1
|
Vesaghhamedani S, Mazloumi Kiapey SS, Gowhari Shabgah A, Amiresmaili S, Jahanara A, Oveisee M, Shekarchi A, Gheibihayat SM, Jadidi-Niaragh F, Gholizadeh Navashenaq J. Scutellarin, a promising flavonoid in cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:19-27. [PMID: 37080435 DOI: 10.1016/j.pbiomolbio.2023.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Natural substances are increasingly being used as cancer treatments. Scutellarin, as a flavonoid, recently has been identified in a Chinese herbal extract called Erigeron breviscapus (Vant.). Scutellarin is being researched for its potential benefits due to the discovery that it possesses a variety of biological effects, such as neuroprotective, anti-coagulant, and anti-viral. In addition to these biological functions, scutellarin has also been found to have anti-tumor properties. Scutellarin first inhibits the activity of tumor cells by altering cancer cell signaling pathways such as Jak/STAT, ERK/AMPK, and Wnt/β-catenin. Additionally, scutellarin activates intrinsic and extrinsic apoptotic pathways, which causes the death of tumor cells, interrupts the cell cycle, and promotes its arrest. By limiting metastasis, angiogenesis, drug resistance, and other tumorigenic processes, scutellarin also reduces the aggressiveness of tumors. Utilizing scutellarin in combination with other anti-tumor therapies like 5-fluorouracil is another method to overcome tumor cell resistance. Moreover, it has been suggested that certain modifications, such as conjugation with cyclodextrin, aliphatic chains, and hybridization with nitric oxide, can enhance the pharmacogenetic capabilities of scutellarin to decrease its limited water solubility. It is believed that scutellarin may provide innovative chemotherapeutic treatments for cancer in the future.
Collapse
Affiliation(s)
- Shadi Vesaghhamedani
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | - Abbas Jahanara
- Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Maziyar Oveisee
- Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Iran
| | - Aliakbar Shekarchi
- Department of Pathology and Genetics, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Sittiju P, Chaiyawat P, Pruksakorn D, Klangjorhor J, Wongrin W, Phinyo P, Kamolphiwong R, Phanphaisarn A, Teeyakasem P, Kongtawelert P, Pothacharoen P. Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression. BIOLOGY 2022; 11:biology11050698. [PMID: 35625426 PMCID: PMC9138411 DOI: 10.3390/biology11050698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 01/15/2023]
Abstract
Simple Summary The standard method for the diagnosis and monitoring of osteosarcoma is biopsy and tumor imaging, which causes discomfort to patients and is difficult to repeat. A blood sample can be used as a non-invasive method for monitoring tumor material. Vimentin and ezrin show clinical significance in samples obtained from OS patients but need circulating tumor cell purification, since they are expressed in leukocytes. Due to the low-temperature storage of the samples, it proved impossible to perform purification to remove the contamination. We propose that novel or OS-specific biomarkers using differential gene expression from the Gene Expression Omnibus (GEO) database is a promising approach for developing diagnostic and tumor progression strategies. Seven genes from the database showed significant expression in OS cell lines/primary cells compared to a normal blood donor, together with ezrin and VIM. The expression of the five candidate genes together with ezrin and vimentin were quantified by qRT-PCR and analyzed using a mathematical model with high efficiency to discriminate between OS patients and normal samples, resulting in the selection of three candidate genes: COL5A2 (one of the five from the database) as well as ezrin and VIM. Our study demonstrates that these genes in retrospective samples could serve as tools of OS detection and predictors of disease progression. Abstract A liquid biopsy is currently an interesting tool for measuring tumor material with the advantage of being non-invasive. The overexpression of vimentin and ezrin genes was associated with epithelial-mesenchymal transition (EMT), a key process in metastasis and progression in osteosarcoma (OS). In this study, we identified other OS-specific genes by calculating differential gene expression using the Gene Expression Omnibus (GEO) database, confirmed by using quantitative reverse transcription-PCR (qRT-PCR) to detect OS-specific genes, including VIM and ezrin in the buffy coat, which were obtained from the whole blood of OS patients and healthy donors. Furthermore, the diagnostic model for OS detection was generated by utilizing binary logistic regression with a multivariable fractional polynomial (MFP) algorithm. The model incorporating VIM, ezrin, and COL5A2 genes exhibited outstanding discriminative ability, as determined by the receiver operating characteristic curve (AUC = 0.9805, 95% CI 0.9603, 1.000). At the probability cut-off value of 0.3366, the sensitivity and the specificity of the model for detecting OS were 98.63% (95% CI 90.5, 99.7) and 94.94% (95% CI 87.5, 98.6), respectively. Bioinformatic analysis and qRT-PCR, in our study, identified three candidate genes that are potential diagnostic and prognostic genes for OS.
