a universal chromatin accessibility factor, and demonstrate that ANP32E antagonizes H2A.Z accumulation to restrict chromatin accessibility genome-wide. In the absence of ANP32E, H2A.Z accumulates at promoters in a hierarchical manner. H2A.Z initially localizes downstream of the transcription start site, and if H2A.Z is already present downstream, additional H2A.Z accumulates upstream. This hierarchical H2A.Z accumulation coincides with improved nucleosome positioning, heightened transcription factor binding, and increased expression of neighboring genes. Thus, ANP32E dramatically influences genome-wide chromatin accessibility through subtle refinement of H2A.Z patterns, providing a means to reprogram chromatin state and to hone gene expression levels. Chromatin state underlies cellular function, and transcription factor binding patterns along with epigenetic marks define chromatin state. Here the authors show that the histone chaperone ANP32E functions through regulation of H2A.Z to restrict genome-wide chromatin accessibility and to inhibit gene transcriptional activation.
Collapse
|
10
|
Martire S, Banaszynski LA. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol 2020; 21:522-541. [PMID: 32665685 PMCID: PMC8245300 DOI: 10.1038/s41580-020-0262-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Histones serve to both package and organize DNA within the nucleus. In addition to histone post-translational modification and chromatin remodelling complexes, histone variants contribute to the complexity of epigenetic regulation of the genome. Histone variants are characterized by a distinct protein sequence and a selection of designated chaperone systems and chromatin remodelling complexes that regulate their localization in the genome. In addition, histone variants can be enriched with specific post-translational modifications, which in turn can provide a scaffold for recruitment of variant-specific interacting proteins to chromatin. Thus, through these properties, histone variants have the capacity to endow specific regions of chromatin with unique character and function in a regulated manner. In this Review, we provide an overview of recent advances in our understanding of the contribution of histone variants to chromatin function in mammalian systems. First, we discuss new molecular insights into chaperone-mediated histone variant deposition. Next, we discuss mechanisms by which histone variants influence chromatin properties such as nucleosome stability and the local chromatin environment both through histone variant sequence-specific effects and through their role in recruiting different chromatin-associated complexes. Finally, we focus on histone variant function in the context of both embryonic development and human disease, specifically developmental syndromes and cancer.
Collapse
Affiliation(s)
- Sara Martire
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A Banaszynski
- Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Evolution of Gut Microbiome and Metabolome in Suspected Necrotizing Enterocolitis: A Case-Control Study. J Clin Med 2020; 9:jcm9072278. [PMID: 32709038 PMCID: PMC7408695 DOI: 10.3390/jcm9072278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Necrotizing enterocolitis (NEC) is a devastating condition in preterm infants due to multiple factors, including gut microbiota dysbiosis. NEC development is poorly understood, due to the focus on severe NEC (NEC-2/3). Methods: We studied the gut microbiota, microbiome and metabolome of children with suspected NEC (NEC-1). Results: NEC-1 gut microbiota had a higher abundance of the Streptococcus (second 10-days of life) and Staphylococcus (third 10-days of life) species. NEC-1 children showed a microbiome evolution in the third 10-days of life being the most divergent, and were associated with a different metabolomic signature than in healthy children. The NEC-1 microbiome had increased glycosaminoglycan degradation and lysosome activity by the first 10-days of life, and was more sensitive to childbirth, low birth weight and gestational age, than healthy microbiome. NEC-1 fecal metabolome was more divergent by the second month of life. Conclusions: NEC-1 gut microbiota and microbiome modifications appear more distinguishable by the third 10-days of life, compared to healthy children. These data identify a precise window of time (i.e., the third 10-days of life) and provide microbial targets to fight/blunt NEC-1 progression.
