1
|
Munteanu R, Tomuleasa C, Iuga CA, Gulei D, Ciuleanu TE. Exploring Therapeutic Avenues in Lung Cancer: The Epigenetic Perspective. Cancers (Basel) 2023; 15:5394. [PMID: 38001653 PMCID: PMC10670535 DOI: 10.3390/cancers15225394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Lung cancer, primarily non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), is distinguished by its high prevalence and marked mortality rates. Traditional therapeutic approaches, encompassing chemotherapy, radiation, and targeted therapies, frequently show limited efficacy due to acquired resistance and notable side effects. The objective of this review is to introduce a fresh perspective on the therapeutic strategies for lung cancer, emphasizing interventions targeting the epigenetic alterations often seen in this malignancy. This review presents the most recent advancements in the field, focusing on both past and current clinical trials related to the modulation of methylation patterns using diverse molecular agents. Furthermore, an in-depth analysis of the challenges and advantages of these methylation-modifying drugs will be provided, assessing their efficacy as individual treatments and their potential for synergy when integrated with prevailing therapeutic regimens.
Collapse
Affiliation(s)
- Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.M.); (C.T.)
| | - Tudor Eliade Ciuleanu
- Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Oncology, Prof. Dr. Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol 2022; 16:101312. [PMID: 34922087 PMCID: PMC8688863 DOI: 10.1016/j.tranon.2021.101312] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a key role in the epigenetic regulation of gene expression by remodeling chromatin. Inhibition of HDACs is a prospective therapeutic approach for reversing epigenetic alteration in several diseases. In preclinical research, numerous types of HDAC inhibitors were discovered to exhibit powerful and selective anticancer properties. However, such research has revealed that the effects of HDAC inhibitors may be far broader and more intricate than previously thought. This review will provide insight into the HDAC inhibitors and their mechanism of action with special emphasis on the significance of HDAC inhibitors in the treatment of Chronic Obstructive Pulmonary Disease and lung cancer. Nanocarrier-mediated HDAC inhibitor delivery and new approaches for targeting HDACs are also discussed.
Collapse
Affiliation(s)
- Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
3
|
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone Modification in NSCLC: Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222111701. [PMID: 34769131 PMCID: PMC8584007 DOI: 10.3390/ijms222111701] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality in both genders, with non-small cell lung cancer (NSCLC) accounting for about 85% of all lung cancers. At the time of diagnosis, the tumour is usually locally advanced or metastatic, shaping a poor disease outcome. NSCLC includes adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Searching for novel therapeutic targets is mandated due to the modest effect of platinum-based therapy as well as the targeted therapies developed in the last decade. The latter is mainly due to the lack of mutation detection in around half of all NSCLC cases. New therapeutic modalities are also required to enhance the effect of immunotherapy in NSCLC. Identifying the molecular signature of NSCLC subtypes, including genetics and epigenetic variation, is crucial for selecting the appropriate therapy or combination of therapies. Epigenetic dysregulation has a key role in the tumourigenicity, tumour heterogeneity, and tumour resistance to conventional anti-cancer therapy. Epigenomic modulation is a potential therapeutic strategy in NSCLC that was suggested a long time ago and recently starting to attract further attention. Histone acetylation and deacetylation are the most frequently studied patterns of epigenetic modification. Several histone deacetylase (HDAC) inhibitors (HDIs), such as vorinostat and panobinostat, have shown promise in preclinical and clinical investigations on NSCLC. However, further research on HDIs in NSCLC is needed to assess their anti-tumour impact. Another modification, histone methylation, is one of the most well recognized patterns of histone modification. It can either promote or inhibit transcription at different gene loci, thus playing a rather complex role in lung cancer. Some histone methylation modifiers have demonstrated altered activities, suggesting their oncogenic or tumour-suppressive roles. In this review, patterns of histone modifications in NSCLC will be discussed, focusing on the molecular mechanisms of epigenetic modifications in tumour progression and metastasis, as well as in developing drug resistance. Then, we will explore the therapeutic targets emerging from studying the NSCLC epigenome, referring to the completed and ongoing clinical trials on those medications.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rakhee K. Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11559, Egypt
- Correspondence: ; Tel.: +971-6-505-7219; Fax: +971-5-558-5879
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
4
|
Misra SK, Pathak D, Pathak K. Anticancer potential of indole derivatives: an update. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The heterocyclic indole is one of the most prevalent pharmacophores in nature. It has been a highly privileged scaffold for designing targeted and anticancer therapeutics. Countless fused heterocyclic templates have been developed with diverse physicochemical and biological properties. Due to their versatile ethanobotanical and pharmacological values, indole and its derivatives seek high demand in the chemical and healthcare sectors. Extensive anticancer research has been conducted in this decade to evaluate their efficacy for diverse malignancies. The chapter explores the anticancer activity of natural and synthetic indole derivatives expressed through targeting different biological receptors and enzymes.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University , Kanpur , 208026 , India