Collapse
Affiliation(s)
- Pattaralawan Sittiju
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Weerinrada Wongrin
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Phichayut Phinyo
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rawikant Kamolphiwong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Areerak Phanphaisarn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Pimpisa Teeyakasem
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.); (D.P.); (J.K.); (P.P.); (A.P.); (P.T.)
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.K.)
- Correspondence: ; Tel.: +66-53-94-5325 (ext. 206)
| |
Collapse
|
3
|
Lin HH, Robertson KL, Bisbee HA, Farkas ME. Oncogenic and Circadian Effects of Small Molecules Directly and Indirectly Targeting the Core Circadian Clock. Integr Cancer Ther 2021; 19:1534735420924094. [PMID: 32493076 PMCID: PMC7273620 DOI: 10.1177/1534735420924094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms are essential for controlling the cell cycle, cellular
proliferation, and apoptosis, and hence are tightly linked to cell fate. Several
recent studies have used small molecules to affect circadian oscillations;
however, their concomitant cellular effects were not assessed, and they have not
been compared under similar experimental conditions. In this work, we use five
molecules, grouped into direct versus indirect effectors of the circadian clock,
to modulate periods in a human osteosarcoma cell line (U2OS) and determine their
influences on cellular behaviors, including motility and colony formation.
Luciferase reporters, whose expression was driven via Bmal1- or
Per2-promoters, were used to facilitate the visualization
and quantitative analysis of circadian oscillations. We show that all molecules
increase or decrease the circadian periods of Bmal1 and
Per2 in a dose-dependent manner, but period length does not
correlate with the extent of cell migration or proliferation. Nonetheless,
molecules that affected circadian oscillations to a greater degree resulted in
substantial influence on cellular behaviors (ie, motility and colony formation),
which may also be attributable to noncircadian targets. Furthermore, we find
that the ability and extent to which the molecules are able to affect
oscillations is independent of whether they are direct or indirect modulators.
Because of the numerous connections and feedback between the circadian clock and
other pathways, it is important to consider the effects of both in assessing
these and other compounds.
