1
|
de Almeida MMA, De Repentigny Y, Gagnon S, Sutton ER, Kothary R. Impact of liver-specific survival motor neuron (SMN) depletion on central nervous system and peripheral tissue pathology. eLife 2025; 13:RP99141. [PMID: 39976226 PMCID: PMC11841985 DOI: 10.7554/elife.99141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.
Collapse
Affiliation(s)
- Monique Marylin Alves de Almeida
- Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Centre for Neuromuscular Disease, University of OttawaOttawaCanada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
| | - Emma R Sutton
- Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Centre for Neuromuscular Disease, University of OttawaOttawaCanada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research InstituteOttawaCanada
- Centre for Neuromuscular Disease, University of OttawaOttawaCanada
- Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Medicine, University of OttawaOttawaCanada
| |
Collapse
|
2
|
Liu H, Chehade L, Deguise MO, De Repentigny Y, Kothary R. SMN depletion impairs skeletal muscle formation and maturation in a mouse model of SMA. Hum Mol Genet 2025; 34:21-31. [PMID: 39505369 PMCID: PMC11756284 DOI: 10.1093/hmg/ddae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by low levels of the ubiquitously expressed Survival Motor Neuron (SMN) protein, leading to progressive muscle weakness and atrophy. Skeletal muscle satellite cells play a crucial role in muscle fiber maintenance, repair, and remodelling. While the effects of SMN depletion in muscle are well documented, its precise role in satellite cell function remains largely unclear. Using the Smn2B/- mouse model, we investigated SMN-depleted satellite cell biology through single fiber culture studies. Myofibers from Smn2B/- mice were smaller in size, shorter in length, had reduced myonuclear domain size, and reduced sub-synaptic myonuclear clusters-all suggesting impaired muscle function and integrity. These changes were accompanied by a reduction in the number of myonuclei in myofibers from Smn2B/- mice across all disease stages examined. Although the number of satellite cells in myofibers was significantly reduced, those remaining retained their capacity for myogenic activation and proliferation. These findings support the idea that a dysregulated myogenic process could be occurring as early in muscle stem cells during muscle formation and maturation in SMA. Targeting those pathways could offer additional options for combinatorial therapies for SMA.
Collapse
MESH Headings
- Animals
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/metabolism
- Mice
- Disease Models, Animal
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle Development/genetics
- Survival of Motor Neuron 1 Protein/genetics
- Survival of Motor Neuron 1 Protein/metabolism
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Survival of Motor Neuron 2 Protein/genetics
- Mice, Knockout
- Humans
- Motor Neurons/metabolism
- Motor Neurons/pathology
- Cell Proliferation
Collapse
Affiliation(s)
- Hong Liu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Center for Neuromuscular Disease, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Center for Neuromuscular Disease, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
3
|
Brown SJ, Šoltić D, Synowsky SA, Shirran SL, Chilcott E, Shorrock HK, Gillingwater TH, Yáñez-Muñoz RJ, Schneider B, Bowerman M, Fuller HR. AAV9-mediated SMN gene therapy rescues cardiac desmin but not lamin A/C and elastin dysregulation in Smn2B/- spinal muscular atrophy mice. Hum Mol Genet 2023; 32:2950-2965. [PMID: 37498175 PMCID: PMC10549791 DOI: 10.1093/hmg/ddad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.
Collapse
Affiliation(s)
- Sharon J Brown
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Darija Šoltić
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Silvia A Synowsky
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews, St Andrews KY16 9ST, UK
| | - Ellie Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- School of Medicine, Keele University, Keele ST5 5BG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| |
Collapse
|
4
|
Huang YT, Crick HR, Chaytow H, van der Hoorn D, Alhindi A, Jones RA, Hector RD, Cobb SR, Gillingwater TH. Long-term muscle-specific overexpression of DOK7 in mice using AAV9-tMCK-DOK7. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:617-628. [PMID: 37637210 PMCID: PMC10457688 DOI: 10.1016/j.omtn.2023.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Neuromuscular junction (NMJ) dysfunction underlies several diseases, including congenital myasthenic syndromes (CMSs) and motor neuron disease (MND). Molecular pathways governing NMJ stability are therefore of interest from both biological and therapeutic perspectives. Muscle-specific kinase (MuSK) is necessary for the formation and maintenance of post-synaptic elements of the NMJ, and downstream of tyrosine kinases 7 (DOK7) is crucial for activation of the MuSK pathway. Overexpression of DOK7 using AAV9 has been shown to ameliorate neuromuscular pathology in pre-clinical disease models of CMS and MND. However, long-term consequences of DOK7 expression have been sparsely investigated and targeted overexpression of DOK7 in skeletal muscle yet to be established. Here, we developed and characterized a novel AAV9-DOK7 facilitating forced expression of DOK7 under a skeletal muscle-specific promoter. AAV9-tMCK-DOK7 was systemically delivered to newborn mice that were monitored over 6 months. DOK7 overexpression was restricted to skeletal muscles. Body weight, blood biochemistry, and histopathological assessments were unaffected by AAV9-tMCK-DOK7 treatment. In contrast, forced expression of DOK7 resulted in enlargement of both the pre- and post-synaptic components of the NMJ, without causing denervation. We conclude that muscle-specific DOK7 overexpression can be achieved in a safe manner, with the capacity to target NMJs in vivo.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh EH16 4SB, UK
| | - Hannah R. Crick
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh EH16 4SB, UK
| | - Helena Chaytow
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh EH16 4SB, UK
| | - Dinja van der Hoorn
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh EH16 4SB, UK
| | - Abrar Alhindi
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh EH16 4SB, UK
- Faculty of Medicine, Department of Anatomy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ross A. Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh EH16 4SB, UK
| | | | | | - Thomas H. Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh EH16 4SB, UK
| |
Collapse
|
5
|
Buettner JM, Sime Longang JK, Gerstner F, Apel KS, Blanco-Redondo B, Sowoidnich L, Janzen E, Langenhan T, Wirth B, Simon CM. Central synaptopathy is the most conserved feature of motor circuit pathology across spinal muscular atrophy mouse models. iScience 2021; 24:103376. [PMID: 34825141 PMCID: PMC8605199 DOI: 10.1016/j.isci.2021.103376] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced survival motor neuron (SMN) protein. Recently, SMN dysfunction has been linked to individual aspects of motor circuit pathology in a severe SMA mouse model. To determine whether these disease mechanisms are conserved, we directly compared the motor circuit pathology of three SMA mouse models. The severe SMNΔ7 model exhibits vast motor circuit defects, including degeneration of motor neurons, spinal excitatory synapses, and neuromuscular junctions (NMJs). In contrast, the Taiwanese model shows very mild motor neuron pathology, but early central synaptic loss. In the intermediate Smn2B/- model, strong pathology of central excitatory synapses and NMJs precedes the late onset of p53-dependent motor neuron death. These pathological events correlate with SMN-dependent splicing dysregulation of specific mRNAs. Our study provides a knowledge base for properly tailoring future studies and identifies central excitatory synaptopathy as a key feature of motor circuit pathology in SMA. Comparison of detailed motor circuit pathology across three SMA mouse models Motor circuit pathology correlates with dysregulation of specific mRNAs Motor neuron death in severe and intermediate SMA models is p53-dependent Central excitatory synaptopathy is the most conserved feature of SMA pathology
Collapse
Affiliation(s)
- Jannik M Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | | | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Katharina S Apel
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Leonie Sowoidnich
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
6
|
Meijboom KE, Volpato V, Monzón-Sandoval J, Hoolachan JM, Hammond SM, Abendroth F, de Jong OG, Hazell G, Ahlskog N, Wood MJ, Webber C, Bowerman M. Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy. JCI Insight 2021; 6:e149446. [PMID: 34236053 PMCID: PMC8410072 DOI: 10.1172/jci.insight.149446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Viola Volpato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jimena Monzón-Sandoval
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and.,MDUK Oxford Neuromuscular Centre, University of Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom.,Institute of Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Olivier G de Jong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and
| | - Matthew Ja Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and.,MDUK Oxford Neuromuscular Centre, University of Oxford, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,School of Medicine, Keele University, Staffordshire, United Kingdom.,Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| |
Collapse
|
7
|
Gollapalli K, Kim JK, Monani UR. Emerging concepts underlying selective neuromuscular dysfunction in infantile-onset spinal muscular atrophy. Neural Regen Res 2021; 16:1978-1984. [PMID: 33642371 PMCID: PMC8343306 DOI: 10.4103/1673-5374.308073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infantile-onset spinal muscular atrophy is the quintessential example of a disorder characterized by a predominantly neurodegenerative phenotype that nevertheless stems from perturbations in a housekeeping protein. Resulting from low levels of the Survival of Motor Neuron (SMN) protein, spinal muscular atrophy manifests mainly as a lower motor neuron disease. Why this is so and whether other cell types contribute to the classic spinal muscular atrophy phenotype continue to be the subject of intense investigation and are only now gaining appreciation. Yet, what is emerging is sometimes as puzzling as it is instructive, arguing for a careful re-examination of recent study outcomes, raising questions about established dogma in the field and making the case for a greater focus on milder spinal muscular atrophy models as tools to identify key mechanisms driving selective neuromuscular dysfunction in the disease. This review examines the evidence for novel molecular and cellular mechanisms that have recently been implicated in spinal muscular atrophy, highlights breakthroughs, points out caveats and poses questions that ought to serve as the basis of new investigations to better understand and treat this and other more common neurodegenerative disorders.
