1
|
Root-Bernstein R. Biased, Bitopic, Opioid-Adrenergic Tethered Compounds May Improve Specificity, Lower Dosage and Enhance Agonist or Antagonist Function with Reduced Risk of Tolerance and Addiction. Pharmaceuticals (Basel) 2022; 15:214. [PMID: 35215326 PMCID: PMC8876737 DOI: 10.3390/ph15020214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/03/2023] Open
Abstract
This paper proposes the design of combination opioid-adrenergic tethered compounds to enhance efficacy and specificity, lower dosage, increase duration of activity, decrease side effects, and reduce risk of developing tolerance and/or addiction. Combinations of adrenergic and opioid drugs are sometimes used to improve analgesia, decrease opioid doses required to achieve analgesia, and to prolong the duration of analgesia. Recent mechanistic research suggests that these enhanced functions result from an allosteric adrenergic binding site on opioid receptors and, conversely, an allosteric opioid binding site on adrenergic receptors. Dual occupancy of the receptors maintains the receptors in their high affinity, most active states; drops the concentration of ligand required for full activity; and prevents downregulation and internalization of the receptors, thus inhibiting tolerance to the drugs. Activation of both opioid and adrenergic receptors also enhances heterodimerization of the receptors, additionally improving each drug's efficacy. Tethering adrenergic drugs to opioids could produce new drug candidates with highly desirable features. Constraints-such as the locations of the opioid binding sites on adrenergic receptors and adrenergic binding sites on opioid receptors, length of tethers that must govern the design of such novel compounds, and types of tethers-are described and examples of possible structures provided.
Collapse
|
2
|
Abstract
Vitamins are essential micronutrients with key roles in many biological pathways relevant to sepsis. Some of these relevant biological mechanisms include antioxidant and anti-inflammatory effects, protein and hormone synthesis, energy generation, and regulation of gene transcription. Moreover, relative vitamin deficiencies in plasma are common during sepsis and vitamin therapy has been associated with improved outcomes in some adult and pediatric studies. High-dose intravenous vitamin C has been the vitamin therapy most extensively studied in adult patients with sepsis and septic shock. This includes three randomized control trials (RCTs) as monotherapy with a total of 219 patients showing significant reduction in organ dysfunction and lower mortality when compared to placebo, and five RCTs as a combination therapy with thiamine and hydrocortisone with a total of 1134 patients showing no difference in clinical outcomes. Likewise, the evidence for the role of other vitamins in sepsis remains mixed. In this narrative review, we present the preclinical, clinical, and safety evidence of the most studied vitamins in sepsis, including vitamin C, thiamine (i.e., vitamin B1), and vitamin D. We also present the relevant evidence of the other vitamins that have been studied in sepsis and critical illness in both children and adults, including vitamins A, B2, B6, B12, and E. IMPACT: Vitamins are key effectors in many biological processes relevant to sepsis. We present the preclinical, clinical, and safety evidence of the most studied vitamins in pediatric sepsis. Designing response-adaptive platform trials may help fill in knowledge gaps regarding vitamin use for critical illness and association with clinical outcomes.