Collapse
|
12
|
Beck S, Zickler M, Pinho Dos Reis V, Günther T, Grundhoff A, Reilly PT, Mak TW, Stanelle-Bertram S, Gabriel G. ANP32B Deficiency Protects Mice From Lethal Influenza A Virus Challenge by Dampening the Host Immune Response. Front Immunol 2020; 11:450. [PMID: 32231671 PMCID: PMC7083139 DOI: 10.3389/fimmu.2020.00450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 01/13/2023] Open
Abstract
Deciphering complex virus-host interactions is crucial for pandemic preparedness. In this study, we assessed the impact of recently postulated cellular factors ANP32A and ANP32B of influenza A virus (IAV) species specificity on viral pathogenesis in a genetically modified mouse model. Infection of ANP32A−/− and ANP32A+/+ mice with a seasonal H3N2 IAV or a highly pathogenic H5N1 human isolate did not result in any significant differences in virus tropism, innate immune response or disease outcome. However, infection of ANP32B−/− mice with H3N2 or H5N1 IAV revealed significantly reduced virus loads, inflammatory cytokine response and reduced pathogenicity compared to ANP32B+/+ mice. Genome-wide transcriptome analyses in ANP32B+/+ and ANP32B−/− mice further uncovered novel immune-regulatory pathways that correlate with reduced pathogenicity in the absence of ANP32B. These data show that ANP32B but not ANP32A promotes IAV pathogenesis in mice. Moreover, ANP32B might possess a yet unknown immune-modulatory function during IAV infection. Targeting ANP32B or its regulated pathways might therefore pose a new strategy to combat severe influenza.
Collapse
Affiliation(s)
- Sebastian Beck
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin Zickler
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Vinícius Pinho Dos Reis
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Günther
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Patrick T Reilly
- Institut Clinique de la Souris, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Tak W Mak
- University Health Network, Toronto, ON, Canada
| | - Stephanie Stanelle-Bertram
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gülşah Gabriel
- Viral Zoonosis - One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Institute for Virology, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
13
|
The acidic protein rich in leucines Anp32b is an immunomodulator of inflammation in mice. Sci Rep 2019; 9:4853. [PMID: 30890743 PMCID: PMC6424966 DOI: 10.1038/s41598-019-41269-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
ANP32B belongs to a family of evolutionary conserved acidic nuclear phosphoproteins (ANP32A-H). Family members have been described as multifunctional regulatory proteins and proto-oncogenic factors affecting embryonic development, cell proliferation, apoptosis, and gene expression at various levels. Involvement of ANP32B in multiple processes of cellular life is reflected by the previous finding that systemic gene knockout (KO) of Anp32b leads to embryonic lethality in mice. Here, we demonstrate that a conditional KO of Anp32b is well tolerated in adult animals. However, after immune activation splenocytes isolated from Anp32b KO mice showed a strong commitment towards Th17 immune responses. Therefore, we further analyzed the respective animals in vivo using an experimental autoimmune encephalomyelitis (EAE) model. Interestingly, an exacerbated clinical score was observed in the Anp32b KO mice. This was accompanied by the finding that animal-derived T lymphocytes were in a more activated state, and RNA sequencing analyses revealed hyperactivation of several T lymphocyte-associated immune modulatory pathways, attended by significant upregulation of Tfh cell numbers that altogether might explain the observed strong autoreactive processes. Therefore, Anp32b appears to fulfill a role in regulating adequate adaptive immune responses and, hence, may be involved in dysregulation of pathways leading to autoimmune disorders and/or immune deficiencies.