Collapse
Affiliation(s)
- Kishore Gollapalli
- Department of Neurology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| | - Jeong-Ki Kim
- Department of Neurology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| | - Umrao R Monani
- Department of Neurology; Department of Pathology & Cell Biology; Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Reedich EJ, Kalski M, Armijo N, Cox GA, DiDonato CJ. Spinal motor neuron loss occurs through a p53-and-p21-independent mechanism in the Smn 2B/- mouse model of spinal muscular atrophy. Exp Neurol 2020; 337:113587. [PMID: 33382987 DOI: 10.1016/j.expneurol.2020.113587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a pediatric neuromuscular disease caused by genetic deficiency of the survival motor neuron (SMN) protein. Pathological hallmarks of SMA are spinal motor neuron loss and skeletal muscle atrophy. The molecular mechanisms that elicit and drive preferential motor neuron degeneration and death in SMA remain unclear. Transcriptomic studies consistently report p53 pathway activation in motor neurons and spinal cord tissue of SMA mice. Recent work has identified p53 as an inducer of spinal motor neuron loss in severe Δ7 SMA mice. Additionally, the cyclin-dependent kinase inhibitor P21 (Cdkn1a), an inducer of cell cycle arrest and mediator of skeletal muscle atrophy, is consistently increased in motor neurons, spinal cords, and other tissues of various SMA models. p21 is a p53 transcriptional target but can be independently induced by cellular stressors. To ascertain whether p53 and p21 signaling pathways mediate spinal motor neuron death in milder SMA mice, and how they affect the overall SMA phenotype, we introduced Trp53 and P21 null alleles onto the Smn2B/- background. We found that p53 and p21 depletion did not modulate the timing or degree of Smn2B/- motor neuron loss as evaluated using electrophysiological and immunohistochemical methods. Moreover, we determined that Trp53 and P21 knockout differentially affected Smn2B/- mouse lifespan: p53 ablation impaired survival while p21 ablation extended survival through Smn-independent mechanisms. These results demonstrate that p53 and p21 are not primary drivers of spinal motor neuron death in Smn2B/- mice, a milder SMA mouse model, as motor neuron loss is not alleviated by their ablation.
Collapse
Affiliation(s)
- Emily J Reedich
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin Kalski
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Nicholas Armijo
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Christine J DiDonato
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Rietz A, Hodgetts KJ, Lusic H, Quist KM, Osman EY, Lorson CL, Androphy EJ. Short-duration splice promoting compound enables a tunable mouse model of spinal muscular atrophy. Life Sci Alliance 2020; 4:4/1/e202000889. [PMID: 33234679 PMCID: PMC7723287 DOI: 10.26508/lsa.202000889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
We describe drug treatment paradigms that allow investigation of cellular and molecular pathogenesis at different stages of spinal muscular atrophy in a mouse model. Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 d prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first 3 d of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug–drug interactions. This pharmacologically tunable SMA model represents a useful tool to investigate cellular and molecular pathogenesis at different stages of disease.
Collapse
Affiliation(s)
- Anne Rietz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin J Hodgetts
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Hrvoje Lusic
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kevin M Quist
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erkan Y Osman
- Department of Veterinary Pathobiology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Deguise MO, De Repentigny Y, Tierney A, Beauvais A, Michaud J, Chehade L, Thabet M, Paul B, Reilly A, Gagnon S, Renaud JM, Kothary R. Motor transmission defects with sex differences in a new mouse model of mild spinal muscular atrophy. EBioMedicine 2020; 55:102750. [PMID: 32339936 PMCID: PMC7184161 DOI: 10.1016/j.ebiom.2020.102750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mouse models of mild spinal muscular atrophy (SMA) have been extremely challenging to generate. This paucity of model systems has limited our understanding of pathophysiological events in milder forms of the disease and of the effect of SMN depletion during aging. Methods A mild mouse model of SMA, termed Smn2B/−;SMN2+/−, was generated by crossing Smn−/−;SMN2 and Smn2B/2B mice. This new model was characterized using behavioral testing, histology, western blot, muscle-nerve electrophysiology as well as ultrasonography to study classical SMA features and extra-neuronal involvement. Findings Smn2B/−;SMN2+/− mice have normal survival, mild but sustained motor weakness, denervation and neuronal/neuromuscular junction (NMJ) transmission defects, and neurogenic muscle atrophy that are more prominent in male mice. Increased centrally located nuclei, intrinsic contractile and relaxation muscle defects were also identified in both female and male mice, with some male predominance. There was an absence of extra-neuronal pathology. Interpretation The Smn2B/−;SMN2+/− mouse provides a model of mild SMA, displaying some hallmark features including reduced weight, sustained motor weakness, electrophysiological transmission deficit, NMJ defects, and muscle atrophy. Early and prominent increase central nucleation and intrinsic electrophysiological deficits demonstrate the potential role played by muscle in SMA disease. The use of this model will allow for the understanding of the most susceptible pathogenic molecular changes in motor neurons and muscles, investigation of the effects of SMN depletion in aging, sex differences and most importantly will provide guidance for the currently aging SMA patients treated with the recently approved genetic therapies. Funding : This work was supported by Cure SMA/Families of SMA Canada (grant numbers KOT-1819 and KOT-2021); Muscular Dystrophy Association (USA) (grant number 575466); and Canadian Institutes of Health Research (CIHR) (grant number PJT-156379).
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Alexandra Tierney
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mohamed Thabet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Brittany Paul
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aoife Reilly
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
11
|
Mole AJ, Bell S, Thomson AK, Dissanayake KN, Ribchester RR, Murray LM. Synaptic withdrawal following nerve injury is influenced by postnatal maturity, muscle-specific properties, and the presence of underlying pathology in mice. J Anat 2020; 237:263-274. [PMID: 32311115 PMCID: PMC7369188 DOI: 10.1111/joa.13187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 01/13/2023] Open
Abstract
Axonal and synaptic degeneration occur following nerve injury and during disease. Traumatic nerve injury results in rapid fragmentation of the distal axon and loss of synaptic terminals, in a process known as Wallerian degeneration (WD). Identifying and understanding factors that influence the rate of WD is of significant biological and clinical importance, as it will facilitate understanding of the mechanisms of neurodegeneration and identification of novel therapeutic targets. Here, we investigate levels of synaptic loss following nerve injury under a range of conditions, including during postnatal development, in a range of anatomically distinct muscles and in a mouse model of motor neuron disease. By utilising an ex vivo model of nerve injury, we show that synaptic withdrawal is slower during early postnatal development. Significantly more neuromuscular junctions remained fully innervated in the cranial nerve/muscle preparations analysed at P15 than at P25. Furthermore, we demonstrate variability in the level of synaptic withdrawal in response to injury in different muscles, with retraction being slower in abdominal preparations than in cranial muscles across all time points analysed. Importantly, differences between the cranial and thoracoabdominal musculature seen here are not consistent with differences in muscle vulnerability that have been previously reported in mouse models of the childhood motor neuron disease, spinal muscular atrophy (SMA), caused by depletion of survival motor neuron protein (Smn). To further investigate the relationship between synaptic degeneration in SMA and WD, we induced WD in preparations from the Smn2B/− mouse model of SMA. In a disease‐resistant muscle (rostral band of levator auris longus), where there is minimal denervation, there was no change in the level of synaptic loss, which suggests that the process of synaptic withdrawal following injury is Smn‐independent. However, in a muscle with ongoing degeneration (transvs. abdominis), the level of synaptic loss significantly increased, with the percentage of denervated endplates increasing by 33% following injury, compared to disease alone. We therefore conclude that the presence of a die‐back can accelerate synaptic loss after injury in Smn2B/− mice.