Collapse
Affiliation(s)
- Hui-Hsien Lin
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | | |
Collapse
|
4
|
Wei F, Jing H, Wei M, Liu L, Wu J, Wang M, Han D, Yang F, Yang B, Jiao D, Zheng G, Zhang L, Xi W, Guo Z, Yang AG, Qin W, Zhou Y, Wen W. Ring finger protein 2 promotes colorectal cancer progression by suppressing early growth response 1. Aging (Albany NY) 2020; 12:26199-26220. [PMID: 33346749 PMCID: PMC7803491 DOI: 10.18632/aging.202396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Ring finger protein 2 (RNF2) is an important component of polycomb repressive complex 1. RNF2 is upregulated in many kinds of tumors, and elevated RNF2 expression is associated with a poor prognosis in certain cancers. To assess the function of RNF2 in colorectal cancer, we examined RNF2 protein levels in 313 paired colorectal cancer tissues and adjacent normal tissues. We then analyzed the association of RNF2 expression with the patients’ clinicopathologic features and prognoses. RNF2 expression was upregulated in colorectal cancer tissues and was associated with the tumor differentiation status, tumor stage and prognosis. In colorectal cancer cell lines, downregulation of RNF2 inhibited cell proliferation and induced apoptosis. Gene microarray analysis revealed that early growth response 1 (EGR1) was upregulated in RNF2-knockdown cells. Knocking down EGR1 partially reversed the inhibition of cell proliferation and the induction of apoptosis in RNF2-knockdown cells. RNF2 was enriched at the EGR1 promoter, where it mono-ubiquitinated histone H2A, thereby inhibiting EGR1 expression. These results indicate that RNF2 is oncogenic in colorectal cancer and may promote disease progression by inhibiting EGR1 expression. RNF2 is thus a potential prognostic marker and therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Feilong Wei
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Haoren Jing
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Ming Wei
- Urology Department of No. 989 Hospital, Joint Logistics Support Force of PLA, Luoyang 471000, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Meng Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Bo Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Lingling Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yi Zhou
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Komiya S, Nagano S, Setoguchi T. Current therapeutic modalities and newly designed gene therapy for refractory sarcomas. J Orthop Sci 2019; 24:764-769. [PMID: 31196729 DOI: 10.1016/j.jos.2018.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 10/26/2022]
Affiliation(s)
- Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan; Shinkado Orthopaedic Clinic, 1-8-16 Chugo, Satsuma-Sendai, 895-0072, Japan.
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
6
|
Screening of disorders associated with osteosarcoma by integrated network analysis. Biosci Rep 2019; 39:BSR20190235. [PMID: 30936265 PMCID: PMC6527930 DOI: 10.1042/bsr20190235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022] Open
Abstract
Osteosarcoma is a common malignant bone tumor in children and adolescents under the age of 20. However, research on the pathogenesis and treatment of osteosarcoma is still insufficient. In the present study, based on gene-phenotype correlation network, an analysis was performed to screen disorders related to osteosarcoma. First, we analyzed the differential expression of osteosarcoma in two groups according to different types of osteosarcoma and screened the differentially expressed genes (DEGs) related to osteosarcoma. Further, these DEG coexpression modules were obtained. Finally, we identified a series of regulatory factors, such as endogenous genes, transcription factors (TFs), and ncRNAs, which have potential regulatory effects on osteosarcoma, based on the prediction analysis of related network of gene phenotypes. A total of 3767 DEGs of osteosarcoma were identified and clustered them into 20 osteosarcoma-related dysfunction modules. And there were 38 endogenous genes (including ARF1, HSP90AB1, and TUBA1B), 53 TFs (including E2F1, NFKB1, and EGR1), and 858 ncRNAs (including MALAT1, miR-590-3p, and TUG1) were considered as key regulators of osteosarcoma through a series of function enrichment analysis and network analysis. Based on the results of the present study, we can show a new way for biologists and pharmacists to reveal the potential molecular mechanism of osteosarcoma typing, and provide valuable reference for different follow-up treatment options.
Collapse
|
7
|
Liu Y, Guan J, Chen X. Identification of Differentially Expressed Genes under the Regulation of Transcription Factors in Osteosarcoma. Pathol Oncol Res 2018; 25:1091-1102. [PMID: 30411296 DOI: 10.1007/s12253-018-0519-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
The present study was to investigate and identify the differentially expressed genes (DEGs) in the transcriptional regulatory network of osteosarcoma (OS). The gene expression dataset from Gene Expression Omnibus (GEO) datasets was downloaded. DEGs were identified and their functional annotation was also conducted. In addition, differentially expressed transcription factors (TFs) and the regulatory genes were identified. The electronic validation was used to verify the expression of selected genes. The integrated analysis led to 932 DEGs. The results of functional annotation indicated that these DEGs significantly enriched in the p53 signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. ZNF354C, NFIC, NFATC2, SP2, FOXO3, EGR1, ZEB1, RREB1, EGR2 and SRF were covered by most TFs. The expression levels of NFIC and EGR2 in electronic validation were compatible with our bio-informatics result. In conclusion, the deregulation of these genes may provide valuable information in understanding the underlying molecular mechanism in the OS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China
| | - Jianzhong Guan
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China.