| | - Devender Pathak
- Faculty of Pharmacy , Uttar Pradesh University of Medical Sciences , Saifai , Etawah , 206130 , Uttar Pradesh , India
| | - Kamla Pathak
- Faculty of Pharmacy , Uttar Pradesh University of Medical Sciences , Saifai , Etawah , 206130 , Uttar Pradesh , India
| |
Collapse
|
5
|
Mamdani H, Jalal SI. Histone Deacetylase Inhibition in Non-small Cell Lung Cancer: Hype or Hope? Front Cell Dev Biol 2020; 8:582370. [PMID: 33163495 PMCID: PMC7581936 DOI: 10.3389/fcell.2020.582370] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Epigenetic modulation, including acetylation, methylation, phosphorylation, and ubiquitination, plays a pivotal role in regulation of gene expression. Histone acetylation-a balance between the activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs)-is one of the key epigenetic events. Our understanding of the role of HDACs in cancer is evolving. A number of HDAC isoenzymes are overexpressed in a variety of malignancies. Aberrant histone acetylation is associated with dysregulation of tumor suppressor genes leading to development of several solid tumors and hematologic malignancies. Pre-clinical studies have demonstrated that HDAC-1 gene expression is associated with lung cancer progression. Histone hypoacetylation is associated with more aggressive phenotype in adenocarcinoma of the lung. HDAC inhibitors (HDACi) have pleiotropic cellular effects and induce the expression of pro-apoptotic genes/proteins, cause cellular differentiation and/or cell cycle arrest, inhibit angiogenesis, and inhibit transition to a mesenchymal phenotype. Consequently, treatment with HDACi has shown anti-proliferative activity in non-small cell lung cancer (NSCLC) cell lines. Despite promising results in pre-clinical studies, HDACi have shown only modest single agent activity in lung cancer clinical trials. HDAC activation has been implicated as one of the mechanisms causing resistance to chemotherapy, molecularly targeted therapy, and immune checkpoint inhibition. Therefore, there is a growing interest in combining HDACi with these agents to enhance their efficacy or reverse resistance. In this paper, we review the available preclinical and clinical evidence for the use of HDACi in NSCLC. We also review the challenges precluding widespread clinical utility of HDACi as a cancer therapy and future directions.
Collapse
Affiliation(s)
- Hirva Mamdani
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI, United States
| | - Shadia I. Jalal
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
6
|
Dhuguru J, Skouta R. Role of Indole Scaffolds as Pharmacophores in the Development of Anti-Lung Cancer Agents. Molecules 2020; 25:E1615. [PMID: 32244744 PMCID: PMC7181244 DOI: 10.3390/molecules25071615] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of death in men and women worldwide, affecting millions of people. Between the two types of lung cancers, non-small cell lung cancer (NSCLC) is more common than small cell lung cancer (SCLC). Besides surgery and radiotherapy, chemotherapy is the most important method of treatment for lung cancer. Indole scaffold is considered one of the most privileged scaffolds in heterocyclic chemistry. Indole may serve as an effective probe for the development of new drug candidates against challenging diseases, including lung cancer. In this review, we will focus on discussing the existing indole based pharmacophores in the clinical and pre-clinical stages of development against lung cancer, along with the synthesis of some of the selected anti-lung cancer drugs. Moreover, the basic mechanism of action underlying indole based anti-lung cancer treatment, such as protein kinase inhibition, histone deacetylase inhibition, DNA topoisomerase inhibition, and tubulin inhibition will also be discussed.
Collapse
Affiliation(s)
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
7
|
The potential of retinoids for combination therapy of lung cancer: Updates and future directions. Pharmacol Res 2019; 147:104331. [PMID: 31254665 DOI: 10.1016/j.phrs.2019.104331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
Lung cancer is the most common cancer-related death worldwide. Natural compounds have shown high biological and pharmaceutical relevance as anticancer agents. Retinoids are natural derivatives of vitamin A having many regulatory functions in the human body, including vision, cellular proliferation and differentiation, and activation of tumour suppressor genes. Retinoic acid (RA) is a highly active retinoid isoform with promising anti-lung cancer activity. The abnormal expression of retinoid receptors is associated with loss of anticancer activities and acquired resistance to RA in lung cancer. The preclinical promise has not translated to the general clinical utility of retinoids for lung cancer patients, especially those with a history of smoking. Newer retinoid nano-formulations and the combinatorial use of retinoids has been associated with lower toxicity and more favorably efficacy in both the preclinical and clinical settings. Here, we highlight epidemiological and clinical therapeutic studies involving retinoids and lung cancer. We also discuss the biological actions of retinoids in lung cancer, which include effects on cancer stem cell differentiation, angiogenesis, metastasis, and proliferative. We suggest that the use of retinoids in combination with conventional and targeted anticancer agents will broaden the utility of these potent anticancer compounds in the lung cancer clinic.