Collapse
Affiliation(s)
- Alannah J Mole
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Sarah Bell
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Alison K Thomson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Kosala N Dissanayake
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Richard R Ribchester
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Euan MacDonald Centre for Motor Neurone Disease Research, Edinburgh, UK
| |
Collapse
|
12
|
Ng SY, Mikhail A, Ljubicic V. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice. J Physiol 2019; 597:4757-4778. [PMID: 31361024 PMCID: PMC6767691 DOI: 10.1113/jp278454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
Key points Spinal muscular atrophy (SMA) is a health‐ and life‐limiting neuromuscular disorder caused by a deficiency in survival motor neuron (SMN) protein. While historically considered a motor neuron disease, current understanding of SMA emphasizes its systemic nature, which requires addressing affected peripheral tissues such as skeletal muscle in particular. Chronic physical activity is beneficial for SMA patients, but the cellular and molecular mechanisms of exercise biology are largely undefined in SMA. After a single bout of exercise, canonical responses such as skeletal muscle AMP‐activated protein kinase (AMPK), p38 mitogen‐activated protein kinase (p38) and peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) activation were preserved in SMA‐like Smn2B/− animals. Furthermore, molecules involved in SMN transcription were also altered following physical activity. Collectively, these changes were coincident with an increase in full‐length SMN transcription and corrective SMN pre‐mRNA splicing. This study advances understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression in muscle.
Abstract Chronic physical activity is safe and effective in spinal muscular atrophy (SMA) patients, but the underlying cellular events that drive physiological adaptations are undefined. We examined the effects of a single bout of exercise on molecular mechanisms associated with adaptive remodelling in the skeletal muscle of Smn2B/− SMA‐like mice. Skeletal muscles were collected from healthy Smn2B/+ mice and Smn2B/− littermates at pre‐ (postnatal day (P) 9), early‐ (P13) and late‐ (P21) symptomatic stages to characterize SMA disease progression. Muscles were also collected from Smn2B/− animals exercised to fatigue on a motorized treadmill. Intracellular signalling and gene expression were examined using western blotting, confocal immunofluorescence microscopy, real‐time quantitative PCR and endpoint PCR assays. Basal skeletal muscle AMP‐activated protein kinase (AMPK) and p38 mitogen‐activated protein kinase (p38) expression and activity were not affected by SMA‐like conditions. Canonical exercise responses such as AMPK, p38 and peroxisome proliferator‐activated receptor γ coactivator‐1α (PGC‐1α) activation were observed following a bout of exercise in Smn2B/− animals. Furthermore, molecules involved in survival motor neuron (SMN) transcription, including protein kinase B (AKT) and extracellular signal‐regulated kinases (ERK)/ETS‐like gene 1 (ELK1), were altered following physical activity. Acute exercise was also able to mitigate aberrant proteolytic signalling in the skeletal muscle of Smn2B/− mice. Collectively, these changes were coincident with an exercise‐evoked increase in full‐length SMN mRNA expression. This study advances our understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression alongside AKT and ERK/ELK1 signalling. Spinal muscular atrophy (SMA) is a health‐ and life‐limiting neuromuscular disorder caused by a deficiency in survival motor neuron (SMN) protein. While historically considered a motor neuron disease, current understanding of SMA emphasizes its systemic nature, which requires addressing affected peripheral tissues such as skeletal muscle in particular. Chronic physical activity is beneficial for SMA patients, but the cellular and molecular mechanisms of exercise biology are largely undefined in SMA. After a single bout of exercise, canonical responses such as skeletal muscle AMP‐activated protein kinase (AMPK), p38 mitogen‐activated protein kinase (p38) and peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) activation were preserved in SMA‐like Smn2B/− animals. Furthermore, molecules involved in SMN transcription were also altered following physical activity. Collectively, these changes were coincident with an increase in full‐length SMN transcription and corrective SMN pre‐mRNA splicing. This study advances understanding of the exercise biology of SMA and highlights the AMPK–p38–PGC‐1α axis as a potential regulator of SMN expression in muscle.
Collapse
Affiliation(s)
- Sean Y Ng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Mikhail
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Quinlan KA, Reedich EJ, Arnold WD, Puritz AC, Cavarsan CF, Heckman CJ, DiDonato CJ. Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy. J Neurophysiol 2019; 122:1297-1311. [PMID: 31365319 DOI: 10.1152/jn.00652.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal motoneuron dysfunction and loss are pathological hallmarks of the neuromuscular disease spinal muscular atrophy (SMA). Changes in motoneuron physiological function precede cell death, but how these alterations vary with disease severity and motoneuron maturational state is unknown. To address this question, we assessed the electrophysiology and morphology of spinal motoneurons of presymptomatic Smn2B/- mice older than 1 wk of age and tracked the timing of motor unit loss in this model using motor unit number estimation (MUNE). In contrast to other commonly used SMA mouse models, Smn2B/- mice exhibit more typical postnatal development until postnatal day (P)11 or 12 and have longer survival (~3 wk of age). We demonstrate that Smn2B/- motoneuron hyperexcitability, marked by hyperpolarization of the threshold voltage for action potential firing, was present at P9-10 and preceded the loss of motor units. Using MUNE studies, we determined that motor unit loss in this mouse model occurred 2 wk after birth. Smn2B/- motoneurons were also larger in size, which may reflect compensatory changes taking place during postnatal development. This work suggests that motoneuron hyperexcitability, marked by a reduced threshold for action potential firing, is a pathological change preceding motoneuron loss that is common to multiple models of severe SMA with different motoneuron maturational states. Our results indicate voltage-gated sodium channel activity may be altered in the disease process.NEW & NOTEWORTHY Changes in spinal motoneuron physiologic function precede cell death in spinal muscular atrophy (SMA), but how they vary with maturational state and disease severity remains unknown. This study characterized motoneuron and neuromuscular electrophysiology from the Smn2B/- model of SMA. Motoneurons were hyperexcitable at postnatal day (P)9-10, and specific electrophysiological changes in Smn2B/- motoneurons preceded functional motor unit loss at P14, as determined by motor unit number estimation studies.
Collapse
Affiliation(s)
- K A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - E J Reedich
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - W D Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - A C Puritz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C F Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C J DiDonato
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| |
Collapse
|
14
|
Spring AM, Raimer AC, Hamilton CD, Schillinger MJ, Matera AG. Comprehensive Modeling of Spinal Muscular Atrophy in Drosophila melanogaster. Front Mol Neurosci 2019; 12:113. [PMID: 31156382 PMCID: PMC6532329 DOI: 10.3389/fnmol.2019.00113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/18/2019] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that affects motor neurons, primarily in young children. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN functions in the assembly of spliceosomal RNPs and is well conserved in many model systems including mouse, zebrafish, fruit fly, nematode, and fission yeast. Work in Drosophila has focused on the loss of SMN function during larval stages, primarily using null alleles or strong hypomorphs. A systematic analysis of SMA-related phenotypes in the context of moderate alleles that more closely mimic the genetics of SMA has not been performed in the fly, leading to debate over the validity and translational value of this model. We, therefore, examined 14 Drosophila lines expressing SMA patient-derived missense mutations in Smn, with a focus on neuromuscular phenotypes in the adult stage. Animals were evaluated on the basis of organismal viability and longevity, locomotor function, neuromuscular junction structure, and muscle health. In all cases, we observed phenotypes similar to those of SMA patients, including progressive loss of adult motor function. The severity of these defects is variable and forms a broad spectrum across the 14 lines examined, recapitulating the full range of phenotypic severity observed in human SMA. This includes late-onset models of SMA, which have been difficult to produce in other model systems. The results provide direct evidence that SMA-related locomotor decline can be reproduced in the fly and support the use of patient-derived SMN missense mutations as a comprehensive system for modeling SMA.