Collapse
|
3
|
Thiamine, Ascorbic Acid, and Hydrocortisone As a Metabolic Resuscitation Cocktail in Sepsis: A Meta-Analysis of Randomized Controlled Trials With Trial Sequential Analysis. Crit Care Med 2021; 49:2112-2120. [PMID: 34582409 DOI: 10.1097/ccm.0000000000005262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Sepsis is a common condition in the ICU. Despite much research, its prognosis remains poor. In 2017, a retrospective before/after study reported promising results using a combination of thiamine, ascorbic acid, and hydrocortisone called "metabolic resuscitation cocktail" and several randomized controlled trials assessing its effectiveness were performed. DESIGN We conducted a systematic review and meta-analysis of randomized controlled trials in septic ICU patients to assess the effects of this combination therapy. SETTING PubMed, Embase, and the Cochrane library databases were searched from inception to March of 2021. Data were extracted independently by two authors. The main outcome was the change in Sequential Organ Failure Assessment score within 72 hours. Secondary outcomes included renal composite endpoints (acute kidney injury) Kidney Disease - Improving Global Outcome organization stage 3 or need for renal replacement therapy, vasopressor duration, and 28-day mortality. SUBJECTS We included randomized controlled trials with patients admitted to the ICU with sepsis or septic shock. INTERVENTION The trials compared a combination of thiamine, ascorbic acid, and hydrocortisone to standard care or placebo in patients admitted to ICU with sepsis or septic shock. MEASUREMENTS AND MAIN RESULTS We included eight randomized controlled trials (n = 1,335 patients). Within 72 hours, the median of mean improvement was -1.8 and -3.2 in the control and intervention groups, respectively (eight randomized controlled trials, n = 1,253 patients); weighted mean difference -0.82 (95% CI, -1.15 to -0.48). Data were homogeneous and the funnel plot did not suggest any publication bias. Duration of vasopressor requirement was significantly reduced in the intervention group (six randomized controlled trials). There was no evidence of a difference regarding the ICU mortality and the renal composite outcome (acute kidney injury KDIGO 3 or need for renal replacement therapy, seven randomized controlled trials). CONCLUSIONS Metabolic resuscitation cocktail administrated in ICU septic patients improves change in Sequential Organ Failure Assessment score within 72 hours. However, this improvement is modest and its clinical relevance is questionable. The impact on renal failure and mortality remains unclear.
Collapse
|
4
|
Root-Bernstein R, Churchill B. Co-Evolution of Opioid and Adrenergic Ligands and Receptors: Shared, Complementary Modules Explain Evolution of Functional Interactions and Suggest Novel Engineering Possibilities. Life (Basel) 2021; 11:life11111217. [PMID: 34833093 PMCID: PMC8623292 DOI: 10.3390/life11111217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between opioid and adrenergic receptors is well-characterized and involves second messenger systems, the formation of receptor heterodimers, and the presence of extracellular allosteric binding regions for the complementary ligand; however, the evolutionary origins of these interactions have not been investigated. We propose that opioid and adrenergic ligands and receptors co-evolved from a common set of modular precursors so that they share binding functions. We demonstrate the plausibility of this hypothesis through a review of experimental evidence for molecularly complementary modules and report unexpected homologies between the two receptor types. Briefly, opioids form homodimers also bind adrenergic compounds; opioids bind to conserved extracellular regions of adrenergic receptors while adrenergic compounds bind to conserved extracellular regions of opioid receptors; opioid-like modules appear in both sets of receptors within key ligand-binding regions. Transmembrane regions associated with homodimerization of each class of receptors are also highly conserved across receptor types and implicated in heterodimerization. This conservation of multiple functional modules suggests opioid–adrenergic ligand and receptor co-evolution and provides mechanisms for explaining the evolution of their crosstalk. These modules also suggest the structure of a primordial receptor, providing clues for engineering receptor functions.
Collapse
|
5
|
Prasad N, Grossestreuer AV, Meyer NJ, Perman SM, Mikkelsen ME, Hollander J, Gaieski DF. The relationship between vitamin C or thiamine levels and outcomes for severe sepsis patients admitted to the ICU. Sci Rep 2021; 11:15114. [PMID: 34302025 PMCID: PMC8302569 DOI: 10.1038/s41598-021-94473-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Preliminary data have produced conflicting results regarding whether initial vitamin C levels in patients with severe sepsis correlate with mortality outcomes. We hypothesized that low plasma ascorbic acid or thiamine levels in severe sepsis patients admitted from the Emergency Department (ED) to the Intensive Care Unit (ICU) would be associated with increased mortality and an increased incidence of shock. Retrospective analysis of a prospective database of severe sepsis patients admitted to the ICU at an urban, academic medical center. Ascorbic acid and thiamine levels were analyzed in relation to survivors vs. non-survivors and shock vs. non-shock patients. 235 patients were included; mean age, 59.4 years ± 16.8 years; male, 128 (54.5%); in-hospital mortality, 16.6% (39/235); mean APACHE3 score, 61.8 ± 22.8; mean ascorbic acid level (reference range 0.40–2.10 mg/dL), 0.23 mg/dL (95% CI 0.07–4.02); and the mean thiamine level (reference range 14.6–29.5 nmol/L), 6.0 nmol/L (95% CI 4.0–9.5). When survivors were compared to non-survivors, survivors were more likely to be male (57.7% [113/196] vs. 38.5% [15/39]) and have lower APACHE3 scores (58.2 ± 22.6 vs. 79.9 ± 16.0). For the total cohort of 235 patients, there was no statistically significant relationship between a patient’s initial ascorbic acid or thiamine level and either survival or development of shock. In this analysis of early plasma samples from patients with severe sepsis admitted from the ED to the ICU, we found that mean ascorbic acid and thiamine levels were lower than normal range but that there was no relationship between these levels and outcomes, including 28 day mortality and development of shock.