Collapse
|
8
|
Bama ES, Grace VMB, Sundaram V, Jesubatham PD. Synergistic effect of co-treatment with all- trans retinoic acid and 9- cis retinoic acid on human lung cancer cell line at molecular level. 3 Biotech 2019; 9:159. [PMID: 30944806 PMCID: PMC6441431 DOI: 10.1007/s13205-019-1692-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/24/2019] [Indexed: 10/27/2022] Open
Abstract
The major challenge in treating cancers with ATRA is the limited availability inside the cell and resistance developed in prolonged treatment. We made an attempt for co-treatment of human NSCLC cell lines (A549) with ATRA and its isomeric precursor (9cisRA). In this study, the growth inhibitory effect of ATRA, 9cisRA and combination of both were tested in A549 cells by MTT and Trypan blue assays. As the effects of retinoid are mediated through their receptors, their gene expression levels were analyzed by RT-PCR. The target gene receptor, RAR-β protein expression, was analyzed by immunocytochemistry. The cancer cell (A549) growth inhibitory effect was significantly (p ≤ 0.001) enhanced in combination treatment when compared with the result of individual treatments. The mRNA expression levels of both RAR-β and RXR-β were found to be increased in co-treatment (band density of 0.75 and 0.806, respectively) when compared with 9cisRA treatment (0.25 and 0.112) and ATRA treatment (0.01 and 0.081). A concomitant enhancement in the target RAR-β protein expression was observed in co-treated cells when compared with individual treatments. We thus conclude that the co-treatment had increased the availability of ATRA, by isomerization of the 9cisRA which then resulted in an increased expression of both RAR-β and RXR-β receptors and the target protein RAR-β which in turn inhibited lung cancer cell growth. Our study results have explored the mechanism of synergistic effect of co-treatment with ATRA and 9cisRA and further preclinical studies are necessary to validate the application of co-treatment of retinoid in clinical use.
Collapse
Affiliation(s)
- Esther Sathya Bama
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu 641 114 India
| | - V. M. Berlin Grace
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu 641 114 India
| | - Viswanathan Sundaram
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu 641 114 India
| | - Perinba Dansiha Jesubatham
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu 641 114 India
| |
Collapse
|
9
|
Schiffmann I, Greve G, Jung M, Lübbert M. Epigenetic therapy approaches in non-small cell lung cancer: Update and perspectives. Epigenetics 2016; 11:858-870. [PMID: 27846368 PMCID: PMC5193491 DOI: 10.1080/15592294.2016.1237345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) still constitutes the most common cancer-related cause of death worldwide. All efforts to introduce suitable treatment options using chemotherapeutics or targeted therapies have, up to this point, failed to exhibit a substantial effect on the 5-year-survival rate. The involvement of epigenetic alterations in the evolution of different cancers has led to the development of epigenetics-based therapies, mainly targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. So far, their greatest success stories have been registered in hematologic neoplasias. As the effects of epigenetic single agent treatment of solid tumors have been limited, the investigative focus now lies on combination therapies of epigenetically active agents with conventional chemotherapy, immunotherapy, or kinase inhibitors. This review includes a short overview of the most important preclinical approaches as well as an extensive discussion of clinical trials using epigenetic combination therapies in NSCLC, including ongoing trials. Thus, we are providing an overview of what lies ahead in the field of epigenetic combinatory therapies of NSCLC in the coming years.