Collapse
Affiliation(s)
- Ashlyn M. Spring
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Amanda C. Raimer
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Christine D. Hamilton
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | | | - A. Gregory Matera
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
15
|
Permittivity of ex vivo healthy and diseased murine skeletal muscle from 10 kHz to 1 MHz. Sci Data 2019; 6:37. [PMID: 31000708 PMCID: PMC6472406 DOI: 10.1038/s41597-019-0045-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
A better understanding of the permittivity property of skeletal muscle is essential for the development of new diagnostic tools and approaches for neuromuscular evaluation. However, there remain important knowledge gaps in our understanding of this property in healthy and diseased skeletal muscle, which hinder its translation into clinical application. Here, we report the permittivity of gastrocnemius muscle in healthy wild type mice and murine models of spinal muscular atrophy, muscular dystrophy, diabetes, amyotrophic lateral sclerosis and in a model of myofiber hypertrophy. Data were measured ex vivo from 10 kHz to 1 MHz using the four-electrode impedance technique. Additional quantitative histology information were obtained. Ultimately, the normative data reported will offer the scientific community the opportunity to develop more accurate models for the validation and prediction of experimental observations in both pre-clinical and clinical neuromuscular disease research. Design Type(s) | physiological data analysis objective • strain comparison design • ex vivo design | Measurement Type(s) | permittivity property | Technology Type(s) | impedance analyzer | Factor Type(s) | temporal_instant • frequency • Mouse Model • experimental condition | Sample Characteristic(s) | Mus musculus • skeletal muscle tissue |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
|
16
|
Groen EJN, Perenthaler E, Courtney NL, Jordan CY, Shorrock HK, van der Hoorn D, Huang YT, Murray LM, Viero G, Gillingwater TH. Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy. Hum Mol Genet 2019; 27:2851-2862. [PMID: 29790918 PMCID: PMC6077828 DOI: 10.1093/hmg/ddy195] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 02/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by deleterious variants in SMN1 that lead to a marked decrease in survival motor neuron (SMN) protein expression. Humans have a second SMN gene (SMN2) that is almost identical to SMN1. However, due to alternative splicing the majority of SMN2 messenger ribonucleic acid (mRNA) is translated into a truncated, unstable protein that is quickly degraded. Because the presence of SMN2 provides a unique opportunity for therapy development in SMA patients, the mechanisms that regulate SMN2 splicing and mRNA expression have been elucidated in great detail. In contrast, how much SMN protein is produced at different developmental time points and in different tissues remains under-characterized. In this study, we addressed this issue by determining SMN protein expression levels at three developmental time points across six different mouse tissues and in two distinct mouse models of SMA (‘severe’ Taiwanese and ‘intermediate’ Smn2B/− mice). We found that, in healthy control mice, SMN protein expression was significantly influenced by both age and tissue type. When comparing mouse models of SMA, we found that, despite being transcribed from genetically different alleles, control SMN levels were relatively similar. In contrast, the degree of SMN depletion between tissues in SMA varied substantially over time and between the two models. These findings offer an explanation for the differential vulnerability of tissues and organs observed in SMA and further our understanding of the systemic and temporal requirements for SMN with direct relevance for developing effective therapies for SMA.
Collapse
Affiliation(s)
- Ewout J N Groen
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Elena Perenthaler
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Natalie L Courtney
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Crispin Y Jordan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences
| | - Hannah K Shorrock
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Dinja van der Hoorn
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Yu-Ting Huang
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Trento, Italy
| | - Thomas H Gillingwater
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
17
|
Walter LM, Koch CE, Betts CA, Ahlskog N, Meijboom KE, van Westering TLE, Hazell G, Bhomra A, Claus P, Oster H, Wood MJA, Bowerman M. Light modulation ameliorates expression of circadian genes and disease progression in spinal muscular atrophy mice. Hum Mol Genet 2018; 27:3582-3597. [PMID: 29982483 PMCID: PMC6168969 DOI: 10.1093/hmg/ddy249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterized by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn-/-;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies a key relationship between an SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | | | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Current affiliations: School of Medicine, Keele University, Staffordshire, UK
- Institute for Science and Technology in Medicine, Stoke-on-Trent, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK
| |
Collapse
|
18
|
Abstract
Autosomal-recessive proximal spinal muscular atrophy (Werdnig-Hoffmann, Kugelberg-Welander) is caused by mutation of the SMN1 gene, and the clinical severity correlates with the number of copies of a nearly identical gene, SMN2. The SMN protein plays a critical role in spliceosome assembly and may have other cellular functions, such as mRNA transport. Cell culture and animal models have helped to define the disease mechanism and to identify targets for therapeutic intervention. The main focus for developing treatment has been to increase SMN levels, and accomplishing this with small molecules, oligonucleotides, and gene replacement has been quite. An oligonucleotide, nusinersen, was recently approved for treatment in patients, and confirmatory studies of other agents are now under way.
Collapse
Affiliation(s)
- Eveline S Arnold
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
19
|
Walter LM, Deguise MO, Meijboom KE, Betts CA, Ahlskog N, van Westering TLE, Hazell G, McFall E, Kordala A, Hammond SM, Abendroth F, Murray LM, Shorrock HK, Prosdocimo DA, Haldar SM, Jain MK, Gillingwater TH, Claus P, Kothary R, Wood MJA, Bowerman M. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine 2018; 31:226-242. [PMID: 29735415 PMCID: PMC6013932 DOI: 10.1016/j.ebiom.2018.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/15/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. SMA is a neuromuscular disease characterized by motoneuron loss, muscle abnormalities and metabolic perturbations. The regulatory GC-KLF15-BCAA pathway is dysregulated in serum and skeletal muscle of SMA mice during disease progression. Modulating GC-KLF15-BCAA signaling by pharmacological, dietary and genetic interventions improves phenotype of SMA mice.
Spinal muscular atrophy (SMA) is a devastating and debilitating childhood genetic disease. Although nerve cells are mainly affected, muscle is also severely impacted. The normal communication between the glucocorticoid (GC) hormone, the protein KLF15 and the dietary branched-chain amino acids (BCAAs) maintains muscle and whole-body health. In this study, we identified an abnormal activity of GC-KLF15- BCAA in blood and muscle of SMA mice. Importantly, targeting GC-KLF15-BCAA activity with an existing drug or a specific diet improved disease progression in SMA mice. Our research uncovers GCs, KLF15 and BCAAs as therapeutic targets to ameliorate SMA muscle and whole-body health.
Collapse
Affiliation(s)
- Lisa M Walter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emily McFall
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anna Kordala
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lyndsay M Murray
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Domenick A Prosdocimo
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Department of Medicine, Division of Cardiology University of California, San Francisco, CA, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany; Center of Systems Neuroscience, Hannover, Germany
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada; Department of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
20
|
Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 2018; 10:943-954. [PMID: 28768735 PMCID: PMC5560066 DOI: 10.1242/dmm.030148] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of motor neurons and muscle atrophy, generally presenting in childhood. SMA is caused by low levels of the survival motor neuron protein (SMN) due to inactivating mutations in the encoding gene SMN1. A second duplicated gene, SMN2, produces very little but sufficient functional protein for survival. Therapeutic strategies to increase SMN are in clinical trials, and the first SMN2-directed antisense oligonucleotide (ASO) therapy has recently been licensed. However, several factors suggest that complementary strategies may be needed for the long-term maintenance of neuromuscular and other functions in SMA patients. Pre-clinical SMA models demonstrate that the requirement for SMN protein is highest when the structural connections of the neuromuscular system are being established, from late fetal life throughout infancy. Augmenting SMN may not address the slow neurodegenerative process underlying progressive functional decline beyond childhood in less severe types of SMA. Furthermore, individuals receiving SMN-based treatments may be vulnerable to delayed symptoms if rescue of the neuromuscular system is incomplete. Finally, a large number of older patients living with SMA do not fulfill the present criteria for inclusion in gene therapy and ASO clinical trials, and may not benefit from SMN-inducing treatments. Therefore, a comprehensive whole-lifespan approach to SMA therapy is required that includes both SMN-dependent and SMN-independent strategies that treat the CNS and periphery. Here, we review the range of non-SMN pathways implicated in SMA pathophysiology and discuss how various model systems can serve as valuable tools for SMA drug discovery. Summary: Translational research for spinal muscular atrophy (SMA) should address the development of non-CNS and survival motor neuron (SMN)-independent therapeutic approaches to complement and enhance the benefits of CNS-directed and SMN-dependent therapies.