Collapse
|
14
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
15
|
Li P, Xu T, Zhou X, Liao L, Pang G, Luo W, Han L, Zhang J, Luo X, Xie X, Zhu K. Downregulation of miRNA-141 in breast cancer cells is associated with cell migration and invasion: involvement of ANP32E targeting. Cancer Med 2017; 6:662-672. [PMID: 28220627 PMCID: PMC5345683 DOI: 10.1002/cam4.1024] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) regulate many cellular activities, including cancer development, progression, and metastasis. Some miRNAs are involved in breast cancer (BC) migration and invasion, thus affect patients’ prognosis. Microarray analysis was performed to compare miRNA expression in BC tissues, and results confirmed by qPCR. BC cell migration and invasion were studied in vitro with MDA‐MB‐231 cells using microplate transwell assays. miRNA targeting was investigated using luciferase assays, qPCR, and Western blot analysis in cells with overexpression of miRNA mimics. Knockdown of miRNA targets was performed using target siRNA lentiviral infection. Results show that microRNA‐141 (miR‐141) was downregulated in breast cancer tumor tissues compared with matched surrounding tissues. Downregulation of miR‐141 expression correlated with tumor stage, lymph node involvement, and expressions of PCNA, Ki67, and HER2. Overexpression of miR‐141 inhibited BC cell proliferation, migration, and invasion in vitro. ANP32E gene was selected as one putative target for further studies based on results from in silico analysis. Results from a dual‐luciferase reporter system suggested ANP32E as a direct target of miR‐141. Overexpression of miR‐141 downregulated ANP32E expression at both mRNA and protein levels in BC cells. Knockdown of ANP32E inhibited BC cell proliferation, migration, and invasion in vitro, mimicking the effect of the overexpression of miR‐141. Our study revealed important roles miR‐141 plays in BC growth and metastasis. Moreover, for the first time, we identified ANP32E as one of the miR‐141 targets, and demonstrated its involvement in the regulation of cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Ping Li
- Medical Laboratory Center, First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Changsha, 410007, China
| | - Tao Xu
- Department of Emergency Medicine, First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Changsha, 410007, China
| | - Xin Zhou
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Liangying Liao
- Department of Scientific Research, First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Changsha, 410007, China
| | - Guolian Pang
- Department of Pathology, First People's Hospital of Qujing, 1 Yuanlin Road, Qujing, 655000, China
| | - Wan Luo
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Lu Han
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Jiankun Zhang
- Department of Pathology, First People's Hospital of Qujing, 1 Yuanlin Road, Qujing, 655000, China
| | - Xianyong Luo
- Department of Pathology, First People's Hospital of Qujing, 1 Yuanlin Road, Qujing, 655000, China
| | - Xiaobing Xie
- Medical Laboratory Center, First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Middle Road, Changsha, 410007, China
| | - Kuichun Zhu
- Labway Clinical Laboratories, Shanghai, 200000, China
| |
Collapse
|
16
|
Yang S, Zhou L, Reilly PT, Shen SM, He P, Zhu XN, Li CX, Wang LS, Mak TW, Chen GQ, Yu Y. ANP32B deficiency impairs proliferation and suppresses tumor progression by regulating AKT phosphorylation. Cell Death Dis 2016; 7:e2082. [PMID: 26844697 PMCID: PMC4849165 DOI: 10.1038/cddis.2016.8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/31/2016] [Accepted: 01/04/2016] [Indexed: 01/10/2023]
Abstract
The acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) is reported to impact normal development, with Anp32b-knockout mice exhibiting smaller size and premature aging. However, its cellular and molecular mechanisms, especially its potential roles in tumorigenesis, remain largely unclear. Here, we utilize 'knockout' models, RNAi silencing and clinical cohorts to more closely investigate the role of this enigmatic factor in cell proliferation and cancer phenotypes. We report that, compared with Anp32b wild-type (Anp32b+/+) littermates, a broad panel of tissues in Anp32b-deficient (Anp32b−/−) mice are demonstrated hypoplasia. Anp32b−/− mouse embryo fibroblast cell has a slower proliferation, even after oncogenic immortalization. ANP32B knockdown also significantly inhibits in vitro and in vivo growth of cancer cells by inducing G1 arrest. In line with this, ANP32B protein has higher expression in malignant tissues than adjacent normal tissues from a cohort of breast cancer patients, and its expression level positively correlates with their histopathological grades. Moreover, ANP32B deficiency downregulates AKT phosphorylation, which involves its regulating effect on cell growth. Collectively, our findings suggest that ANP32B is an oncogene and a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- S Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - L Zhou