Collapse
Affiliation(s)
- Nandan Prasad
- Department of Emergency Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, 1025 Walnut Street, Suite 300, Philadelphia, PA, 19017, USA
| | - Anne V Grossestreuer
- Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nuala J Meyer
- Division of Pulmonary Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M Perman
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark E Mikkelsen
- Division of Pulmonary Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Judd Hollander
- Department of Emergency Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, 1025 Walnut Street, Suite 300, Philadelphia, PA, 19017, USA
| | - David F Gaieski
- Department of Emergency Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, 1025 Walnut Street, Suite 300, Philadelphia, PA, 19017, USA.
| |
Collapse
|
6
|
Benarroch EE. What is the role of ascorbic acid in norepinephrine synthesis and orthostatic hypotension? Neurology 2020; 95:913-916. [DOI: 10.1212/wnl.0000000000010960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 11/15/2022] Open
|
7
|
Root-Bernstein R, Churchill B, Turke M. Glutathione and Glutathione-Like Sequences of Opioid and Aminergic Receptors Bind Ascorbic Acid, Adrenergic and Opioid Drugs Mediating Antioxidant Function: Relevance for Anesthesia and Abuse. Int J Mol Sci 2020; 21:E6230. [PMID: 32872204 PMCID: PMC7504417 DOI: 10.3390/ijms21176230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Opioids and their antagonists alter vitamin C metabolism. Morphine binds to glutathione (l-γ-glutamyl-l-cysteinyl-glycine), an intracellular ascorbic acid recycling molecule with a wide range of additional activities. The morphine metabolite morphinone reacts with glutathione to form a covalent adduct that is then excreted in urine. Morphine also binds to adrenergic and histaminergic receptors in their extracellular loop regions, enhancing aminergic agonist activity. The first and second extracellular loops of adrenergic and histaminergic receptors are, like glutathione, characterized by the presence of cysteines and/or methionines, and recycle ascorbic acid with similar efficiency. Conversely, adrenergic drugs bind to extracellular loops of opioid receptors, enhancing their activity. These observations suggest functional interactions among opioids and amines, their receptors, and glutathione. We therefore explored the relative binding affinities of ascorbic acid, dehydroascorbic acid, opioid and adrenergic compounds, as well as various control compounds, to glutathione and glutathione-like peptides derived from the extracellular loop regions of the human beta 2-adrenergic, dopamine D1, histamine H1, and mu opioid receptors, as well as controls. Some cysteine-containing peptides derived from these receptors do bind ascorbic acid and/or dehydroascorbic acid and the same peptides generally bind opioid compounds. Glutathione binds not only morphine but also naloxone, methadone, and methionine enkephalin. Some adrenergic drugs also bind to glutathione and glutathione-like receptor regions. These sets of interactions provide a novel basis for understanding some ways that adrenergic, opioid and antioxidant systems interact during anesthesia and drug abuse and may have utility for understanding drug interactions.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (B.C.); (M.T.)
| | - Beth Churchill
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (B.C.); (M.T.)
| | - Miah Turke
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (B.C.); (M.T.)
