1
|
Wang R, Lenka SK, Kumar V, Sikron-Persi N, Dynkin I, Weiss D, Perl A, Fait A, Oren-Shamir M. A Synchronized Increase of Stilbenes and Flavonoids in Metabolically Engineered Vitis vinifera cv. Gamay Red Cell Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7922-7931. [PMID: 34236173 DOI: 10.1021/acs.jafc.1c02119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stilbenes and flavonoids are two major health-promoting phenylpropanoid groups in grapes. Attempts to promote the accumulation of one group usually resulted in a decrease in the other. This study presents a unique strategy for simultaneously increasing metabolites in both groups in V. vinifera cv. Gamay Red grape cell culture, by overexpression of flavonol synthase (FLS) and increasing Phe availability. Increased Phe availability was achieved by transforming the cell culture with a second gene, the feedback-insensitive E. coli DAHP synthase (AroG*), and feeding them with Phe. A combined metabolomic and transcriptomic analysis reveals that the increase in both phenylpropanoid groups is accompanied by an induction of many of the flavonoid biosynthetic genes and no change in the expression levels of stilbene synthase. Furthermore, FLS overexpression with increased Phe availability resulted in higher anthocyanin levels, mainly those derived from delphinidin, due to the induction of F3'5'H. These insights may contribute to the development of grape berries with increased health benefits.
Collapse
Affiliation(s)
- Ru Wang
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sangram Keshari Lenka
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Noga Sikron-Persi
- French Associates Institute for Agriculture & Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel
| | - Irena Dynkin
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avichai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture & Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| |
Collapse
|
2
|
Al‐Obaidi JR, Jamil NAM, Rahmad N, Rosli NHM. Proteomic and metabolomic study of wax apple (
Syzygium samarangense
) fruit during ripening process. Electrophoresis 2018; 39:2954-2964. [DOI: 10.1002/elps.201800185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jameel R. Al‐Obaidi
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | - Nor Azreen Mohd Jamil
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | - Norasfaliza Rahmad
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | | |
Collapse
|
3
|
Jezek M, Zörb C, Merkt N, Geilfus CM. Anthocyanin Management in Fruits by Fertilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:753-764. [PMID: 29297687 DOI: 10.1021/acs.jafc.7b03813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Anthocyanins are water-soluble vacuolar plant pigments that are mainly synthesized in epidermal layers and the flesh of fruits such as apples, cherries, grapes, and other berries. Because of their attractive red to purple coloration and their health-promoting potential, anthocyanins are significant determinants for the quality and market value of fruits and fruit-derived products. In crops, anthocyanin accumulation in leaves can be caused by nutrient deficiency which is usually ascribed to insufficient nitrogen or phosphorus fertilization. However, it is a little-known fact that the plant's nutrient status also impacts anthocyanin synthesis in fruits. Hence, strategic nutrient supply can be a powerful tool to modify the anthocyanin content and consequently the quality and market value of important agricultural commodities. Here we summarize the current knowledge of the influence of plant nutrients on anthocyanin synthesis in fruits of major global market value and discuss the underlying cellular processes that integrate nutrient signaling with fruit anthocyanin formation. It is highlighted that fertilization that is finely tuned in amount and timing has the potential to positively influence the fruit quality by regulating anthocyanin levels. We outline new approaches to enrich plant based foods with health-promoting anthocyanins.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim , Emil-Wolff-Straße 25, 70599 Stuttgart, Germany
| | - Nikolaus Merkt
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim , Emil-Wolff-Straße 25, 70599 Stuttgart, Germany
| | - Christoph-Martin Geilfus
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin , Albrecht-Thaer-Weg 1, 14195 Berlin, Germany
| |
Collapse
|
4
|
Li R, Xie X, Ma F, Wang D, Wang L, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. Resveratrol accumulation and its involvement in stilbene synthetic pathway of Chinese wild grapes during berry development using quantitative proteome analysis. Sci Rep 2017; 7:9295. [PMID: 28839259 PMCID: PMC5571159 DOI: 10.1038/s41598-017-10171-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/03/2017] [Indexed: 12/18/2022] Open
Abstract
Attention has become focused on resveratrol not only because of its role in grapevine fungal resistance but also because of its benefits in human health. This report describes the Chinese wild grapevine Vitis quinquangularis accession Danfeng-2 in relation to the high resveratrol content of its ripe berries. In this study, we used isobaric tags for relative and absolute quantification (iTRAQ) tandem mass spectrometry strategy to quantify and identify proteome changes, resulting in the detection of a total of 3,751 proteins produced under natural conditions. Among the proteins quantified, a total of 578 differentially expressed proteins were detected between Danfeng-2 and Cabernet Sauvignon during berry development. Differentially expressed proteins are involved in secondary metabolism, biotic stress, abiotic stress and transport activity and indicate novel biological processes in Chinese wild grapevine. Eleven proteins involved in phenylpropanoid metabolism and stilbene synthesis were differently expressed between Danfeng-2 and Cabernet Sauvignon at the veraison stage of berry development. These findings suggest that Chinese wild V. quinquangularis accession Danfeng-2 is an extremely important genetic resource for grape breeding and especially for increasing the resveratrol content of European grape cultivars for disease resistance and for improved human nutritional benefits.