- Department of Surgery, Branch of Shanghai First People's Hospital, SJTU-SM, Shanghai, China
| | - P T Reilly
- Laboratory of Inflammation Biology, National Cancer Centre Singapore, Singapore, Singapore
| | - S-M Shen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - P He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - X-N Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - C-X Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - L-S Wang
- State Key Laboratory of Genetic Engineering, Minhang Hospital, Fudan University, Shanghai, China
| | - T W Mak
- Campbell Family Cancer Research Institute, University Health Network, Toronto, ON, Canada
| | - G-Q Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Y Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
17
|
Leo VI, Bunte RM, Reilly PT. BALB/c-congenic ANP32B-deficient mice reveal a modifying locus that determines viability. Exp Anim 2015; 65:53-62. [PMID: 26558540 PMCID: PMC4783651 DOI: 10.1538/expanim.15-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We previously found that deletion of the multifunctional factor ANP32B (a.k.a. SSP29,
APRIL, PAL31, PHAPI2) resulted in a severe but strain-specific defect resulting in
perinatal lethality. The difficulty in generating an adult cohort of ANP32B-deficient
animals limited our ability to examine adult phenotypes, particularly cancer-related
phenotypes. We bred the Anp32b-null allele into the BALB/c and FVB/N
genetic background. The BALB/c, but not the FVB/N, background provided sufficient
frequency of adult Anp32b-null (Anp32b−/−)
animals. From these, we found no apparent oncogenic role for this protein in mammary
tumorigenesis contrary to what was predicted based on human data. We also found runtism,
pathologies in various organ systems, and an unusual clinical chemistry signature in the
adult Anp32b−/− mice. Intriguingly, genome-wide
single-nucleotide polymorphism analysis suggested that our colony retained an unlinked
C57BL/6J locus at high frequency. Breeding this locus to homozygosity demonstrated that it
had a strong effect on Anp32b−/− viability indicating that
this locus contains a modifier gene of Anp32b with respect to
development. This suggests a functionally important genetic interaction with one of a
limited number of candidate genes, foremost among them being the variant histone gene
H2afv. Using congenic breeding strategies, we have generated a viable
ANP32B-deficient animal in a mostly pure background. We have used this animal to reliably
exclude mouse ANP32B as an important oncogene in mammary tumorigenesis. Our further
phenotyping strengthens the evidence that ANP32B is a widespread regulator of gene
expression. These studies may also impact the choice of subsequent groups with respect to
congenic breeding versus de novo zygote targeting strategies for
background analyses in mouse genetics.
Collapse
Affiliation(s)
- Vonny I Leo
- Laboratory of Inflammation Biology, National Cancer Centre Singapore
| | | | | |
Collapse
|
18
|
The expression and distributions of ANP32A in the developing brain. BIOMED RESEARCH INTERNATIONAL 2015; 2015:207347. [PMID: 25866766 PMCID: PMC4383345 DOI: 10.1155/2015/207347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/25/2022]
Abstract
Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A (ANP32A), has multiple functions involved in neuritogenesis, transcriptional regulation, and apoptosis. However, whether ANP32A has an effect on the mammalian developing brain is still in question. In this study, it was shown that brain was the organ that expressed the most abundant ANP32A by human multiple tissue expression (MTE) array. The distribution of ANP32A in the different adult brain areas was diverse dramatically, with high expression in cerebellum, temporal lobe, and cerebral cortex and with low expression in pons, medulla oblongata, and spinal cord. The expression of ANP32A was higher in the adult brain than in the fetal brain of not only humans but also mice in a time-dependent manner. ANP32A signals were dispersed accordantly in embryonic mouse brain. However, ANP32A was abundant in the granular layer of the cerebellum and the cerebral cortex when the mice were growing up, as well as in the Purkinje cells of the cerebellum. The variation of expression levels and distribution of ANP32A in the developing brain would imply that ANP32A may play an important role in mammalian brain development, especially in the differentiation and function of neurons in the cerebellum and the cerebral cortex.