Collapse
Affiliation(s)
- Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Catherina G Becker
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | |
Collapse
|
21
|
Eshraghi M, McFall E, Gibeault S, Kothary R. Effect of genetic background on the phenotype of the Smn2B/- mouse model of spinal muscular atrophy. Hum Mol Genet 2018; 25:4494-4506. [PMID: 28172892 PMCID: PMC5409218 DOI: 10.1093/hmg/ddw278] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/15/2016] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene in humans. Modifiers of the SMA symptoms have been identified and genetic background has a substantial effect in the phenotype and survival of the severe mouse model of SMA. Previously, we generated the less severe Smn2B/- mice on a mixed genetic background. To assess the phenotype of Smn deficiency on a pure genetic background, we produced Smn2B/2B congenic mice on either the C57BL/6 (BL6) or FVB strain background and characterized them at the 6th generation by breeding to Smn+/- mice. Smn2B/- mice from these crosses were evaluated for growth, survival, muscle atrophy, motor neuron loss, motor behaviour, and neuromuscular junction pathology. FVB Smn2B/- mice had a shorter life span than BL6 Smn2B/- mice (median of 19 days vs. 25 days). Similarly, all other defects assessed occurred at earlier stages in FVB Smn2B/-mice when compared to BL6 Smn2B/-mice. However, there were no differences in Smn protein levels in the spinal cords of these mice. Interestingly, levels of Plastin 3, a putative modifier of SMA, were significantly induced in spinal cords of BL6 Smn2B/- mice but not of FVB Smn2B/-mice. Our studies demonstrate that the phenotype in Smn2B/-mice is more severe in the FVB background than in the BL6 background, which could potentially be explained by the differential induction of genetic modifiers.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabrina Gibeault
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations/deletions within the survival of motor neuron 1 (SMN1) gene that lead to a pathological reduction of SMN protein levels. SMN is part of a multiprotein complex, functioning as a molecular chaperone that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNP). In addition to its role in spliceosome formation, SMN has also been found to interact with mRNA-binding proteins (mRBPs), and facilitate their assembly into mRNP transport granules. The association of protein and RNA in RNP complexes plays an important role in an extensive and diverse set of cellular processes that regulate neuronal growth, differentiation, and the maturation and plasticity of synapses. This review discusses the role of SMN in RNP assembly and localization, focusing on molecular defects that affect mRNA processing and may contribute to SMA pathology.
Collapse
|
23
|
Nonclinical data supporting orphan medicinal product designations: lessons from rare neurological conditions. Drug Discov Today 2018; 23:26-48. [DOI: 10.1016/j.drudis.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022]
|
24
|
Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur J Med Genet 2017; 61:685-698. [PMID: 29313812 DOI: 10.1016/j.ejmg.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.
Collapse
Affiliation(s)
- Melissa Bowerman
- School of Medicine, Keele University, Staffordshire, United Kingdom; Institute for Science and Technology in Medicine, Stoke-on-Trent, United Kingdom; Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Lyndsay M Murray
- Euan McDonald Centre for Motor Neuron Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frédérique Scamps
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
25
|
Nash LA, McFall ER, Perozzo AM, Turner M, Poulin KL, De Repentigny Y, Burns JK, McMillan HJ, Warman Chardon J, Burger D, Kothary R, Parks RJ. Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy. Sci Rep 2017; 7:13859. [PMID: 29066780 PMCID: PMC5655039 DOI: 10.1038/s41598-017-14313-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by homozygous mutation of the survival motor neuron 1 (SMN1) gene. Disease severity inversely correlates to the amount of SMN protein produced from the homologous SMN2 gene. We show that SMN protein is naturally released in exosomes from all cell types examined. Fibroblasts from patients or a mouse model of SMA released exosomes containing reduced levels of SMN protein relative to normal controls. Cells overexpressing SMN protein released exosomes with dramatically elevated levels of SMN protein. We observed enhanced quantities of exosomes in the medium from SMN-depleted cells, and in serum from a mouse model of SMA and a patient with Type 3 SMA, suggesting that SMN-depletion causes a deregulation of exosome release or uptake. The quantity of SMN protein contained in the serum-derived exosomes correlated with the genotype of the animal, with progressively less protein in carrier and affected animals compared to wildtype mice. SMN protein was easily detectable in exosomes isolated from human serum, with a reduction in the amount of SMN protein in exosomes from a patient with Type 3 SMA compared to a normal control. Our results suggest that exosome-derived SMN protein may serve as an effective biomarker for SMA.
Collapse
Affiliation(s)
- Leslie A Nash
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Emily R McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Amanda M Perozzo
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Maddison Turner
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kathy L Poulin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joseph K Burns
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Hugh J McMillan
- University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jodi Warman Chardon
- University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Division of Neurogenetics, Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada. .,University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada. .,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
26
|
Shabanpoor F, Hammond SM, Abendroth F, Hazell G, Wood MJA, Gait MJ. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy. Nucleic Acid Ther 2017; 27:130-143. [PMID: 28118087 PMCID: PMC5467147 DOI: 10.1089/nat.2016.0652] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Suzan M Hammond
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Frank Abendroth
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Gareth Hazell
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Matthew J A Wood
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Michael J Gait
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| |
Collapse
|
27
|
Fayzullina S, Martin LJ. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy. J Neuropathol Exp Neurol 2016; 75:889-902. [PMID: 27452406 DOI: 10.1093/jnen/nlw064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA.
Collapse
Affiliation(s)
- Saniya Fayzullina
- From the Department of Pathology, Division of Neuropathology, and the Pathobiology Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA (SF, LJM)
| | - Lee J Martin
- From the Department of Pathology, Division of Neuropathology, and the Pathobiology Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland, USA (SF, LJM)
| |
Collapse
|
28
|
Deguise MO, Boyer JG, McFall ER, Yazdani A, De Repentigny Y, Kothary R. Differential induction of muscle atrophy pathways in two mouse models of spinal muscular atrophy. Sci Rep 2016; 6:28846. [PMID: 27349908 PMCID: PMC4924104 DOI: 10.1038/srep28846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/08/2016] [Indexed: 12/15/2022] Open
Abstract
Motor neuron loss and neurogenic atrophy are hallmarks of spinal muscular atrophy (SMA), a leading genetic cause of infant deaths. Previous studies have focused on deciphering disease pathogenesis in motor neurons. However, a systematic evaluation of atrophy pathways in muscles is lacking. Here, we show that these pathways are differentially activated depending on severity of disease in two different SMA model mice. Although proteasomal degradation is induced in skeletal muscle of both models, autophagosomal degradation is present only in Smn(2B/-) mice but not in the more severe Smn(-/-); SMN2 mice. Expression of FoxO transcription factors, which regulate both proteasomal and autophagosomal degradation, is elevated in Smn(2B/-) muscle. Remarkably, administration of trichostatin A reversed all molecular changes associated with atrophy. Cardiac muscle also exhibits differential induction of atrophy between Smn(2B/-) and Smn(-/-); SMN2 mice, albeit in the opposite direction to that of skeletal muscle. Altogether, our work highlights the importance of cautious analysis of different mouse models of SMA as distinct patterns of atrophy induction are at play depending on disease severity. We also revealed that one of the beneficial impacts of trichostatin A on SMA model mice is via attenuation of muscle atrophy through reduction of FoxO expression to normal levels.