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Gordon DS, Rudinsky AJ, Guillaumin J, Parker VJ, Creighton KJ. Vitamin C in Health and Disease: A Companion Animal Focus. Top Companion Anim Med 2020; 39:100432. [PMID: 32482285 DOI: 10.1016/j.tcam.2020.100432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Vitamin C is synthesized in the liver in most species, including dogs and cats, and is widely distributed through body tissues. Vitamin C has an important physiologic role in numerous metabolic functions including tissue growth and maintenance, amelioration of oxidative stress, and immune regulation. It is also a co-factor in the production of important substances such as catecholamines and vasopressin. Decreased vitamin C levels have been documented in a wide variety of diseases, and in critically ill human patients may be associated with increased severity of disease and decreased survival. Intravenous supplementation with vitamin C has been proposed as a potential life-saving treatment in conditions such as septic shock, and results of small some human trials are promising. Data in companion in animals is very limited, but the possible benefits and , seemingly low risk of adverse effects , and the low cost of this treatment make vitamin C therapy a promising area of future investigation in critically ill dogs and cats.
Collapse
Affiliation(s)
- Daniel S Gordon
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA
| | - Adam J Rudinsky
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA
| | - Julien Guillaumin
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA
| | - Valerie J Parker
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA
| | - Karina J Creighton
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus OH, USA.
| |
Collapse
|
9
|
Root-Bernstein R, Churchill B, Turke M, Subhramanyam UKT, Labahn J. Mutual Enhancement of Opioid and Adrenergic Receptors by Combinations of Opioids and Adrenergic Ligands Is Reflected in Molecular Complementarity of Ligands: Drug Development Possibilities. Int J Mol Sci 2019; 20:ijms20174137. [PMID: 31450631 PMCID: PMC6747318 DOI: 10.3390/ijms20174137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
Crosstalk between opioid and adrenergic receptors is well characterized and due to interactions between second messenger systems, formation of receptor heterodimers, and extracellular allosteric binding regions. Both classes of receptors bind both sets of ligands. We propose here that receptor crosstalk may be mirrored in ligand complementarity. We demonstrate that opioids bind to adrenergic compounds with micromolar affinities. Additionally, adrenergic compounds bind with micromolar affinities to extracellular loops of opioid receptors while opioids bind to extracellular loops of adrenergic receptors. Thus, each compound type can bind to the complementary receptor, enhancing the activity of the other compound type through an allosteric mechanism. Screening for ligand complementarity may permit the identification of other mutually-enhancing sets of compounds as well as the design of novel combination drugs or tethered compounds with improved duration and specificity of action.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, 567 Wilson Road, Room 2201 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA.
| | - Beth Churchill
- Department of Physiology, 567 Wilson Road, Room 2201 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA
| | - Miah Turke
- Department of Physiology, 567 Wilson Road, Room 2201 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA
| | - Udaya K Tiruttani Subhramanyam
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- Forschungszentrum Juelich GmbH, ICS-6, 52425 Juelich, Germany
| | - Joerg Labahn
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
- Forschungszentrum Juelich GmbH, ICS-6, 52425 Juelich, Germany
| |
Collapse
|
10
|
Calzetta L, Crupi R, Roncada P, Pistocchini E, di Cave D, Rossi I, Cito G, Jacobson GA, Britti D. Clinical efficacy of bronchodilators in equine asthma: Looking for minimal important difference. Equine Vet J 2019; 52:305-313. [PMID: 31132169 DOI: 10.1111/evj.13137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Airway obstruction is the main trait of severe equine asthma that affects respiratory function and elicits detrimental effects on clinical presentation. Only few and underpowered clinical studies have investigated the impact of improvement in lung function induced by bronchodilators on the clinical signs of asthma-affected horses. OBJECTIVES To identify the minimal important difference (MID) in lung function elicited by bronchodilator leading to a meaningful improvement in clinical signs. STUDY DESIGN Pairwise meta-analysis and meta-regression analysis. METHODS Literature searches were performed for studies that investigated the effect of bronchodilator therapy on lung function and clinical condition of asthmatic horses. The relationship between the change in lung function variables and clinical score was analysed via random-effect meta-regression. One-point change of the Improved clinically Detectable Equine Asthma Scoring System (IDEASS) score was used to identify the MID. RESULTS A significant (P<0.05) relationship was found between the changes in IDEASS score and maximum change in transpulmonary pressure (ΔPplmax ) or pulmonary resistance (RL ). Since only the model resulting for RL passed through the origin (Y-intercept when X = 0: -0.31, 95% CI -0.75 to 0.14), this variable was used to identify the MID correlated with a meaningful improvement in clinical signs. The resulting MID value was a change in RL of 0.63 cm H2 O/L/s (95% CI 0.33-0.94), representing the slope of meta-regression model (high quality of evidence). MAIN LIMITATIONS No long-term studies investigated the effect of bronchodilator agents on both lung function and clinical signs in asthmatic horses. CONCLUSIONS In conclusion, bronchodilator pharmacotherapy in equine asthma elicits clinically meaningful effect when RL increases ≥1 cm H2 O/L/s, a value indicating the MID. Assessing the MID based on change in RL may improve the quality of evidence and the scientific impact of future clinical trials as it extends beyond the simple, and limiting, evaluation of statistical significance.