Collapse
|
19
|
Reilly PT, Yu Y, Hamiche A, Wang L. Cracking the ANP32 whips: important functions, unequal requirement, and hints at disease implications. Bioessays 2014; 36:1062-71. [PMID: 25156960 PMCID: PMC4270211 DOI: 10.1002/bies.201400058] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The acidic (leucine-rich) nuclear phosphoprotein 32 kDa (ANP32) family is composed of small, evolutionarily conserved proteins characterized by an N-terminal leucine-rich repeat domain and a C-terminal low-complexity acidic region. The mammalian family members (ANP32A, ANP32B, and ANP32E) are ascribed physiologically diverse functions including chromatin modification and remodelling, apoptotic caspase modulation, protein phosphatase inhibition, as well as regulation of intracellular transport. In addition to reviewing the widespread literature on the topic, we present a concept of the ANP32s as having a whip-like structure. We also present hypotheses that ANP32C and other intronless sequences should not currently be considered bona fide family members, that their disparate necessity in development may be due to compensatory mechanisms, that their contrasting roles in cancer are likely context-dependent, along with an underlying hypothesis that ANP32s represent an important node of physiological regulation by virtue of their diverse biochemical activities.
Collapse
Affiliation(s)
- Patrick T Reilly
- Laboratory of Inflammation Biology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
20
|
ANP32E is a histone chaperone that removes H2A.Z from chromatin. Nature 2014; 505:648-53. [PMID: 24463511 DOI: 10.1038/nature12922] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/28/2013] [Indexed: 12/21/2022]
Abstract
H2A.Z is an essential histone variant implicated in the regulation of key nuclear events. However, the metazoan chaperones responsible for H2A.Z deposition and its removal from chromatin remain unknown. Here we report the identification and characterization of the human protein ANP32E as a specific H2A.Z chaperone. We show that ANP32E is a member of the presumed H2A.Z histone-exchange complex p400/TIP60. ANP32E interacts with a short region of the docking domain of H2A.Z through a new motif termed H2A.Z interacting domain (ZID). The 1.48 Å resolution crystal structure of the complex formed between the ANP32E-ZID and the H2A.Z/H2B dimer and biochemical data support an underlying molecular mechanism for H2A.Z/H2B eviction from the nucleosome and its stabilization by ANP32E through a specific extension of the H2A.Z carboxy-terminal α-helix. Finally, analysis of H2A.Z localization in ANP32E(-/-) cells by chromatin immunoprecipitation followed by sequencing shows genome-wide enrichment, redistribution and accumulation of H2A.Z at specific chromatin control regions, in particular at enhancers and insulators.
Collapse
|
21
|
Buddaseth S, Göttmann W, Blasczyk R, Huyton T. Overexpression of the pp32r1 (ANP32C) oncogene or its functional mutant pp32r1Y140H confers enhanced resistance to FTY720 (Finguimod). Cancer Biol Ther 2013; 15:289-96. [PMID: 24335183 DOI: 10.4161/cbt.27307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
pp32r1 (ANP32C) is oncogenic and has been shown to be overexpressed in tumors of the breast, prostate, and pancreas. In this work we show that pp32 family proteins are able to bind to the sphingosine analog FTY720 (Finguimod). Molecular docking studies highlight that a conserved residue F136 is likely to be a key determinant of the FTY720 binding site on the pp32 leucine-rich repeat domain. Transduction of the renal carcinoma cell line ACHN or cervical cancer cell line HeLa with lentivirus expressing the oncogenic family member pp32r1 or a pp32r1Y140H functional mutant illustrated an enhanced resistance to FTY720 induced apoptosis. These findings highlight that certain cancers overexpressing pp32r1 or pp32r1 mutants are likely to demonstrate enhanced resistance to FTY720 treatment.