| | - Xiaotian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, ChangHuai Road, Bengbu, 233004, Anhui Province, China
| |
Collapse
|
8
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Pang Y, Zhao J, Fowdur M, Liu Y, Wu H, He M. To Explore the Mechanism of the GRM4 Gene in Osteosarcoma by RNA Sequencing and Bioinformatics Approach. Med Sci Monit Basic Res 2018; 24:16-25. [PMID: 29339716 PMCID: PMC5782838 DOI: 10.12659/msmbr.908107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Glutamate metabotropic receptor 4 (GRM4) has been correlated with the pathogenesis of osteosarcoma. The objective of this study was to explore the underlying molecular mechanism of GRM4 in osteosarcoma. Material/Methods The expression levels of GRM4 in four human osteosarcoma cell lines and hFOB1.19 cells were examined by real-time quantitative PCR (RT-qPCR). The U2OS cells of the highest GRM4 expression were transfected with lentivirus-mediated small interfering RNA (siRNA). The differentially expressed genes (DEGs) after GRM4 gene silencing were screened through RNA sequencing, and analyzed by bioinformatics. Additionally, the transcription factors (TFs) targeting GRM4 were predicted and the downstream protein-protein interaction (PPI) network was constructed using the bioinformatics approach. Results A total of 51 significant DEGs were obtained, including 14 upregulated and 37 downregulated DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs indicated that four significant enrichment pathways were obtained. A total of six TFs that could be involved in the transcriptional regulation of GRM4 were detected. The results showed that 182 genes in the PPI network were significantly enriched in 14 pathways. The chemokines and chemokine receptors were found to be significantly enriched in three pathways. Conclusions The DEGs in the four significant enrichment pathways might participate in the development and progression of osteosarcoma through GRM4. The results revealed that EGR1 and CTCF are probably involved in the transcriptional regulation of GRM4, which participates in the progress of osteosarcoma by interacting with chemokines and their receptors.
Collapse
Affiliation(s)
- Yunguo Pang
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mitra Fowdur
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yun Liu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hao Wu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
10
|
Wang Q. CpG methylation patterns are associated with gene expression variation in osteosarcoma. Mol Med Rep 2017; 16:901-907. [DOI: 10.3892/mmr.2017.6635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/27/2017] [Indexed: 11/05/2022] Open
|
11
|
Hayward CPM, Liang M, Tasneem S, Soomro A, Waye JS, Paterson AD, Rivard GE, Wilson MD. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes. PLoS One 2017; 12:e0173991. [PMID: 28301587 PMCID: PMC5354430 DOI: 10.1371/journal.pone.0173991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/01/2017] [Indexed: 12/13/2022] Open
Abstract
Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD in a megakaryocyte-specific manner.
Collapse
Affiliation(s)
- Catherine P. M. Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
- * E-mail: (CPMH); (MDW)
| | - Minggao Liang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Asim Soomro
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - John S. Waye
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, ON, Canada
| | - Andrew D. Paterson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalla Lana School of Public Health and Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Georges E. Rivard
- Hematology/ Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
- * E-mail: (CPMH); (MDW)
| |
Collapse
|
12
|
Wang TK, Lin YM, Lo CM, Tang CH, Teng CLJ, Chao WT, Wu MH, Liu CS, Hsieh M. Oncogenic roles of carbonic anhydrase 8 in human osteosarcoma cells. Tumour Biol 2015; 37:7989-8005. [PMID: 26711783 DOI: 10.1007/s13277-015-4661-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/27/2022] Open
Abstract
Carbonic anhydrase 8 (CA8), a member of the carbonic anhydrase family, is one of the three isozymes that do not catalyze the reversible hydration of carbon dioxide due to the lack of one important histidine. In the present study, we observed increased expression of CA8 in more aggressive types of human osteosarcoma (OS) cells and found that CA8 expression is correlated with disease stages, such that more intense expression occurs in the disease late stage. We also demonstrated that overexpression of CA8 in human OS (HOS) cells significantly increased cell proliferation both in vitro and in vivo. Downregulated CA8 sensitized cells to apoptotic stress induced by staurosporine and cisplatin, suggesting a specific role of CA8 to protect cells from stresses. In addition, downregulation of CA8 in HOS cells reduced cell invasion and colony formation ability in soft agar and further decreased matrix metalloproteinase 9 and focal adhesion kinase expression, indicating that CA8 might facilitate cancer cell invasion via the activation of FAK-MMP9 signaling. Interestingly, HOS cells with CA8 knockdown showed a significant decrease in glycolytic activity and cell death under glucose withdrawal, further indicating that CA8 may be involved in regulating aerobic glycolysis and enhancing cell viability. Knockdown of CA8 significantly decreased phosphorylated Akt expression suggesting that the oncogenic role of CA8 may be mediated by the regulation of Akt activation through p-Akt induction. Importantly, the inhibition of glycolysis by 2-deoxyglucose sensitized CA8 HOS-CA8-myc cells to cisplatin treatment under low glucose condition, highlighting a new therapeutic option for OS cancer.