Collapse
Affiliation(s)
- Marc-Olivier Deguise
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada
| | - Justin G Boyer
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada
| | - Emily R McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada
| | - Armin Yazdani
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6 Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5 Canada
| |
Collapse
|
29
|
Ahmad S, Bhatia K, Kannan A, Gangwani L. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy. J Exp Neurosci 2016; 10:39-49. [PMID: 27042141 PMCID: PMC4807884 DOI: 10.4137/jen.s33122] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.
Collapse
Affiliation(s)
- Saif Ahmad
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Kanchan Bhatia
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, Texas, USA.; Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
30
|
Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem 2015; 7:1793-808. [PMID: 26381381 DOI: 10.4155/fmc.15.101] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.
Collapse
|
31
|
Murray LM, Beauvais A, Gibeault S, Courtney NL, Kothary R. Transcriptional profiling of differentially vulnerable motor neurons at pre-symptomatic stage in the Smn (2b/-) mouse model of spinal muscular atrophy. Acta Neuropathol Commun 2015; 3:55. [PMID: 26374403 PMCID: PMC4570693 DOI: 10.1186/s40478-015-0231-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The term motor neuron disease encompasses a spectrum of disorders in which motor neurons are the lost. Importantly, while some motor neurons are lost early in disease and others remain intact at disease end-stage. This creates a valuable experimental paradigm to investigate the factors that regulate motor neuron vulnerability. Spinal muscular atrophy is a childhood motor neuron disease caused by mutations or deletions in the SMN1 gene. Here, we have performed transcriptional analysis on differentially vulnerable motor neurons from an intermediate mouse model of Spinal muscular atrophy at a presymptomatic time point. RESULTS We have characterised two differentially vulnerable populations, differing in the level neuromuscular junction loss. Transcriptional analysis on motor neuron cell bodies revealed that reduced Smn levels correlate with a reduction of transcripts associated with the ribosome, rRNA binding, ubiquitination and oxidative phosphorylation. Furthermore, P53 pathway activation precedes neuromuscular junction loss, suggesting that denervation may be a consequence, rather than a cause of motor neuron death in Spinal muscular atrophy. Finally, increased vulnerability correlates with a decrease in the positive regulation of DNA repair. CONCLUSIONS This study identifies pathways related to the function of Smn and associated with differential motor unit vulnerability, thus presenting a number of exciting targets for future therapeutic development.
Collapse
|
32
|
Wertz MH, Sahin M. Developing therapies for spinal muscular atrophy. Ann N Y Acad Sci 2015; 1366:5-19. [PMID: 26173388 DOI: 10.1111/nyas.12813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy is an autosomal-recessive pediatric neurodegenerative disease characterized by loss of spinal motor neurons. It is caused by mutation in the gene survival of motor neuron 1 (SMN1), leading to loss of function of the full-length SMN protein. SMN has a number of functions in neurons, including RNA splicing and snRNP biogenesis in the nucleus, and RNA trafficking in neurites. The expression level of full-length SMN protein from the SMN2 locus modifies disease severity. Increasing full-length SMN protein by a small amount can lead to significant improvements in the neurological phenotype. Currently available interventions for spinal muscular atrophy patients are physical therapy and orthopedic, nutritional, and pulmonary interventions; these are palliative or supportive measures and do not address the etiology of the disease. In the past decade, there has been a push for developing therapeutics to improve motor phenotypes and increase life span of spinal muscular atrophy patients. These therapies are aimed primarily at restoration of full-length SMN protein levels, but other neuroprotective treatments have been investigated as well. Here, we discuss recent advances in basic and clinical studies toward finding safe and effective treatments of spinal muscular atrophy using gene therapy, antisense oligonucleotides, and other small molecule modulators of SMN expression.
Collapse
Affiliation(s)
- Mary H Wertz
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
34
|
Phan HC, Taylor JL, Hannon H, Howell R. Newborn screening for spinal muscular atrophy: Anticipating an imminent need. Semin Perinatol 2015; 39:217-29. [PMID: 25979781 DOI: 10.1053/j.semperi.2015.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. Children with type I SMA typically die by the age of 2 years. Recent progress in gene modification and other innovative therapies suggest that improved outcomes may soon be forthcoming. In animal models, therapeutic intervention initiated before the loss of motor neurons alters SMA phenotype and increases lifespan. Presently, supportive care including respiratory, nutritional, physiatry, and orthopedic management can ameliorate clinical symptoms and improve survival rates if SMA is diagnosed early in life. Newborn screening could help optimize these potential benefits. A recent report demonstrated that SMA detection can be multiplexed at minimal additional cost with the assay for severe combined immunodeficiency, already implemented by many newborn screening programs. The public health community should remain alert to the rapidly changing developments in early detection and treatment of SMA.
Collapse
Affiliation(s)
- Han C Phan
- Department of Pediatrics, Emory University, Atlanta, GA.
| | | | - Harry Hannon
- Newborn Screening Consensus Committee, Clinical and Laboratory Standards Institute (CLSI), Wayne, PA
| | - Rodney Howell
- Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
35
|
Abstract
Spinal muscular atrophy (SMA) is a frequently fatal neuromuscular disorder and the most common inherited cause of infant mortality. SMA results from reduced levels of the survival of motor neuron (SMN) protein. Although the disease was first described more than a century ago, a precise understanding of its genetics was not obtained until the SMA genes were cloned in 1995. This was followed in rapid succession by experiments that assigned a role to the SMN protein in the proper splicing of genes, novel animal models of the disease, and the eventual use of the models in the pre clinical development of rational therapies for SMA. These successes have led the scientific and clinical communities to the cusp of what are expected to be the first truly promising treatments for the human disorder. Yet, important questions remain, not the least of which is how SMN paucity triggers a predominantly neuromuscular phenotype. Here we review how our understanding of the disease has evolved since the SMA genes were identified. We begin with a brief description of the genetics of SMA and the proposed roles of the SMN protein. We follow with an examination of how the genetics of the disease was exploited to develop genetically faithful animal models, and highlight the insights gained from their analysis. We end with a discussion of ongoing debates, future challenges, and the most promising treatments to have emerged from our current knowledge of the disease.
Collapse
Affiliation(s)
- Tomoyuki Awano
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| | - Jeong-Ki Kim
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| | - Umrao R. Monani
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Department of Neurology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| |
Collapse
|
36
|
Coque E, Raoul C, Bowerman M. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets. Front Neurosci 2014; 8:271. [PMID: 25221469 PMCID: PMC4148024 DOI: 10.3389/fnins.2014.00271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/28/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.
Collapse
Affiliation(s)
- Emmanuelle Coque
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Mélissa Bowerman
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| |
Collapse
|
37
|
A short antisense oligonucleotide ameliorates symptoms of severe mouse models of spinal muscular atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e174. [PMID: 25004100 PMCID: PMC4121513 DOI: 10.1038/mtna.2014.23] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022]
Abstract
Recent reports underscore the unparalleled potential of antisense-oligonucleotide (ASO)-based approaches to ameliorate various pathological conditions. However, in vivo studies validating the effectiveness of a short ASO (<10-mer) in the context of a human disease have not been performed. One disease with proven amenability to ASO-based therapy is spinal muscular atrophy (SMA). SMA is a neuromuscular disease caused by loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Correction of aberrant splicing of the remaining paralog, SMN2, can rescue mouse models of SMA. Here, we report the therapeutic efficacy of an 8-mer ASO (3UP8i) in two severe models of SMA. While 3UP8i modestly improved survival and function in the more severe Taiwanese SMA model, it dramatically increased survival, improved neuromuscular junction pathology, and tempered cardiac deficits in a new, less severe model of SMA. Our results expand the repertoire of ASO-based compounds for SMA therapy, and for the first time, demonstrate the in vivo efficacy of a short ASO in the context of a human disease.
Collapse
|
38
|
Mulcahy PJ, Iremonger K, Karyka E, Herranz-Martín S, Shum KT, Tam JKV, Azzouz M. Gene therapy: a promising approach to treating spinal muscular atrophy. Hum Gene Ther 2014; 25:575-86. [PMID: 24845847 DOI: 10.1089/hum.2013.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.