Collapse
Affiliation(s)
- L Calzetta
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - R Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - P Roncada
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - E Pistocchini
- Unit of Laboratory Medicine, Veterinary Hospital Gregorio VII, Rome, Italy
| | - D di Cave
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - I Rossi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - G Cito
- UOC Tutela Igienico Sanitaria degli Alimenti di Origine Animale, ASL Roma 2, Rome, Italy
| | - G A Jacobson
- School of Medicine, University of Tasmania, Hobart, Australia
| | - D Britti
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
11
|
|
12
|
Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"? Int J Mol Sci 2018; 19:ijms19010272. [PMID: 29342106 PMCID: PMC5796218 DOI: 10.3390/ijms19010272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 11/16/2022] Open
Abstract
Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.
Collapse
|
13
|
Root-Bernstein R, Fewins J, Rhinesmith T, Koch A, Dillon PF. Enzymatic recycling of ascorbic acid from dehydroascorbic acid by glutathione-like peptides in the extracellular loops of aminergic G-protein coupled receptors. J Mol Recognit 2016; 29:296-302. [PMID: 26749062 DOI: 10.1002/jmr.2530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/09/2015] [Accepted: 11/28/2015] [Indexed: 11/11/2022]
Abstract
The intracellular recycling of ascorbic acid from dehydroascorbic acid by the glutathione-glutathione reductase system has been well-characterized. We propose that extracellular recycling of ascorbic acid is performed in a similar manner by cysteine-rich, glutathione-like regions of the first and second extracellular loops of some aminergic receptors including adrenergic, histaminergic, and dopaminergic receptors. Previous research in our laboratory demonstrated that ascorbic acid binds to these receptors at a site on their first or second extracellular loops, significantly enhancing ligand activity, and apparently recycling hundreds of times their own concentration of ascorbate in an enzymatic fashion. In this study, we have synthesized 25 peptides from the first and second extracellular loops of aminergic and insulin receptors and compared them directly to glutathione for their ability to prevent the oxidation of ascorbate and to regenerate ascorbate from dehydroascorbic acid. Peptide sequences that mimic glutathione in containing a cysteine and a glutamic acid-like amino acid also mimic glutathione activity in effects and in kinetics. Some (but not all) peptide sequences that contain one or more methionines instead of cysteine can significantly retard the oxidation of ascorbic acid but do not recycle it from dehydroascorbate into ascorbate. Peptides lacking both cysteines and methionines uniformly failed to alter significantly ascorbate or dehydroascorbate oxidation or reduction. We believe that this is the first proof that receptors may carry out both ligand binding and enzymatic activity extracellularly. Our results suggest the existence of a previously unknown extracellular system for recycling ascorbate. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Jenna Fewins
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tyler Rhinesmith
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ariana Koch
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Patrick F Dillon
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
Carr AC, Shaw GM, Fowler AA, Natarajan R. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:418. [PMID: 26612352 PMCID: PMC4661979 DOI: 10.1186/s13054-015-1131-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe systemic inflammatory response to infection results in severe sepsis and septic shock, which are the leading causes of death in critically ill patients. Septic shock is characterised by refractory hypotension and is typically managed by fluid resuscitation and administration of catecholamine vasopressors such as norepinephrine. Vasopressin can also be administered to raise mean arterial pressure or decrease the norepinephrine dose. Endogenous norepinephrine and vasopressin are synthesised by the copper-containing enzymes dopamine β-hydroxylase and peptidylglycine α-amidating monooxygenase, respectively. Both of these enzymes require ascorbate as a cofactor for optimal activity. Patients with severe sepsis present with hypovitaminosis C, and pre-clinical and clinical studies have indicated that administration of high-dose ascorbate decreases the levels of pro-inflammatory biomarkers, attenuates organ dysfunction and improves haemodynamic parameters. It is conceivable that administration of ascorbate to septic patients with hypovitaminosis C could improve endogenous vasopressor synthesis and thus ameliorate the requirement for exogenously administered vasopressors. Ascorbate-dependent vasopressor synthesis represents a currently underexplored biochemical mechanism by which ascorbate could act as an adjuvant therapy for severe sepsis and septic shock.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Geoffrey M Shaw
- Department of Intensive Care Medicine, Christchurch Hospital, Private Bag 4710, Christchurch, 8011, New Zealand.
| | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Box 980050, Richmond, VA, 23298, USA.
| | - Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Box 980050, Richmond, VA, 23298, USA.
| |
Collapse
|
15
|
Metabolomic profiling of asthma and chronic obstructive pulmonary disease: A pilot study differentiating diseases. J Allergy Clin Immunol 2015; 136:571-580.e3. [PMID: 26152317 DOI: 10.1016/j.jaci.2015.05.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Differentiating asthma from other causes of chronic airflow limitation, such as chronic obstructive pulmonary disease (COPD), can be difficult in a typical outpatient setting. The inflammation of asthma typically is different than that of COPD, and the degree of inflammation and cellular damage varies with asthma severity. Metabolomics is the study of molecules created by cellular metabolic pathways. OBJECTIVES We hypothesized that the metabolic activity of adults with asthma would differ from that of adults with COPD. Furthermore, we hypothesized that nuclear magnetic resonance spectroscopy (NMR) would measure such differences in urine samples. METHODS Clinical and urine-based NMR data were collected on adults meeting the criteria of asthma and COPD before and after an exacerbation (n = 133 and 38, respectively) and from patients with stable asthma or COPD (n = 54 and 23, respectively). Partial least-squares discriminant analysis was performed on the NMR data to create models of separation (86 metabolites were measured per urine sample). Some subjects' metabolomic data were withheld from modeling to be run blindly to determine diagnostic accuracy. RESULTS Partial least-squares discriminant analysis of the urine NMR data found unique differences in select metabolites between patients with asthma and those with COPD seen in the emergency department and even in follow-up after exacerbation. By using these select metabolomic profiles, the model could correctly diagnose blinded asthma and COPD with greater than 90% accuracy. CONCLUSION This is the first report showing that metabolomic analysis of human urine samples could become a useful clinical tool to differentiate asthma from COPD.
Collapse
|
16
|
Root-Bernstein R, Dillon PF. A common molecular motif characterizes extracellular allosteric enhancers of GPCR aminergic receptors and suggests enhancer mechanism of action. Curr Med Chem 2015; 21:3673-86. [PMID: 25174918 PMCID: PMC4266041 DOI: 10.2174/0929867321666140826120604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/08/2014] [Accepted: 08/22/2014] [Indexed: 11/22/2022]
Abstract
Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers.
Collapse
Affiliation(s)
| | - Patrick F Dillon
- Department of Physiology, Michigan State University, East Lansing, MI 48824 USA.
| |
Collapse
|
17
|
Zipursky JS, Alhashemi A, Juurlink D. A rare presentation of an ancient disease: scurvy presenting as orthostatic hypotension. BMJ Case Rep 2014; 2014:bcr-2013-201982. [PMID: 24859547 DOI: 10.1136/bcr-2013-201982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 49-year-old man presented to hospital with severe orthostatic hypotension, gingival dysplasia and a purpuric rash involving his extremities. The orthostatic hypotension failed to respond to fluids and, on the basis of physical examination and dietary history, the patient was given a preliminary diagnosis of scurvy (ascorbic acid deficiency). Serum ascorbic acid levels were undetectable and the orthostasis was resolved within 24 h of ascorbic acid replacement. The pathogenesis of orthostatic hypotension in the setting of scurvy appears to involve impaired catecholamine synthesis and attenuated vasomotor response to α-adrenergic stimulation. We believe that this case describes a rare presentation of scurvy and highlights a previously under-reported connection between scurvy and vasomotor instability.