Collapse
Affiliation(s)
- Salma Buddaseth
- Institute for Transfusion Medicine; Hannover Medical School; Hannover, Germany
| | - Wiebke Göttmann
- Institute for Transfusion Medicine; Hannover Medical School; Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine; Hannover Medical School; Hannover, Germany
| | - Trevor Huyton
- Institute for Transfusion Medicine; Hannover Medical School; Hannover, Germany
| |
Collapse
|
22
|
Wong P, Leo VI, Low M, Mak TW, Zhang X, Reilly PT. Targeted ANP32E mutant mice do not demonstrate obvious movement defects. PLoS One 2013; 8:e63815. [PMID: 23675506 PMCID: PMC3652840 DOI: 10.1371/journal.pone.0063815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/25/2013] [Indexed: 01/15/2023] Open
Abstract
Background The ANP32 family of proteins have been implicated in neuronal function through biochemical and cellular biology studies in neurons, as well as by recent behavioural studies of a gene-trapped loss-of-function mutation of Anp32e in mice, particularly with respect to fine motor function. A second targeted allele of the Anp32e, however, did not appear to demonstrate neurological phenotypes. Methodology/Principal Findings Using a stringently controlled cohort of ten-generation backcrossed, co-caged, sex-matched, littermate pairs, we assayed for potential motor defects in the targeted ANP32E-deficient mice. We found no phenotypic difference in any assays. Conclusion Since it is unlikely that the gene-trap is a more complete loss-of-function, our results suggest that ANP32E has no appreciable effect on motor functions and that genetic background differences most likely account for the gene-trap phenomena.
Collapse
Affiliation(s)
- Peiyan Wong
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Vonny I. Leo
- Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Meijun Low
- Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tak W. Mak
- Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Xiaodong Zhang
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Patrick T. Reilly
- Laboratory of Inflammation Biology, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
23
|
Kiba T. Relationships between ventromedial hypothalamic lesions and the expressions of neuron-related genes in visceral organs. Neurosci Res 2012; 74:1-6. [DOI: 10.1016/j.neures.2012.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
|
24
|
Acidic nuclear phosphoprotein 32kDa (ANP32)B-deficient mouse reveals a hierarchy of ANP32 importance in mammalian development. Proc Natl Acad Sci U S A 2011; 108:10243-8. [PMID: 21636789 DOI: 10.1073/pnas.1106211108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The highly conserved ANP32 proteins are proposed to function in a broad array of physiological activities through molecular mechanisms as diverse as phosphatase inhibition, chromatin regulation, caspase activation, and intracellular transport. On the basis of previous analyses of mice bearing targeted mutations of Anp32a or Anp32e, there has been speculation that all ANP32 proteins play redundant roles and are dispensable for normal development. However, more recent work has suggested that ANP32B may in fact have functions that are not shared by other ANP32 family members. Here we report that ANP32B expression is associated with a poor prognosis in human breast cancer, consistent with the increased levels of Anp32b mRNA present in proliferating wild-type (WT) murine embryonic fibroblasts and stimulated WT B and T lymphocytes. Moreover, we show that, contrary to previous assumptions, Anp32b is very important for murine embryogenesis. In a mixed genetic background, ANP32B-deficient mice displayed a partially penetrant perinatal lethality that became fully penetrant in a pure C57BL/6 background. Surviving ANP32B-deficient mice showed reduced viability due to variable defects in various organ systems. Study of compound mutants lacking ANP32A, ANP32B, and/or ANP32E revealed previously hidden roles for ANP32A in mouse development that became apparent only in the complete absence of ANP32B. Our data demonstrate a hierarchy of importance for the mammalian Anp32 genes, with Anp32b being the most critical for normal development.
Collapse
|