1
|
Nguyen ATP, Weigle AT, Shukla D. Functional regulation of aquaporin dynamics by lipid bilayer composition. Nat Commun 2024; 15:1848. [PMID: 38418487 PMCID: PMC10901782 DOI: 10.1038/s41467-024-46027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
With the diversity of lipid-protein interactions, any observed membrane protein dynamics or functions directly depend on the lipid bilayer selection. However, the implications of lipid bilayer choice are seldom considered unless characteristic lipid-protein interactions have been previously reported. Using molecular dynamics simulation, we characterize the effects of membrane embedding on plant aquaporin SoPIP2;1, which has no reported high-affinity lipid interactions. The regulatory impacts of a realistic lipid bilayer, and nine different homogeneous bilayers, on varying SoPIP2;1 dynamics are examined. We demonstrate that SoPIP2;1's structure, thermodynamics, kinetics, and water transport are altered as a function of each membrane construct's ensemble properties. Notably, the realistic bilayer provides stabilization of non-functional SoPIP2;1 metastable states. Hydrophobic mismatch and lipid order parameter calculations further explain how lipid ensemble properties manipulate SoPIP2;1 behavior. Our results illustrate the importance of careful bilayer selection when studying membrane proteins. To this end, we advise cautionary measures when performing membrane protein molecular dynamics simulations.
Collapse
Affiliation(s)
- Anh T P Nguyen
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Selvasingh JA, McDonald EF, Mckinney JR, Meiler J, Ledwitch KV. Dark nanodiscs as a model membrane for evaluating membrane protein thermostability by differential scanning fluorimetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539917. [PMID: 37214798 PMCID: PMC10197605 DOI: 10.1101/2023.05.08.539917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Measuring protein thermostability provides valuable information on the biophysical rules that govern structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently-developed non-fluorescent membrane scaffold protein (MSP) to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs show a complex biphasic thermal unfolding pattern in the presence of lipids with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5 °C and 77.5 °C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a nanodisc. We introduce this method as a new tool that can be used to understand how compositionally, and biophysically complex lipid environments drive membrane protein stability.
Collapse
Affiliation(s)
- Jazlyn A. Selvasingh
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Eli Fritz McDonald
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob R. Mckinney
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Kaitlyn V. Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Lead contact
| |
Collapse
|
3
|
Patel J, Mishra A. Plant aquaporins alleviate drought tolerance in plants by modulating cellular biochemistry, root-architecture, and photosynthesis. PHYSIOLOGIA PLANTARUM 2021; 172:1030-1044. [PMID: 33421148 DOI: 10.1111/ppl.13324] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 05/09/2023]
Abstract
Water is a vital resource for plants to grow, thrive, and complete their life cycle. In recent years, drastic changes in the climate, especially drought frequency and severity, have increased, which reduces agricultural productivity worldwide. Aquaporins are membrane channels belonging to the major intrinsic protein superfamily, which play an essential role in cellular water and osmotic homeostasis of plants under both control and water deficit conditions. A genome-wide search reveals the vast availability of aquaporin isoforms, phylogenetic relationships, different families, conserved residues, chromosomal locations, and gene structure of aquaporins. Furthermore, aquaporins gating and subcellular trafficking are commonly controlled by phosphorylation, cytosolic pH, divalent cations, reactive oxygen species, and stoichiometry. Researchers have identified their involvement in regulating hydraulic conductance, root system architecture, modulation of abiotic stress-related genes, seed viability and germination, phloem loading, xylem water exit, photosynthetic parameters, and post-drought recovery. Remarkable effects following the change in aquaporin activity and/or gene expression have been observed on root water transport properties, nutrient acquisition, physiology, transpiration, stomatal aperture, gas exchange, and water use efficiency. The present review highlights the role of different aquaporin homologs under water-deficit stress condition in model and crop plants. Moreover, the opportunity and challenges encountered to explore aquaporins for engineering drought-tolerant crop plants are also discussed here.