Collapse
Affiliation(s)
- Tze-Kai Wang
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Yu-Ming Lin
- Department of Orthopedic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Che-Min Lo
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China.,Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China
| | - Min Huan Wu
- Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China.,Physical Education Office, Tunghai University, Taichung, Taiwan, Republic of China
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
| | - Mingli Hsieh
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Taichung, 407, Taiwan, Republic of China. .,Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
13
|
Hairy/enhancer-of-split related with YRPW motif protein 1 promotes osteosarcoma metastasis via matrix metallopeptidase 9 expression. Br J Cancer 2015; 112:1232-40. [PMID: 25742474 PMCID: PMC4385965 DOI: 10.1038/bjc.2015.84] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/23/2015] [Accepted: 02/04/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Activation of the Notch pathway has been reported in various types of cancers. However, the role of the hairy/enhancer-of-split related with YRPW motif protein 1 (HEY1) in osteosarcoma is unknown. We examined the function of HEY1 in osteosarcoma. METHODS Expression of HEY1 was studied in human osteosarcoma. The effects of HEY1 in osteosarcoma were evaluated in vitro and in a xenograft model. Moreover, we examined the function of matrix metallopeptidase 9 (MMP9) as a downstream effector of HEY1. RESULTS HEY1 was upregulated in human osteosarcoma. Knockdown of HEY1 inhibited the invasion of osteosarcoma cell lines. In contrast, the forced expression of HEY1 increased the invasion of mesenchymal stem cell. In addition, lung metastases were significantly inhibited by the knockdown of HEY1. We found that MMP9 was a downstream effector of HEY1 that promotes the invasion of osteosarcoma cells. Knockdown of HEY1 decreased the expression of MMP9. Addition of MMP9 rescued the invasion of osteosarcoma cells that had been rendered less invasive by knockdown of HEY1 expression. CONCLUSIONS Our findings suggested that HEY1 augmented the metastasis of osteosarcoma via upregulation of MMP9 expression. Therefore, inhibition of HEY1 may be a novel therapeutic strategy for preventing osteosarcoma metastasis.