Collapse
Affiliation(s)
- Ruimin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Dan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Lan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
| |
Collapse
|
5
|
Mutawila C, Stander C, Halleen F, Vivier MA, Mostert L. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes. PROTOPLASMA 2017; 254:863-879. [PMID: 27352313 DOI: 10.1007/s00709-016-0997-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/13/2016] [Indexed: 05/07/2023]
Abstract
Cell suspension cultures of Vitis vinifera cv. Dauphine berries were used to study the response to the vascular pathogen, Eutypa lata, in comparison with a biological control agent, Trichoderma atroviride, that was previously shown to be effective in pruning wound protection. The expression of genes coding for enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins was profiled over a 48-h period using quantitative reverse transcriptase PCR. The cell cultures responded to elicitors of both fungi with a hypersensitive-like response that lead to a decrease in cell viability. Similar genes were triggered by both the pathogen and biocontrol agent, but the timing patterns and magnitude of expression was dependent on the specific fungal elicitor. Culture filtrates of both fungi caused upregulation of phenylalanine ammonia-lyase (PAL), 4-coumaroyl Co-A ligase (CCo-A) and stilbene synthase (STS), and a downregulation of chalcone synthase (CHS) genes. The pathogen filtrate caused a biphasic pattern in the upregulation of PAL and STS genes which was not observed in cells treated with filtrates of the biocontrol agent. Analytical assays showed significantly higher total phenolic content and chitinolytic enzyme activity in the cell cultures treated with the T. atroviride filtrate compared to the pathogen filtrate. These results corresponded well to the higher expression of PAL and chitinase class IV genes. The response of the cell cultures to T. atroviride filtrate provides support for the notion that the wound protection by the biocontrol agent at least partially relies on the induction of grapevine resistance mechanisms.
Collapse
Affiliation(s)
- C Mutawila
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - C Stander
- Institute of Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - F Halleen
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbji, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - M A Vivier
- Institute of Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - L Mostert
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
6
|
Cuadros-Inostroza A, Ruíz-Lara S, González E, Eckardt A, Willmitzer L, Peña-Cortés H. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites. Metabolomics 2016; 12:39. [PMID: 26848290 PMCID: PMC4723623 DOI: 10.1007/s11306-015-0927-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/10/2015] [Indexed: 11/06/2022]
Abstract
Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.
Collapse
Affiliation(s)
- Alvaro Cuadros-Inostroza
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- MetasysX, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Simón Ruíz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Enrique González
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Aenne Eckardt
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hugo Peña-Cortés
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
7
|
Chen YY, Zhang ZH, Zhong CY, Song XM, Lin QH, Huang CM, Huang RH, Chen W. Functional analysis of differentially expressed proteins in Chinese bayberry ( Myrica rubra Sieb. et Zucc.) fruits during ripening. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Alvarez S, Naldrett MJ. Plant Structure and Specificity - Challenges and Sample Preparation Considerations for Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:63-81. [PMID: 27975213 DOI: 10.1007/978-3-319-41448-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plants are considered as a simple structured organism when compared to humans and other vertebrates. The number of organs and tissue types is very limited. Instead the origin of the complexity comes from the high number and variety of plant species that exist, with >300,000 compared to 5000 in mammals. Proteomics, defined as the large-scale study of the proteins present in a tissue, cell or cellular compartment at a defined time point, was introduced in 1994. However, the first publications reported in the plant proteomics field only appeared at the beginning of the twenty-first century. Since these early years, the increase of proteomic studies in plants has only followed a linear trend. The main reason for this stems from the challenges specific to studying plants, those of protein extraction from cells with variously strengthened cellulosic cell walls, and a high abundance of interfering compounds, such as phenolic compounds and pigments located in plastids throughout the plant. Indeed, the heterogeneity between different organs and tissue types, between species and different developmental stages, requires the use of optimized plant protein extraction methods as described in this section. The second bottleneck of plant proteomics, which will not be discussed or reviewed here, is the lack of genomic information. Without sequence databases of the >300,000 species, proteomic studies of plants, especially of those that are not considered economically relevant, are impossible to accomplish.