Collapse
Affiliation(s)
- Jaykumar Patel
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Vojdani A. Reaction of food‐specific antibodies with different tissue antigens. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc. 822 S. Robertson Blvd., Ste. 312 Los Angeles CA 90035 USA
- Department of Preventive Medicine Loma Linda University School of Medicine 24785 Stewart St., Evans Hall, Ste. 111 Loma Linda CA 92354 USA
| |
Collapse
|
5
|
Solid-state NMR spectroscopy based atomistic view of a membrane protein unfolding pathway. Nat Commun 2019; 10:3867. [PMID: 31455771 PMCID: PMC6711998 DOI: 10.1038/s41467-019-11849-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 01/17/2023] Open
Abstract
Membrane protein folding, structure, and function strongly depend on a cell membrane environment, yet detailed characterization of folding within a lipid bilayer is challenging. Studies of reversible unfolding yield valuable information on the energetics of folding and on the hierarchy of interactions contributing to protein stability. Here, we devise a methodology that combines hydrogen-deuterium (H/D) exchange and solid-state NMR (SSNMR) to follow membrane protein unfolding in lipid membranes at atomic resolution through detecting changes in the protein water-accessible surface, and concurrently monitoring the reversibility of unfolding. We obtain atomistic description of the reversible part of a thermally induced unfolding pathway of a seven-helical photoreceptor. The pathway is visualized through SSNMR-detected snapshots of H/D exchange patterns as a function of temperature, revealing the unfolding intermediate and its stabilizing factors. Our approach is transferable to other membrane proteins, and opens additional ways to characterize their unfolding and stabilizing interactions with atomic resolution.
Collapse
|
6
|
Abdelrasoul A, Doan H, Lohi A, Cheng CH. Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Jakowiecki J, Sztyler A, Filipek S, Li P, Raman K, Barathiraja N, Ramakrishna S, Eswara JR, Altaee A, Sharif AO, Ajayan PM, Renugopalakrishnan V. Aquaporin-graphene interface: relevance to point-of-care device for renal cell carcinoma and desalination. Interface Focus 2018; 8:20170066. [PMID: 29696094 DOI: 10.1098/rsfs.2017.0066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
The aquaporin superfamily of hydrophobic integral membrane proteins constitutes water channels essential to the movement of water across the cell membrane, maintaining homeostatic equilibrium. During the passage of water between the extracellular and intracellular sides of the cell, aquaporins act as ultra-sensitive filters. Owing to their hydrophobic nature, aquaporins self-assemble in phospholipids. If a proper choice of lipids is made then the aquaporin biomimetic membrane can be used in the design of an artificial kidney. In combination with graphene, the aquaporin biomimetic membrane finds practical application in desalination and water recycling using mostly Escherichia coli AqpZ. Recently, human aquaporin 1 has emerged as an important biomarker in renal cell carcinoma. At present, the ultra-sensitive sensing of renal cell carcinoma is cumbersome. Hence, we discuss the use of epitopes from monoclonal antibodies as a probe for a point-of-care device for sensing renal cell carcinoma. This device works by immobilizing the antibody on the surface of a single-layer graphene, that is, as a microfluidic device for sensing renal cell carcinoma.
Collapse
Affiliation(s)
- Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Agnieszka Sztyler
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Pingzuo Li
- Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China
| | - Karthik Raman
- EREOI Power Solutions Pvt Ltd, no. 9, Nagarbhavi 1st Stage, 3rd Block, 1st Main Road, BDA Layout, Pattegarapalya Main Road, Bangalore 560079, India
| | | | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, National University of Singapore, Engineering Drive 3, 117576 Singapore, Republic of Singapore
| | - Jairam R Eswara
- Division of Urology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology, Sydney, New South Wales 2007, Australia
| | - Adel O Sharif
- Center for Osmosis Research and Applications, Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Venkatesan Renugopalakrishnan
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Regenthal P, Hansen JS, André I, Lindkvist-Petersson K. Thermal stability and structural changes in bacterial toxins responsible for food poisoning. PLoS One 2017; 12:e0172445. [PMID: 28207867 PMCID: PMC5313198 DOI: 10.1371/journal.pone.0172445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
The staphylococcal enterotoxins (SEs) are secreted by the bacteria Staphylococcus aureus and are the most common causative agent in staphylococcal food poisoning. The staphylococcal enterotoxin A (SEA) has been associated with large staphylococcal food poisoning outbreaks, but newer identified SEs, like staphylococcal enterotoxin H (SEH) has recently been shown to be present at similar levels as SEA in food poisoning outbreaks. Thus, we set out to investigate the thermo-stability of the three-dimensional structures of SEA, SEH and staphylococcal enterotoxin E (SEE), since heat inactivation is a common method to inactivate toxins during food processing. Interestingly, the investigated toxins behaved distinctly different upon heating. SEA and SEE were more stable at slightly acidic pH values, while SEH adopted an extremely stable structure at neutral pH, with almost no effects on secondary structural elements upon heating to 95°C, and with reversible formation of tertiary structure upon subsequent cooling to room temperature. Taken together, the data suggests that the family of staphylococcal enterotoxins have different ability to withstand heat, and thus the exact profile of heat inactivation for all SEs causing food poisoning needs to be considered to improve food safety.