Collapse
|
14
|
Lin HY, Liou CW, Chen SD, Hsu TY, Chuang JH, Wang PW, Huang ST, Tiao MM, Chen JB, Lin TK, Chuang YC. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion 2015; 22:31-44. [PMID: 25746175 DOI: 10.1016/j.mito.2015.02.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 02/01/2023]
Abstract
Adult mesenchymal stem cell (MSC)-conducted mitochondrial transfer has been recently shown to rescue cellular bioenergetics and prevent cell death caused by mitochondrial dysfunction. Wharton's jelly-derived MSCs (WJMSCs) harvested from postpartum umbilical cords are an accessible and abundant source of stem cells. This study aimed to determine the capability of WJMSCs to transfer their own mitochondria and rescue impaired oxidative phosphorylation (OXPHOS) and bioenergetics caused by mitochondrial DNA defects. To do this, WJMSCs were co-cultured with mitochondrial DNA (mtDNA)-depleted ρ(0) cells and the recapture of mitochondrial function was evaluated. WJMSCs were shown to be capable of transferring their own mitochondria into ρ(0) cells and underwent interorganellar mixture within these cells. Permissive culture media (BrdU-containing and pyruvate- and uridine-free) sieved out a survival cell population from the co-cultured WJMSCs (BrdU-sensitive) and ρ(0) cells (pyruvate/uridine-free). The survival cells had mtDNA identical to that of WJMSCs, whereas they expressed cellular markers identical to that of ρ(0) cells. Importantly, these ρ(0)-plus -WJMSC-mtDNA (ρ(+W)) cells recovered the expression of mtDNA-encoded proteins and exhibited functional oxygen consumption and respiratory control, as well as the activity of electron transport chain (ETC) complexes I, II, III and IV. In addition, ETC complex V-inhibitor-sensitive ATP production and metabolic shifting were also recovered. Furthermore, cellular behaviors including attachment-free proliferation, aerobic viability and OXPHOS-reliant cellular motility were also regained after mitochondrial transfer by WJMSCs. The therapeutic effect of WJMSCs-derived mitochondrial transfer was able to stably sustain for at least 45 passages. In conclusion, this study suggests that WJMSCs may serve as a potential therapeutic strategy for diseases linked to mitochondrial dysfunction through the donation of healthy mitochondria to cells with genetic mitochondrial defects.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Jiin-Haur Chuang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Pei-Wen Wang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Sheng-Teng Huang
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jin-Bor Chen
- Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Department of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Mitochondrial Research Unit, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Yao-Chung Chuang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
15
|
Boeckx C, Benítez-Burraco A. Globularity and language-readiness: generating new predictions by expanding the set of genes of interest. Front Psychol 2014; 5:1324. [PMID: 25505436 PMCID: PMC4243498 DOI: 10.3389/fpsyg.2014.01324] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
This study builds on the hypothesis put forth in Boeckx and Benítez-Burraco (2014), according to which the developmental changes expressed at the levels of brain morphology and neural connectivity that resulted in a more globular braincase in our species were crucial to understand the origins of our language-ready brain. Specifically, this paper explores the links between two well-known 'language-related' genes like FOXP2 and ROBO1 implicated in vocal learning and the initial set of genes of interest put forth in Boeckx and Benítez-Burraco (2014), with RUNX2 as focal point. Relying on the existing literature, we uncover potential molecular links that could be of interest to future experimental inquiries into the biological foundations of language and the testing of our initial hypothesis. Our discussion could also be relevant for clinical linguistics and for the interpretation of results from paleogenomics.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | | |
Collapse
|
16
|
Nagao-Kitamoto H, Setoguchi T, Kitamoto S, Nakamura S, Tsuru A, Nagata M, Nagano S, Ishidou Y, Yokouchi M, Kitajima S, Yoshioka T, Maeda S, Yonezawa S, Komiya S. Ribosomal protein S3 regulates GLI2-mediated osteosarcoma invasion. Cancer Lett 2014; 356:855-61. [PMID: 25449781 DOI: 10.1016/j.canlet.2014.10.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022]
Abstract