Collapse
Affiliation(s)
- Sophie Alvarez
- Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA.
| | - Michael J Naldrett
- Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE, 68588, USA
| |
Collapse
|
9
|
Ayenew B, Degu A, Manela N, Perl A, Shamir MO, Fait A. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:728. [PMID: 26442042 PMCID: PMC4585150 DOI: 10.3389/fpls.2015.00728] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/28/2015] [Indexed: 05/22/2023]
Abstract
As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m(-2)s(-1)), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m(-2)s(-1) under controlled condition. When LC-MS and GC-MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. HL enhanced polyphenol metabolism while HT and its combination with HL induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1, and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under HL suggests enhanced fueling of the precursor toward the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3',5' hydroxylase and flavonoid 3' hydroxylase was observed under high light (HL) and combined cues which were accompanied by characteristic metabolite profiles. HT decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT, and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses.
Collapse
Affiliation(s)
- Biruk Ayenew
- The Albert Katz International School for Desert Studies, Ben-Gurion University of the NegevBeer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the NegevSede Boqer, Israel
| | - Asfaw Degu
- The Albert Katz International School for Desert Studies, Ben-Gurion University of the NegevBeer-Sheva, Israel
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the NegevSede Boqer, Israel
| | - Neta Manela
- Department of Ornamental Horticulture, Agricultural Research Organization – Volcani CenterBet-Dagan, Israel
| | - Avichai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization – Volcani CenterBet-Dagan, Israel
| | - Michal O. Shamir
- Department of Ornamental Horticulture, Agricultural Research Organization – Volcani CenterBet-Dagan, Israel
| | - Aaron Fait
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the NegevSede Boqer, Israel
| |
Collapse
|
10
|
George IS, Pascovici D, Mirzaei M, Haynes PA. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism. Proteomics 2015; 15:3048-60. [PMID: 25959233 DOI: 10.1002/pmic.201400541] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/13/2015] [Accepted: 05/07/2015] [Indexed: 11/07/2022]
Abstract
Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977).
Collapse
Affiliation(s)
- Iniga S George
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Australia
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Australia
| |
Collapse
|
11
|
Van Sluyter SC, McRae JM, Falconer RJ, Smith PA, Bacic A, Waters EJ, Marangon M. Wine protein haze: mechanisms of formation and advances in prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4020-4030. [PMID: 25847216 DOI: 10.1021/acs.jafc.5b00047] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein haze is an aesthetic problem in white wines that can be prevented by removing the grape proteins that have survived the winemaking process. The haze-forming proteins are grape pathogenesis-related proteins that are highly stable during winemaking, but some of them precipitate over time and with elevated temperatures. Protein removal is currently achieved by bentonite addition, an inefficient process that can lead to higher costs and quality losses in winemaking. The development of more efficient processes for protein removal and haze prevention requires understanding the mechanisms such as the main drivers of protein instability and the impacts of various wine matrix components on haze formation. This review covers recent developments in wine protein instability and removal and proposes a revised mechanism of protein haze formation.
Collapse
Affiliation(s)
- Steven C Van Sluyter
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- §School of BioSciences and the Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
- #Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jacqui M McRae
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
| | - Robert J Falconer
- ΔDepartment of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield S1 3JD, England
| | - Paul A Smith
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
| | - Antony Bacic
- §School of BioSciences and the Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth J Waters
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- ⊥Australian Grape and Wine Authority, P.O. Box 2733, Adelaide, South Australia 5000, Australia
| | - Matteo Marangon
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- ΠPlumpton College, Ditchling Road, Nr Lewes, East Sussex BN7 3AE, England
| |
Collapse
|
12
|
Liu GT, Ma L, Duan W, Wang BC, Li JH, Xu HG, Yan XQ, Yan BF, Li SH, Wang LJ. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC PLANT BIOLOGY 2014; 14:110. [PMID: 24774513 PMCID: PMC4108046 DOI: 10.1186/1471-2229-14-110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND High temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C. RESULTS High temperature increased the concentrations of TBARS and inhibited electronic transport in photosynthesis apparatus, indicating that grape leaves were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. One hundred and seventy-four proteins were differentially expressed under heat stress and/or during the recovery phase, in comparison to unstressed controls, respectively. Stress and recovery conditions shared 42 proteins, while 113 and 103 proteins were respectively identified under heat stress and recovery conditions alone. Based on MapMan ontology, functional categories for these dysregulated proteins included mainly photosynthesis (about 20%), proteins (13%), and stress (8%). The subcellular localization using TargetP showed most proteins were located in the chloroplasts (34%), secretory pathways (8%) and mitochondrion (3%). CONCLUSION On the basis of these findings, we proposed that some proteins related to electron transport chain of photosynthesis, antioxidant enzymes, HSPs and other stress response proteins, and glycolysis may play key roles in enhancing grapevine adaptation to and recovery capacity from heat stress. These results provide a better understanding of the proteins involved in, and mechanisms of thermotolerance in grapevines.