Collapse
Affiliation(s)
- Pádraig J Mulcahy
- 1 Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield , Sheffield S10 2HQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
The Smn-independent beneficial effects of trichostatin A on an intermediate mouse model of spinal muscular atrophy. PLoS One 2014; 9:e101225. [PMID: 24984019 PMCID: PMC4077776 DOI: 10.1371/journal.pone.0101225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/04/2014] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy is an autosomal recessive neuromuscular disease characterized by the progressive loss of alpha motor neurons in the spinal cord. Trichostatin A (TSA) is a histone deacetylase inhibitor with beneficial effects in spinal muscular atrophy mouse models that carry the human SMN2 transgene. It is currently unclear whether TSA specifically targets the SMN2 gene or whether other genes respond to TSA and in turn provide neuroprotection in SMA mice. We have taken advantage of the Smn2B/- mouse model that does not harbor the human SMN2 transgene, to test the hypothesis that TSA has its beneficial effects through a non-SMN mediated pathway. TSA increased the median lifespan of Smn2B/- mice from twenty days to eight weeks. As well, there was a significant attenuation of weight loss and improved motor behavior. Pen test and righting reflex both showed significant improvement, and motor neurons in the spinal cord of Smn2B/- mice were protected from degeneration. Both the size and maturity of neuromuscular junctions were significantly improved in TSA treated Smn2B/- mice. Of interest, TSA treatment did not increase the levels of Smn protein in mouse embryonic fibroblasts or myoblasts obtained from the Smn2B/- mice. In addition, no change in the level of Smn transcripts or protein in the brain or spinal cord of TSA-treated SMA model mice was observed. Furthermore, TSA did not increase Smn protein levels in the hind limb muscle, heart, or liver of Smn2B/- mice. We therefore conclude that TSA likely exerts its effects independent of the endogenous mouse Smn gene. As such, identification of the pathways regulated by TSA in the Smn2B/- mice could lead to the development of novel therapeutics for treating SMA.
Collapse
|
40
|
Boyer JG, Deguise MO, Murray LM, Yazdani A, De Repentigny Y, Boudreau-Larivière C, Kothary R. Myogenic program dysregulation is contributory to disease pathogenesis in spinal muscular atrophy. Hum Mol Genet 2014; 23:4249-59. [PMID: 24691550 PMCID: PMC4103674 DOI: 10.1093/hmg/ddu142] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the survival motor neuron (SMN1) gene lead to the neuromuscular disease spinal muscular atrophy (SMA). Although SMA is primarily considered as a motor neuron disease, the importance of muscle defects in its pathogenesis has not been fully examined. We use both primary cell culture and two different SMA model mice to demonstrate that reduced levels of Smn lead to a profound disruption in the expression of myogenic genes. This disruption was associated with a decrease in myofiber size and an increase in immature myofibers, suggesting that Smn is crucial for myogenic gene regulation and early muscle development. Histone deacetylase inhibitor trichostatin A treatment of SMA model mice increased myofiber size, myofiber maturity and attenuated the disruption of the myogenic program in these mice. Taken together, our work highlights the important contribution of myogenic program dysregulation to the muscle weakness observed in SMA.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Marc-Olivier Deguise
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Lyndsay M Murray
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6
| | - Armin Yazdani
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine
| | - Yves De Repentigny
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6
| | | | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON, Canada K1H 8L6 Department of Cellular and Molecular Medicine Department of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| |
Collapse
|
41
|
SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Struct Funct 2014; 220:1539-53. [PMID: 24633826 DOI: 10.1007/s00429-014-0743-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/28/2014] [Indexed: 01/02/2023]
Abstract
Survival motor neuron (SMN) is the determining factor in spinal muscular atrophy, the most common genetic cause of childhood mortality. We have previously found that SMN regulates stem cell division, proliferation and differentiation in Drosophila. However, it is unknown whether a similar effect exists in vertebrates. Here, we show that SMN is enriched in highly proliferative embryonic stem cells (ESCs) in mice and reduction of SMN impairs the pluripotency of ESCs. Moreover, we find that SMN reduction activates ERK signaling and affects neuronal differentiation in vitro. Teratomas with reduced SMN grow more slowly and show weaker signals of neuronal differentiation than those with a normal level of SMN. Finally, we show that over-expression of SMN is protective for ESCs from retinoic acid-induced differentiation. Taken together, our results suggest that SMN plays a role in the maintenance of pluripotent ESCs and neuronal differentiation in mice.
Collapse
|
42
|
Bowerman M, Michalski JP, Beauvais A, Murray LM, DeRepentigny Y, Kothary R. Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Hum Mol Genet 2014; 23:3432-44. [PMID: 24497575 PMCID: PMC4049303 DOI: 10.1093/hmg/ddu052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn(2B/-)) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn(+/-)) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn(+/-)mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn(+/-)mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing β cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn(+/-)mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders.
Collapse
Affiliation(s)
- Melissa Bowerman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada The Neuroscience Institute of Montpellier (INM), Inserm UMR1051, Saint Eloi Hospital, Montpellier, France
| | - John-Paul Michalski
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and
| | | | | | | | - Rashmi Kothary
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Swoboda KJ. SMN-targeted therapeutics for spinal muscular atrophy: are we SMArt enough yet? J Clin Invest 2014; 124:487-90. [PMID: 24463455 DOI: 10.1172/jci74142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) remains one of the most common and lethal autosomal recessive diseases. Homozygous deletion of survival of motor neuron 1 (SMN1) and resulting SMN protein deficiency manifests predominantly with motor neuron degeneration; however, a wealth of emerging data supports a broader influence of SMN deficiency in disease pathogenesis. In this issue of the JCI, Kariya and colleagues demonstrate the relatively selective impact of SMN depletion on the distal motor unit using a series of SMN2-expressing transgenic mice in which constitutive SMN knockdown follows variable periods of normal development. Their observations provide further insights regarding the temporal requirements for SMN in mice, renewing speculation about when and where repletion of SMN is necessary for optimal outcomes in SMA patients.
Collapse
|
44
|
Boyer JG, Ferrier A, Kothary R. More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases. Front Physiol 2013; 4:356. [PMID: 24391590 PMCID: PMC3866803 DOI: 10.3389/fphys.2013.00356] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Andrew Ferrier
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, Regenerative Medicine Program Ottawa ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
45
|
Boyer JG, Murray LM, Scott K, De Repentigny Y, Renaud JM, Kothary R. Early onset muscle weakness and disruption of muscle proteins in mouse models of spinal muscular atrophy. Skelet Muscle 2013; 3:24. [PMID: 24119341 PMCID: PMC3852932 DOI: 10.1186/2044-5040-3-24] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/26/2013] [Indexed: 11/12/2022] Open
Abstract
Background The childhood neuromuscular disease spinal muscular atrophy (SMA) is caused by mutations or deletions of the survival motor neuron (SMN1) gene. Although SMA has traditionally been considered a motor neuron disease, the muscle-specific requirement for SMN has never been fully defined. Therefore, the purpose of this study was to investigate muscle defects in mouse models of SMA. Methods We have taken advantage of two different mouse models of SMA, the severe Smn-/-;SMN2 mice and the less severe Smn2B/- mice. We have measured the maximal force produced from control muscles and those of SMA model mice by direct stimulation using an ex vivo apparatus. Immunofluorescence and immunoblot experiments were performed to uncover muscle defects in mouse models of SMA. Means from control and SMA model mice samples were compared using an analysis of variance test and Student’s t tests. Results We report that tibialis anterior (TA) muscles of phenotype stage Smn-/-;SMN2 mice generate 39% less maximal force than muscles from control mice, independently of aberrant motor neuron signal transmission. In addition, during muscle fatigue, the Smn-/-;SMN2 muscle shows early onset and increased unstimulated force compared with controls. Moreover, we demonstrate a significant decrease in force production in muscles from pre-symptomatic Smn-/-;SMN2 and Smn2B/- mice, indicating that muscle weakness is an early event occurring prior to any overt motor neuron loss and muscle denervation. Muscle weakness in mouse models of SMA was associated with a delay in the transition from neonatal to adult isoforms of proteins important for proper muscle contractions, such as ryanodine receptors and sodium channels. Immunoblot analyses of extracts from hindlimb skeletal muscle revealed aberrant levels of the sarcoplasmic reticulum Ca2+ ATPase. Conclusions The findings from this study reveal a delay in the appearance of mature isoforms of proteins important for muscle contractions, as well as muscle weakness early in the disease etiology, thus highlighting the contributions of skeletal muscle defects to the SMA phenotype.