Collapse
Affiliation(s)
- Paulina Regenthal
- Department of Experimental Medical Science, Lund University, BMC, Lund, Sweden
| | - Jesper S Hansen
- Department of Experimental Medical Science, Lund University, BMC, Lund, Sweden
| | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Kirscht A, Survery S, Kjellbom P, Johanson U. Increased Permeability of the Aquaporin SoPIP2;1 by Mercury and Mutations in Loop A. FRONTIERS IN PLANT SCIENCE 2016; 7:1249. [PMID: 27625657 PMCID: PMC5004352 DOI: 10.3389/fpls.2016.01249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/08/2016] [Indexed: 05/12/2023]
Abstract
Aquaporins (AQPs) also referred to as Major intrinsic proteins, regulate permeability of biological membranes for water and other uncharged small polar molecules. Plants encode more AQPs than other organisms and just one of the four AQP subfamilies in Arabidopsis thaliana, the water specific plasma membrane intrinsic proteins (PIPs), has 13 isoforms, the same number as the total AQPs encoded by the entire human genome. The PIPs are more conserved than other plant AQPs and here we demonstrate that a cysteine residue, in loop A of SoPIP2;1 from Spinacia oleracea, is forming disulfide bridges. This is in agreement with studies on maize PIPs, but in contrast we also show an increased permeability of mutants with a substitution at this position. In accordance with earlier findings, we confirm that mercury increases water permeability of both wild type and mutant proteins. We report on the slow kinetics and reversibility of the activation, and on quenching of intrinsic tryptophan fluorescence as a potential reporter of conformational changes associated with activation. Hence, previous studies in plants based on the assumption of mercury as a general AQP blocker have to be reevaluated, whereas mercury and fluorescence studies of isolated PIPs provide new means to follow structural changes dynamically.
Collapse
|
10
|
Ampah-Korsah H, Anderberg HI, Engfors A, Kirscht A, Norden K, Kjellstrom S, Kjellbom P, Johanson U. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain. FRONTIERS IN PLANT SCIENCE 2016; 7:862. [PMID: 27379142 PMCID: PMC4909777 DOI: 10.3389/fpls.2016.00862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/01/2016] [Indexed: 05/22/2023]
Abstract
Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel.
Collapse
|
11
|
Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes? MEMBRANES 2015; 5:352-68. [PMID: 26266425 PMCID: PMC4584285 DOI: 10.3390/membranes5030352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022]
Abstract
In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.
Collapse
|
12
|
Folding energetics and oligomerization of polytopic α-helical transmembrane proteins. Arch Biochem Biophys 2014; 564:281-96. [DOI: 10.1016/j.abb.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
13
|
Klein N, Neumann J, O'Neil JD, Schneider D. Folding and stability of the aquaglyceroporin GlpF: Implications for human aqua(glycero)porin diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:622-33. [PMID: 25462169 DOI: 10.1016/j.bbamem.2014.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 01/22/2023]
Abstract
Aquaporins are highly selective polytopic transmembrane channel proteins that facilitate the permeation of water across cellular membranes in a large diversity of organisms. Defects in aquaporin function are associated with common diseases, such as nephrogenic diabetes insipidus, congenital cataract and certain types of cancer. In general, aquaporins have a highly conserved structure; from prokaryotes to humans. The conserved structure, together with structural dynamics and the structural framework for substrate selectivity is discussed. The folding pathway of aquaporins has been a topic of several studies in recent years. These studies revealed that a conserved protein structure can be reached by following different folding pathways. Based on the available data, we suggest a complex folding pathway for aquaporins, starting from the insertion of individual helices up to the formation of the tetrameric aquaporin structure. The consequences of some known mutations in human aquaporin-encoding genes, which most likely affect the folding and stability of human aquaporins, are discussed.
Collapse
Affiliation(s)
- Noreen Klein
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Jennifer Neumann
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Joe D O'Neil
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Thermal stress induced aggregation of aquaporin 0 (AQP0) and protection by α-crystallin via its chaperone function. PLoS One 2013; 8:e80404. [PMID: 24312215 PMCID: PMC3842347 DOI: 10.1371/journal.pone.0080404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 11/22/2022] Open
Abstract
Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant.
Collapse
|
15
|
Hansen JS, Thompson JR, Hélix-Nielsen C, Malmstadt N. Lipid directed intrinsic membrane protein segregation. J Am Chem Soc 2013; 135:17294-7. [PMID: 24180248 DOI: 10.1021/ja409708e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily harvested for individual study. By controlling the lipid composition we are able to direct the aquaporin into specific immiscible liquid domains in giant vesicles. The oligomeric α-helical protein cosegregates with the cholesterol-poor domains in phase separating ternary mixtures.