Collapse
Affiliation(s)
- Insa Schiffmann
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Gabriele Greve
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Manfred Jung
- University of Freiburg, Institute of Pharmaceutical Sciences, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
10
|
Gumbarewicz E, Luszczki JJ, Wawruszak A, Dmoszynska-Graniczka M, Grabarska AJ, Jarząb AM, Polberg K, Stepulak A. Isobolographic analysis demonstrates additive effect of cisplatin and HDIs combined treatment augmenting their anti-cancer activity in lung cancer cell lines. Am J Cancer Res 2016; 6:2831-2845. [PMID: 28042503 PMCID: PMC5199757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023] Open
Abstract
Histone deacetylase inhibitors (HDIs) are a new class of drugs which affect the activity of HDACs resulting in changed of acetylation in many proteins. HDIs can induce differentiation, cell growth arrest, apoptosis, inhibit proliferation and angiogenesis in cancer, whereas normal cells are comparatively resistant to the action of HDIs. The aim of this study was to investigate the combined effect of a well-known cytostatic agent-cisplatin (CDDP) and a histone deacetylase inhibitors-either suberoylanilide hydroxamic acid (SAHA, vorinostat) or valproic acid (VPA), on the proliferation of lung cancer cells, as well as induction of apoptosis and inhibition of the cell cycle progression. The anti-proliferative activity of VPA or SAHA used alone, or in combination with CDDP were determined by means of MTT test. The type of pharmacologic interactions between HDAC inhibitors and CDDP was assessed using isobolographic analysis. We observed additive interactions for the CCDP with SAHA, as well as for the CDDP with VPA combinations with respect to their anti-proliferative effects on three different lung cancer cell lines (A549, NCI-H1563 and NCI-H2170). Such additive effects were observed regardless of the histologic type (adenocarcinoma or squamous cell carcinoma) and sensitivity for the drugs applied. Combination treatment also augmented the induction of apoptosis and cell cycle perturbation mediated by CDDP alone, thereby enhancing anti-cancer effect of tested drugs. In conclusion, the combined therapy of HDIs and CDDP may be a promising therapeutic tool in the treatment of lung cancer.
Collapse
Affiliation(s)
- Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of LublinPoland
| | | | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of LublinPoland
| | | | - Aneta J Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of LublinPoland
| | - Agata M Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of LublinPoland
| | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of LublinPoland
| |
Collapse
|
11
|
Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 2016; 5:155-71. [PMID: 27186511 DOI: 10.21037/tlcr.2016.02.02] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.
Collapse
Affiliation(s)
- Junaid Ansari
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Rodney E Shackelford
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Hazem El-Osta
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
12
|
All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. BIOMED RESEARCH INTERNATIONAL 2015; 2015:404368. [PMID: 26557664 PMCID: PMC4628773 DOI: 10.1155/2015/404368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted.
Collapse
|
13
|
Itoh Y, Sawada H, Suzuki M, Tojo T, Sasaki R, Hasegawa M, Mizukami T, Suzuki T. Identification of Jumonji AT-Rich Interactive Domain 1A Inhibitors and Their Effect on Cancer Cells. ACS Med Chem Lett 2015; 6:665-70. [PMID: 26101571 DOI: 10.1021/acsmedchemlett.5b00083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023] Open
Abstract
Jumonji AT-rich interactive domain 1A (JARID1A), one of the jumonji C domain-containing histone demethylase (JHDM) family members, plays key roles in cancer cell proliferation and development of drug tolerance. Therefore, selective JARID1A inhibitors are potential anticancer agents. In this study, we searched for cell-active JARID1A inhibitors by screening hydroxamate compounds in our in-house library and the structural optimization based on docking study of the hit-compound to a homology model of JARID1A. As a result, we identified compound 6j, which selectively inhibits JARID1A over three other JHDM family members. Compound 7j, a prodrug form of compound 6j, induced a selective increase in the level of trimethylation of histone H3 lysine 4, a substrate of JARID1A. Furthermore, compound 7j synergistically enhanced A549 human lung cancer cell growth inhibition induced by vorinostat, a histone deacetylase inhibitor. These findings support the idea that JARID1A inhibitors have potential as anticancer agents.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Hideyuki Sawada
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Miki Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Toshifumi Tojo
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
| | - Ryuzo Sasaki
- Graduate
School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Makoto Hasegawa
- Graduate
School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Tamio Mizukami
- Graduate
School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Vitamin A, cancer treatment and prevention: the new role of cellular retinol binding proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:624627. [PMID: 25879031 PMCID: PMC4387950 DOI: 10.1155/2015/624627] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 11/18/2022]
Abstract
Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy.