It has been reported that GLI2 promotes proliferation, migration, and invasion of mesenchymal stem cell and osteosarcoma cells. To examine the molecular mechanisms of GLI2-mediated osteosarcoma metastasis, we performed a microarray analysis. The gene encoding ribosomal protein S3 (RPS3) was identified as a target of GLI2. Real-time PCR revealed that RPS3 was upregulated in osteosarcoma cell lines compared with normal osteoblast cells. Knockdown of GLI2 decreased RPS3 expression, whereas forced expression of a constitutively active form of GLI2 upregulated the expression of RPS3. RPS3 knockdown by siRNA decreased the migration and invasion of osteosarcoma cells. Although forced expression of constitutively active GLI2 increased the migration of human mesenchymal stem cells, knockdown of RPS3 reduced the up-regulated migration. In contrast, forced expression of RPS3 increased migration and invasion of osteosarcoma cells. Moreover, reduction of migration by GLI2 knockdown was rescued by forced expression of RPS3. Immunohistochemical analysis showed that RPS3 expression was increased in primary osteosarcoma lesions with lung metastases compared with those without. These findings indicate that GLI2-RPS3 signaling may be a marker of invasive osteosarcoma and a therapeutic target for patients with osteosarcoma.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Sho Kitamoto
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shunsuke Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Arisa Tsuru
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahito Nagata
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Ishidou
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Yokouchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinichi Kitajima
- Department of Surgical Pathology, Kagoshima University Hospital, Kagoshima, Japan
| | - Takako Yoshioka
- Department of Molecular and Cellular Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
17
|
Nagao-Kitamoto H, Nagata M, Nagano S, Kitamoto S, Ishidou Y, Yamamoto T, Nakamura S, Tsuru A, Abematsu M, Fujimoto Y, Yokouchi M, Kitajima S, Yoshioka T, Maeda S, Yonezawa S, Komiya S, Setoguchi T. GLI2 is a novel therapeutic target for metastasis of osteosarcoma. Int J Cancer 2014; 136:1276-84. [PMID: 25082385 DOI: 10.1002/ijc.29107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/27/2014] [Indexed: 11/05/2022]
Abstract
Aberrant activation of the Hedgehog (Hh) pathway has been reported in several malignancies. We previously demonstrated that knockdown of GLI2 inhibited proliferation of osteosarcoma cells through regulation of the cell cycle. In this study, we analyzed the function of GLI2 in the pathogenesis of osteosarcoma metastasis. Immunohistochemical studies showed that GLI2 was overexpressed in patient osteosarcoma specimens. Knockdown of GLI2 inhibited migration and invasion of osteosarcoma cells. In contrast, the forced expression of constitutively active GLI2 in mesenchymal stem cells promoted invasion. In addition, xenograft models showed that knockdown of GLI2 decreased lung metastasis of osteosarcomas. To examine clinical applications, we evaluated the efficacy of arsenic trioxide (ATO), which is a Food and Drug Administration-approved antitumor drug, on osteosarcoma cells. ATO treatment suppressed the invasiveness of osteosarcoma cells by inhibiting the transcriptional activity of GLI2. In addition, the combination of Hh inhibitors including ATO, vismodegib and GANT61 prevented migration and metastasis of osteosarcoma cells. Consequently, our findings suggested that GLI2 regulated metastasis as well as the progression of osteosarcomas. Inhibition of the GLI2 transcription may be an effective therapeutic method for preventing osteosarcoma metastasis.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Echenique-Robba P, Nelo-Bazán MA, Carrodeguas JA. Reducing the standard deviation in multiple-assay experiments where the variation matters but the absolute value does not. PLoS One 2013; 8:e78205. [PMID: 24205158 PMCID: PMC3813515 DOI: 10.1371/journal.pone.0078205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022] Open
Abstract
When the value of a quantity x for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal design, scientists might often obtain quite different measurements. As a consequence, some systems' averages present standard deviations that are too large to render statistically significant results. This work presents a novel correction method of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase their statistical significance. Two conditions are to be met: the inter-system variations of x matter while its absolute value does not, and a similar tendency in the values of x must be present in the different assays (or in other words, the results corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty.