Collapse
Affiliation(s)
| | - Ahmad Alhashemi
- Department of Internal Medicine, University of Toronto, Toronto, Canada
| | - David Juurlink
- General Internal Medicine and Clinical Pharmacology, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Root-Bernstein R, Podufaly A, Dillon PF. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro. Front Endocrinol (Lausanne) 2014; 5:118. [PMID: 25101056 PMCID: PMC4104309 DOI: 10.3389/fendo.2014.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
RATIONALE Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. OBJECTIVES To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. METHODS Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. MEASUREMENTS Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. MAIN RESULTS Estradiol bound to INS with a K d of 12 × 10(-9) M and to the IR with a K d of 24 × 10(-9) M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. CONCLUSION Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI, USA
- *Correspondence: Robert Root-Bernstein, Department of Physiology, Michigan State University, 2174 Biomedical and Physical Science Building, East Lansing, MI 48824, USA e-mail:
| | - Abigail Podufaly
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Patrick F. Dillon
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Doeing DC, Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol (1985) 2013; 114:834-43. [PMID: 23305987 PMCID: PMC3633438 DOI: 10.1152/japplphysiol.00950.2012] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma.
Collapse
Affiliation(s)
- Diana C Doeing
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
20
|
Root-Bernstein R. A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc Chem Res 2012; 45:2169-77. [PMID: 22369101 DOI: 10.1021/ar200209k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Albert Szent-Gyorgyi once defined discovery as seeing what everyone else sees and thinking what no one else thinks. I often find that phenomena that are obvious to other people are not obvious to me. Molecular complementarity is one of these phenomena: while rare among any random set of compounds, it is ubiquitous in living systems. Because every molecule in a living system binds more or less specifically to several others, we now speak of "interactomes". What explains the ubiquity of molecular complementarity in living systems? What might such an explanation reveal about the chemical origins of life and the principles that have governed its evolution? Beyond this, what might complementarity tell us about the optimization of integrated systems in general? My research combines theoretical and experimental approaches to molecular complementarity relating to evolution from prebiotic chemical systems to superorganismal interactions. Experimentally, I have characterized complementarity involving specific binding between small molecules and explored how these small-molecule modules have been incorporated into macromolecular systems such as receptors and transporters. Several general principles have emerged from this research. Molecules that bind to each other almost always alter each other's physiological effects; and conversely, molecules that have antagonistic or synergistic physiological effects almost always bind to each other. This principle suggests a chemical link between biological structure and function. Secondly, modern biological systems contain an embedded molecular paleontology based on complementarity that can reveal their chemical origins. This molecular paleontology is often manifested through modules involving small, molecularly complementary subunits that are built into modern macromolecular structures such as receptors and transporters. A third principle is that complementary modules are conserved and repurposed at every stage of evolution. Molecular complementarity plays critical roles in the evolution of chemical systems and resolves a significant number of outstanding problems in the emergence of complex systems. All physical and mathematical models of organization within complex systems rely upon nonrandom linkage between components. Molecular complementarity provides a naturally occurring nonrandom linker. More importantly, the formation of hierarchically organized stable modules vastly improves the probability of achieving self-organization, and molecular complementarity provides a mechanism by which hierarchically organized stable modules can form. Finally, modularity based on molecular complementarity produces a means for storing and replicating information. Linear replicating molecules such as DNA or RNA are not required to transmit information from one generation of compounds to the next: compositional replication is as ubiquitous in living systems as genetic replication and is equally important to its functions. Chemical systems composed of complementary modules mediate this compositional replication and gave rise to linear replication schemes. In sum, I propose that molecular complementarity is ubiquitous in living systems because it provides the physicochemical basis for modular, hierarchical ordering and replication necessary for the evolution of the chemical systems upon which life is based. I conjecture that complementarity more generally is an essential agent that mediates evolution at every level of organization.
Collapse
|
21
|
Agonist activation and analysis. Biophysics (Nagoya-shi) 2012. [DOI: 10.1017/cbo9781139035002.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|