Collapse
Affiliation(s)
- Justin G Boyer
- Ottawa Hospital Research Institute, Regenerative Medicine Program, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Paez-Colasante X, Seaberg B, Martinez TL, Kong L, Sumner CJ, Rimer M. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons. PLoS One 2013; 8:e75866. [PMID: 24086650 PMCID: PMC3781079 DOI: 10.1371/journal.pone.0075866] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/16/2013] [Indexed: 11/26/2022] Open
Abstract
In the inherited childhood neuromuscular disease spinal muscular atrophy (SMA), lower motor neuron death and severe muscle weakness result from the reduction of the ubiquitously expressed protein survival of motor neuron (SMN). Although SMA mice recapitulate many features of the human disease, it has remained unclear if their short lifespan and motor weakness are primarily due to cell-autonomous defects in motor neurons. Using Hb9Cre as a driver, we selectively raised SMN expression in motor neurons in conditional SMAΔ7 mice. Unlike a previous study that used choline acetyltransferase (ChATCre+) as a driver on the same mice, and another report that used Hb9Cre as a driver on a different line of conditional SMA mice, we found no improvement in survival, weight, motor behavior and presynaptic neurofilament accumulation. However, like in ChATCre+ mice, we detected rescue of endplate size and mitigation of neuromuscular junction (NMJ) denervation status. The rescue of endplate size occurred in the absence of an increase in myofiber size, suggesting endplate size is determined by the motor neuron in these animals. Real time-PCR showed that the expression of spinal cord SMN transcript was sharply reduced in Hb9Cre+ SMA mice relative to ChATCre+ SMA mice. This suggests that our lack of overall phenotypic improvement is most likely due to an unexpectedly poor recombination efficiency driven by Hb9Cre. Nonetheless, the low levels of SMN were sufficient to rescue two NMJ structural parameters indicating that these motor neuron cell autonomous phenotypes are very sensitive to changes in motoneuronal SMN levels. Our results directly suggest that even those therapeutic interventions with very modest effects in raising SMN in motor neurons may provide mitigation of neuromuscular phenotypes in SMA patients.
Collapse
Affiliation(s)
- Ximena Paez-Colasante
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Texas A&M Institute for Neuroscience, Bryan, Texas, United States of America
| | - Bonnie Seaberg
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Tara L. Martinez
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lingling Kong
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
- Texas A&M Institute for Neuroscience, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
McGivern JV, Patitucci TN, Nord JA, Barabas MEA, Stucky CL, Ebert AD. Spinal muscular atrophy astrocytes exhibit abnormal calcium regulation and reduced growth factor production. Glia 2013; 61:1418-1428. [PMID: 23839956 DOI: 10.1002/glia.22522] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/01/2013] [Accepted: 04/23/2013] [Indexed: 02/06/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder caused by the deletion of the survival motor neuron 1 (SMN1) gene that leads to loss of motor neurons in the spinal cord. Although motor neurons are selectively lost during SMA pathology, selective replacement of SMN in motor neurons does not lead to full rescue in mouse models. Due to the ubiquitous expression of SMN, it is likely that other cell types besides motor neurons are affected by its disruption and therefore may contribute to disease pathology. Here we show that astrocytes in SMAΔ7 mouse spinal cord and from SMA-induced pluripotent stem cells exhibit morphological and cellular changes indicative of activation before overt motor neuron loss. Furthermore, our in vitro studies show mis-regulation of basal calcium and decreased response to adenosine triphosphate stimulation indicating abnormal astrocyte function. Together, for the first time, these data show early disruptions in astrocytes that may contribute to SMA disease pathology.
Collapse
Affiliation(s)
- Jered V McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Joshua A Nord
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Marie-Elizabeth A Barabas
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin. 8701 Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
48
|
Gogliotti RG, Cardona H, Singh J, Bail S, Emery C, Kuntz N, Jorgensen M, Durens M, Xia B, Barlow C, Heier CR, Plasterer HL, Jacques V, Kiledjian M, Jarecki J, Rusche J, DiDonato CJ. The DcpS inhibitor RG3039 improves survival, function and motor unit pathologies in two SMA mouse models. Hum Mol Genet 2013; 22:4084-101. [PMID: 23736298 DOI: 10.1093/hmg/ddt258] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by insufficient levels of the survival motor neuron (SMN) protein due to the functional loss of the SMN1 gene and the inability of its paralog, SMN2, to fully compensate due to reduced exon 7 splicing efficiency. Since SMA patients have at least one copy of SMN2, drug discovery campaigns have sought to identify SMN2 inducers. C5-substituted quinazolines increase SMN2 promoter activity in cell-based assays and a derivative, RG3039, has progressed to clinical testing. It is orally bioavailable, brain-penetrant and has been shown to be an inhibitor of the mRNA decapping enzyme, DcpS. Our pharmacological characterization of RG3039, reported here, demonstrates that RG3039 can extend survival and improve function in two SMA mouse models of varying disease severity (Taiwanese 5058 Hemi and 2B/- SMA mice), and positively impacts neuromuscular pathologies. In 2B/- SMA mice, RG3039 provided a >600% survival benefit (median 18 days to >112 days) when dosing began at P4, highlighting the importance of early intervention. We determined the minimum effective dose and the associated pharmacokinetic (PK) and exposure relationship of RG3039 and DcpS inhibition ex vivo. These data support the long PK half-life with extended pharmacodynamic outcome of RG3039 in 2B/- SMA mice. In motor neurons, RG3039 significantly increased both the average number of cells with gems and average number of gems per cell, which is used as an indirect measure of SMN levels. These studies contribute to dose selection and exposure estimates for the first studies with RG3039 in human subjects.
Collapse
|
49
|
Taylor AS, Glascock JJ, Rose FF, Lutz C, Lorson CL. Restoration of SMN to Emx-1 expressing cortical neurons is not sufficient to provide benefit to a severe mouse model of Spinal Muscular Atrophy. Transgenic Res 2013; 22:1029-36. [PMID: 23512182 DOI: 10.1007/s11248-013-9702-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
Spinal Muscular Atrophy (SMA), an autosomal recessive neuromuscular disorder, is a leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). However, low, but essential, levels of SMN protein are produced by a nearly identical copy gene called SMN2. Detailed analysis of neuromuscular junctions in SMA mice has revealed a selective vulnerability in a subset of muscle targets, suggesting that while SMN is reduced uniformly, the functional deficits manifest sporadically. Additionally, in severe SMA models, it is becoming increasing apparent that SMA is not restricted solely to motor neurons. Rather, additional tissues including the heart, vasculature, and the pancreas contribute to the complete SMA-associated pathology. Recently, transgenic models have been utilized to examine the tissue-specific requirements of SMN, including selective depletion and restoration of SMN in motor neurons. To determine whether the cortical neuronal populations expressing the Emx-1 promoter are involved in SMA pathology, we generated a novel SMA mouse model in which SMN expression was specifically induced in Emx-1 expressing cortical neurons utilizing an Emx-1-Cre transgene. While SMN expression was robust in the central nervous system as expected, SMA mice did not live longer. Weight and time-to-right motor function were not significantly improved.
Collapse
Affiliation(s)
- Alexander S Taylor
- Department of Veterinary Pathobiology, Life Sciences Center, University of Missouri, Room 471G, Columbia, MO, 65211, USA
| | | | | | | | | |
Collapse
|
50
|
Murray LM, Beauvais A, Bhanot K, Kothary R. Defects in neuromuscular junction remodelling in the Smn2B/− mouse model of spinal muscular atrophy. Neurobiol Dis 2013; 49:57-67. [DOI: 10.1016/j.nbd.2012.08.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 10/28/2022] Open
|