Collapse
Affiliation(s)
- Pablo Echenique-Robba
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
- Zaragoza Scientific Center for Advanced Modeling, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Fsica Teórica, Universidad de Zaragoza, Zaragoza, Spain
- Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain
- * E-mail:
| | - María Alejandra Nelo-Bazán
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
- Fundación Gran Mariscal de Ayacucho (Fundayacucho), La Urbina, Venezuela
- Departamento de Bioqumica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - José A. Carrodeguas
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
- Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain
- Departamento de Bioqumica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
Bhattacharyya M, Bandyopadhyay S. Studying the differential co-expression of microRNAs reveals significant role of white matter in early Alzheimer's progression. MOLECULAR BIOSYSTEMS 2013; 9:457-66. [PMID: 23344858 DOI: 10.1039/c2mb25434d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs, which show tissue-specific regulatory activity on genes. Expression profiling of miRNAs is an important step for understanding the pathology of Alzheimer's disease (AD), a neurodegenerative disorder originating in the brain. Recent studies highlight that miRNAs enriched in gray matter (GM) and white matter (WM) of AD brains show differential expression. However, no in-depth study has yet been conducted on analysing the differential co-expression of pairs of miRNAs over GM and WM. Two genes (or miRNAs) are said to be co-expressed if their expression profiles change similarly over a number of samples. A pair of co-expressed genes under a condition type (or phenotype) may not remain co-expressed, or get contra-expressed, under another condition. Such pairs of genes are referred to as differentially co-expressed. Such an investigation in the early stage of AD is reported in this article. A network of differentially co-expressed miRNAs in GM and WM is first built. Analysis of the differential co-expression property reveals that such a network can not have any cycle. We use the notion of switching to distinguish two distinct types of differential co-expression patterns - a pair of miRNAs that are highly co-expressed in GM but does not remain so in WM, and vice versa. Based on this, we find the substructures, referred to as differentially co-expressed switching tree (DCST), that throughout have similar pattern of switching. The miR-423-5p emerges as a hub of the network. We extract subtrees of these DCSTs that have similar switching pattern throughout. These substructures are found to be both statistically and biologically significant. A large number of miRNAs obtained from the DCSTs are found to have association with AD, most of which are enriched in WM. This computational study therefore indicates a significant role of WM in early AD progression, a hitherto less acknowledged fact.
Collapse
Affiliation(s)
- Malay Bhattacharyya
- Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata - 700108, India
| | | |
Collapse
|
20
|
Nagao H, Setoguchi T, Kitamoto S, Ishidou Y, Nagano S, Yokouchi M, Abematsu M, Kawabata N, Maeda S, Yonezawa S, Komiya S. RBPJ is a novel target for rhabdomyosarcoma therapy. PLoS One 2012; 7:e39268. [PMID: 22792167 PMCID: PMC3392254 DOI: 10.1371/journal.pone.0039268] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/22/2012] [Indexed: 01/20/2023] Open
Abstract
The Notch pathway regulates a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. In addition, the Notch pathway plays an important role in controlling tumorigenesis. However, the role of RBPJ, a transcription factor in the Notch pathway, in the development of tumors is largely unknown. In this study, we focused on the role of RBPJ in the pathogenesis of rhabdomyosarcoma (RMS). Our data showed that Notch pathway genes were upregulated and activated in human RMS cell lines and patient samples. Inhibition of the Notch pathway by a γ-secretase inhibitor (GSI) decreased the in vitro proliferation of RMS cells. Knockdown of RBPJ expression by RNAi inhibited the anchorage-independent growth of RMS cells and the growth of xenografts in vivo. Additionally, overexpression of RBPJ promoted the anchorage-independent growth of RMS cells. Further, we revealed that RBPJ regulated the cell cycle in RMS xenograft tumors and decreased proliferation. Our findings suggest that RBPJ regulates the RMS growth, and that the inhibition of RBPJ may be an effective therapeutic approach for patients with RMS.
Collapse
Affiliation(s)
- Hiroko Nagao
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Setoguchi
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Sho Kitamoto
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuhiro Ishidou
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Yokouchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiko Abematsu
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- The Near-Future Locomotor Organ Medicine Creation Course (Kusunoki Kai), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naoya Kawabata
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shingo Maeda
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Setsuro Komiya
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
21
|
Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells. Autophagy 2012; 7:1462-71. [PMID: 22082874 DOI: 10.4161/auto.7.12.17892] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.
Collapse
Affiliation(s)
- Fumito Tanabe
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima Prefecture, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|