Collapse
|
15
|
Decitabine and SAHA-induced apoptosis is accompanied by survivin downregulation and potentiated by ATRA in p53-deficient cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:165303. [PMID: 25140197 PMCID: PMC4130322 DOI: 10.1155/2014/165303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/26/2014] [Accepted: 07/05/2014] [Indexed: 12/18/2022]
Abstract
While p53-dependent apoptosis is triggered by combination of methyltransferase inhibitor decitabine (DAC) and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in leukemic cell line CML-T1, reactive oxygen species (ROS) generation as well as survivin and Bcl-2 deregulation participated in DAC + SAHA-induced apoptosis in p53-deficient HL-60 cell line. Moreover, decrease of survivin expression level is accompanied by its delocalization from centromere-related position in mitotic cells suggesting that both antiapoptotic and cell cycle regulation roles of survivin are affected by DAC + SAHA action. Addition of subtoxic concentration of all-trans-retinoic acid (ATRA) increases the efficiency of DAC + SAHA combination on viability, apoptosis induction, and ROS generation in HL-60 cells but has no effect in CML-T1 cell line. Peripheral blood lymphocytes from healthy donors showed no damage induced by DAC + SAHA + ATRA combination. Therefore, combination of ATRA with DAC and SAHA represents promising tool for therapy of leukemic disease with nonfunctional p53 signalization.
Collapse
|
16
|
Hou N, Ren L, Gong M, Bi Y, Gu Y, Dong Z, Liu Y, Chen J, Li T. Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 2014; 51:633-47. [PMID: 24859384 DOI: 10.1007/s12035-014-8741-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022]
Abstract
Vitamin A (VA) is an essential micronutrient. Numerous studies have confirmed that VA deficiency (VAD) leads to a decline in learning and memory function. Our previous studies have demonstrated that retinoic acid nuclear receptor α (RARα) in the hippocampus plays a crucial role in learning and memory, but the exact mechanism for this process is unclear. Epigenetic modifications, particularly histone acetylation, are involved in nervous system development, learning and memory function, and the pathogenesis of neurodegenerative diseases. Histone acetyltransferases (HATs), such as CREB-binding protein (CBP), E1A-binding protein p300 (p300), and p300/CBP-associated factor (PCAF), are critical for regulating memory function. The current study uses RARα and CBP as examples to study the connections between the RA signaling pathway and histone acetylation modification and to reveal the epigenetic mechanism in VAD-induced learning and memory impairment. This study examined the expression of RARα, HATs, acetylated histone H3/H4, and memory-related genes (Zif268, cFos, FosB), as well as the interaction of RARα and CBP in the hippocampus of 8-week-old rats. Additionally, the changes shown in vivo were further assessed in primary cultured neurons with the inhibition or overexpression of RARα. We found significantly lower levels of histone acetylation in the VAD rats. Furthermore, this downregulation, which impairs learning and memory, is induced by the dysregulation of CBP-dependent histone acetylation that is mediated by RARα. This work provides a solid theoretical foundation and experimental basis for the importance of ensuring sufficient nutritional VA during pregnancy and early life to prevent impairments of learning and memory in adulthood.
Collapse
Affiliation(s)
- Nali Hou
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Retinoids and their biological effects against cancer. Int Immunopharmacol 2013; 18:43-9. [PMID: 24239628 DOI: 10.1016/j.intimp.2013.10.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/11/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
There are more than 4000 natural and synthetic molecules structurally and/or functionally related to vitamin A. Retinoids are a class of these compounds that are structurally associated to vitamin A. The retinoids have a wide spectrum of functions. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation and apoptosis. It suppresses carcinogenesis in tumorigenic animal models for the skin, oral, lung, breast, bladder, ovarian and prostate. It is important how major retinoids may act in cancer treatment or prevention. The reports have indicated that lower levels of vitamin A in humans may be associated with relative type 1 cytokine dominance and a higher proportion of NK cells. In addition, very low vitamin A levels would be undesirable explaining the essential role of vitamin A in epithelial and general cell maturation and function. However, the cytokine shifts associated with moderately low levels of vitamin A may be in some ways beneficial in an environment where HIV infection, M. tuberculosis infection, or other type 1 infections are highly prevalent and/or when acquired immunity is cooperated. In this review, we intend to describe the biochemical and immunological functions of retinoids against cancer.
Collapse
|
18
|
Petta V, Gkiozos I, Strimpakos A, Syrigos K. Histones and lung cancer: are the histone deacetylases a promising therapeutic target? Cancer Chemother Pharmacol 2013; 72:935-52. [DOI: 10.1007/s00280-013-2223-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
|
19
|
Wieczorek M, Ginter T, Brand P, Heinzel T, Krämer OH. Acetylation modulates the STAT signaling code. Cytokine Growth Factor Rev 2012; 23:293-305. [PMID: 22795479 DOI: 10.1016/j.cytogfr.2012.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.
Collapse
Affiliation(s)
- Martin Wieczorek
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | | | | | | | | |
Collapse
|