Collapse
Affiliation(s)
- Jesper S Hansen
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , 925 Bloom Walk, Los Angeles, California 90089, United States
| | | | | | | |
Collapse
|
16
|
Gao L, Guo YJ. Isolation of a fruit ripening-related tonoplast aquaporin (GjTIP) gene from Gardenia jasminoides. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:555-561. [PMID: 24431525 PMCID: PMC3781284 DOI: 10.1007/s12298-013-0191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aquaporins are membrane water channels that play critical roles in controlling the water content of cells and tissues. In this work, a full-length cDNA encoding putative aquaporins was isolated from Gardenia jasminoides fruit cDNA library. The GjTIP cDNA is 1188 bp, contains a predicted 774 bp open reading frame that encodes 257 amino acids. A phylogenetic analysis conducted with previously characterized aquaporins from other plant species indicates that the cDNA encode putative tonoplast aquaporins (TIPs), and proposed that GjTIP has a tendency to be a mixed function aquaporin similar to the TIP1s from Arabidopsis and Gossypium raimondii. A typical "hourglasses" three-dimensional model of GjTIP was built. The expression of the GjTIP transcripts at fruits during maturation was conducted by RT-PCR analysis. The data revealed that the transcript levels of GjTIP have increased during fruit maturation.
Collapse
Affiliation(s)
- Lan Gao
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006 Peoples Republic of China
| | - Yi-jun Guo
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006 Peoples Republic of China
| |
Collapse
|
17
|
Vaishnav RA, Liu R, Chapman J, Roberts AM, Ye H, Rebolledo-Mendez JD, Tabira T, Fitzpatrick AH, Achiron A, Running MP, Friedland RP. Aquaporin 4 molecular mimicry and implications for neuromyelitis optica. J Neuroimmunol 2013; 260:92-8. [PMID: 23664693 PMCID: PMC3682654 DOI: 10.1016/j.jneuroim.2013.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
Abstract
Neuromyelitis optica (NMO) is associated with antibodies to aquaporin 4 (AQP4). We hypothesized that antibodies to AQP4 can be triggered by exposure to environmental proteins. We compared human AQP4 to plant and bacterial proteins to investigate the occurrence of significantly similar structures and sequences. High similarity to a known epitope for NMO-IgG, AQP4(207-232), was observed for corn ZmTIP4-1. NMO and non-NMO sera were assessed for reactivity to AQP4(207-232) and the corn peptide. NMO patient serum showed reactivity to both peptides as well as to plant tissue. These findings warrant further investigation into the role of the environment in NMO etiology.
Collapse
Affiliation(s)
- Radhika A. Vaishnav
- Department of Neurology, University of Louisville, KY, USA
- Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Ruolan Liu
- Department of Neurology, University of Louisville, KY, USA
| | - Joab Chapman
- Department of Neurology, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Andrew M. Roberts
- Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Hong Ye
- Department of Pharmacology, University of Louisville, KY, USA
| | | | - Takeshi Tabira
- Department of Diagnosis, Prevention, and Treatment of Dementia, Graduate School of Juntendo University, Tokyo, Japan
| | | | - Anat Achiron
- Department of Neurology, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Robert P. Friedland
- Department of Neurology, University of Louisville, KY, USA
- Department of Biochemistry, University of Louisville, KY, USA
| |
Collapse
|
18
|
Hansen JS, Vararattanavech A, Vissing T, Torres J, Emnéus J, Hélix-Nielsen C. Formation of giant protein vesicles by a lipid cosolvent method. Chembiochem 2011; 12:2856-62. [PMID: 22069223 DOI: 10.1002/cbic.201100537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Indexed: 12/18/2022]
Abstract
This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent-driven fusion of large vesicles (0.1-0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein-reconstituted large unilamellar vesicles (LUVs) with a lipid-containing solvent phase. We made GPVs by using n-decane and squalene as solvents, and applied generalized polarization (GP) imaging to monitor the polarity around the protein transmembrane region of aquaporins labeled with the polarity-sensitive probe Badan. Specifically, we created GPVs of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform.
Collapse
Affiliation(s)
- Jesper S Hansen
- Research Department, Aquaporin A/S, Ole Maaloes Vej 3, 2200 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
19
|
Veerappan A, Cymer F, Klein N, Schneider D. The Tetrameric α-Helical Membrane Protein GlpF Unfolds via a Dimeric Folding Intermediate. Biochemistry 2011; 50:10223-30. [DOI: 10.1021/bi201266m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anbazhagan Veerappan
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
- Institut für Biochemie
und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| | - Florian Cymer
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
- Institut für Biochemie
und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| | - Noreen Klein
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Institut für Pharmazie
und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| |
Collapse
|
20
|
Interaction between sodium dodecyl sulfate and membrane reconstituted aquaporins: A comparative study of spinach SoPIP2;1 and E. coli AqpZ. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2600-7. [DOI: 10.1016/j.bbamem.2011.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 01/13/2023]
|