Collapse
Affiliation(s)
- Guo-Tian Liu
- Key laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
- University of China Academy of Sciences, Beijing 100049, P. R., China
| | - Ling Ma
- Key laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
- University of China Academy of Sciences, Beijing 100049, P. R., China
| | - Wei Duan
- Key laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
| | - Ji-Hu Li
- Key laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
- University of China Academy of Sciences, Beijing 100049, P. R., China
| | - Hong-Guo Xu
- Key laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
| | - Xue-Qing Yan
- Beijing Computing Center, Beijing 100094, P. R. China
| | - Bo-Fang Yan
- Key laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
- University of China Academy of Sciences, Beijing 100049, P. R., China
| | - Shao-Hua Li
- Key laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
- Key laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botany Garden, Chinese Academy of Sciences, Wuhan 430074, P. R., China
| | - Li-Jun Wang
- Key laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R., China
| |
Collapse
|
13
|
Ferri M, Franceschetti M, Naldrett MJ, Saalbach G, Tassoni A. Effects of chitosan on the protein profile of grape cell culture subcellular fractions. Electrophoresis 2014; 35:1685-92. [DOI: 10.1002/elps.201300624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/06/2014] [Accepted: 02/24/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Maura Ferri
- Department of Biological, Geological and Environmental Sciences; University of Bologna; Bologna Italy
| | - Marina Franceschetti
- Department of Biological, Geological and Environmental Sciences; University of Bologna; Bologna Italy
| | - Michael J. Naldrett
- Department of Biological Chemistry, Proteomics Facility, John Innes Centre; Norwich Research Park; Norwich UK
| | - Gerhard Saalbach
- Department of Biological Chemistry, Proteomics Facility, John Innes Centre; Norwich Research Park; Norwich UK
| | - Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
14
|
D'Ambrosio C, Arena S, Rocco M, Verrillo F, Novi G, Viscosi V, Marra M, Scaloni A. Proteomic analysis of apricot fruit during ripening. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Hu R, Zhou P, Peng YB, Xu X, Ma J, Liu Q, Zhang L, Wen XD, Qi LW, Gao N, Li P. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PLoS One 2012; 7:e39664. [PMID: 22768104 PMCID: PMC3387266 DOI: 10.1371/journal.pone.0039664] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 05/25/2012] [Indexed: 11/19/2022] Open
Abstract
6-Shogaol is an active compound isolated from Ginger (Zingiber officinale Rosc). In this work, we demonstrated that 6-shogaol induces apoptosis in human hepatocellular carcinoma cells in relation to caspase activation and endoplasmic reticulum (ER) stress signaling. Proteomic analysis revealed that ER stress was accompanied by 6-shogaol-induced apoptosis in hepatocellular carcinoma cells. 6-shogaol affected the ER stress signaling by regulating unfolded protein response (UPR) sensor PERK and its downstream target eIF2α. However, the effect on the other two UPR sensors IRE1 and ATF6 was not obvious. In prolonged ER stress, 6-shogaol inhibited the phosphorylation of eIF2α and triggered apoptosis in SMMC-7721 cells. Salubrinal, an activator of the PERK/eIF2α pathway, strikingly enhanced the phosphorylation of eIF2α in SMMC-7721 cells with no toxicity. However, combined treatment with 6-shogaol and salubrinal resulted in significantly increase of apoptosis and dephosphorylation of eIF2α. Overexpression of eIF2α prevented 6-shogaol-mediated apoptosis in SMMC-7721 cells, whereas inhibition of eIF2α by small interfering RNA markedly enhanced 6-shogaol-mediated cell death. Furthermore, 6-shogaol-mediated inhibition of tumor growth of mouse SMMC-7721 xenograft was associated with induction of apoptosis, activation of caspase-3, and inactivation of eIF2α. Altogether our results indicate that the PERK/eIF2α pathway plays an important role in 6-shogaol-mediated ER stress and apoptosis in SMMC-7721 cells in vitro and in vivo.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yong-Bo Peng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiang Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiao-Dong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ning Gao
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical University, Chongqing, China
- * E-mail: (NG); (PL)
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- * E-mail: (NG); (PL)
| |
Collapse
|