1
|
Shen G, Chen L, Liu Y, Zhu Q, Kang Y, Luo X, Wang F, Wang W. ANK3 rs10994336 and ZNF804A rs7597593 polymorphisms: genetic interaction for emotional and behavioral symptoms of alcohol withdrawal syndrome. BMC Psychiatry 2024; 24:335. [PMID: 38702695 PMCID: PMC11067186 DOI: 10.1186/s12888-024-05787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE Alcohol withdrawal syndrome (AWS) is a complex condition associated with alcohol use disorder (AUD), characterized by significant variations in symptom severity among patients. The psychological and emotional symptoms accompanying AWS significantly contribute to withdrawal distress and relapse risk. Despite the importance of neural adaptation processes in AWS, limited genetic investigations have been conducted. This study primarily focuses on exploring the single and interaction effects of single-nucleotide polymorphisms in the ANK3 and ZNF804A genes on anxiety and aggression severity manifested in AWS. By examining genetic associations with withdrawal-related psychopathology, we ultimately aim to advance understanding the genetic underpinnings that modulate AWS severity. METHODS The study involved 449 male patients diagnosed with alcohol use disorder. The Self-Rating Anxiety Scale (SAS) and Buss-Perry Aggression Questionnaire (BPAQ) were used to assess emotional and behavioral symptoms related to AWS. Genomic DNA was extracted from peripheral blood, and genotyping was performed using PCR. RESULTS Single-gene analysis revealed that naturally occurring allelic variants in ANK3 rs10994336 (CC homozygous vs. T allele carriers) were associated with mood and behavioral symptoms related to AWS. Furthermore, the interaction between ANK3 and ZNF804A was significantly associated with the severity of psychiatric symptoms related to AWS, as indicated by MANOVA. Two-way ANOVA further demonstrated a significant interaction effect between ANK3 rs10994336 and ZNF804A rs7597593 on anxiety, physical aggression, verbal aggression, anger, and hostility. Hierarchical regression analyses confirmed these findings. Additionally, simple effects analysis and multiple comparisons revealed that carriers of the ANK3 rs10994336 T allele experienced more severe AWS, while the ZNF804A rs7597593 T allele appeared to provide protection against the risk associated with the ANK3 rs10994336 mutation. CONCLUSION This study highlights the gene-gene interaction between ANK3 and ZNF804A, which plays a crucial role in modulating emotional and behavioral symptoms related to AWS. The ANK3 rs10994336 T allele is identified as a risk allele, while the ZNF804A rs7597593 T allele offers protection against the risk associated with the ANK3 rs10994336 mutation. These findings provide initial support for gene-gene interactions as an explanation for psychiatric risk, offering valuable insights into the pathophysiological mechanisms involved in AWS.
Collapse
Affiliation(s)
- Guanghui Shen
- Key Laboratory of Psychoneuroendocrinology, Wenzhou Seventh People's Hospital, Wenzhou, 325006, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qi Zhu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Hohhot, China
| | - Xinguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China.
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Roles and mechanisms of ankyrin-G in neuropsychiatric disorders. Exp Mol Med 2022; 54:867-877. [PMID: 35794211 PMCID: PMC9356056 DOI: 10.1038/s12276-022-00798-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022] Open
Abstract
Ankyrin proteins act as molecular scaffolds and play an essential role in regulating cellular functions. Recent evidence has implicated the ANK3 gene, encoding ankyrin-G, in bipolar disorder (BD), schizophrenia (SZ), and autism spectrum disorder (ASD). Within neurons, ankyrin-G plays an important role in localizing proteins to the axon initial segment and nodes of Ranvier or to the dendritic shaft and spines. In this review, we describe the expression patterns of ankyrin-G isoforms, which vary according to the stage of brain development, and consider their functional differences. Furthermore, we discuss how posttranslational modifications of ankyrin-G affect its protein expression, interactions, and subcellular localization. Understanding these mechanisms leads us to elucidate potential pathways of pathogenesis in neurodevelopmental and psychiatric disorders, including BD, SZ, and ASD, which are caused by rare pathogenic mutations or changes in the expression levels of ankyrin-G in the brain. Mutations affecting the production, distribution, or function of the ankyrin-G protein may contribute to a variety of different neuropsychiatric disorders. Ankyrin-G is typically observed at the synapses between neurons, and contributes to intercellular adhesion and signaling along with other important functions. Peter Penzes and colleagues at Northwestern University, Chicago, USA, review the biology of this protein and identify potential mechanisms by which ankyrin-G mutations might impair healthy brain development. Mutations in the gene encoding this protein are strongly linked with bipolar disorder, but have also been tentatively connected to autism spectrum disorders and schizophrenia. The authors highlight physiologically important interactions with a diverse array of other brain proteins, which can in turn be modulated by various chemical modifications to ankyrin-G, and conclude that drugs that influence these modifications could have potential therapeutic value.
Collapse
|
3
|
Tang L, Liu J, Zhu Y, Duan J, Chen Y, Wei Y, Gong X, Wang F, Tang Y. ANK3 Gene Polymorphism Rs10994336 Influences Executive Functions by Modulating Methylation in Patients With Bipolar Disorder. Front Neurosci 2021; 15:682873. [PMID: 34421516 PMCID: PMC8371237 DOI: 10.3389/fnins.2021.682873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 01/11/2023] Open
Abstract
Background: A large body of evidence suggests that epigenetic modification including DNA methylation plays a critical role in BD's pathogenesis while the identification of methylation quantitative trait loci (meQTLs) shed light on the interpretation of the function of genetic variants in non-coding regions. The intronic single nucleotide polymorphism (SNP) rs10994336 within the ANK3 has emerged as one of the most replicated risk variants for bipolar disorder (BD) in genome-wide association studies. Whether rs10994336 functions as a meQTL to mediate the association between genotype and phenotype remains unclear. Method: A total of 154 patients with BD and 181 healthy controls (HC) were recruited. The genotypes of rs10994336 and methylation levels of CpG sites within ANK3 were tested. Executive functions were assessed using a computerized version of the Wisconsin Card Sorting Test (WCST). Results: Bipolar disorder patients with the risk-T allele of rs10994336 scored lower on tests of executive function compared to homozygous CC carriers, after controlling for age, gender, and education level. No significant difference was found in HC individuals. The risk-T allele is associated with a lower methylation level of CpG site cg02172182 in HC after multiple corrections and replicated in the BD group in the same direction. Further mediation analysis revealed that the cg02172182 methylation significantly mediated the association between the polymorphism rs10994336 and PE index of WCST in patients with BD. Conclusion: Our study suggests that BD-related genetic variant rs10994336 in ANK3 impacts executive functions by modulating ANK3 methylation, supporting the theory that methylation acts as a mediator between genotype and phenotype.
Collapse
Affiliation(s)
- Lili Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Liu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yifan Chen
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Janiri D, Kotzalidis GD, di Luzio M, Giuseppin G, Simonetti A, Janiri L, Sani G. Genetic neuroimaging of bipolar disorder: a systematic 2017-2020 update. Psychiatr Genet 2021; 31:50-64. [PMID: 33492063 DOI: 10.1097/ypg.0000000000000274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is evidence of genetic polymorphism influences on brain structure and function, genetic risk in bipolar disorder (BD), and neuroimaging correlates of BD. How genetic influences related to BD could be reflected on brain changes in BD has been efficiently reviewed in a 2017 systematic review. We aimed to confirm and extend these findings through a Preferred Reporting Items for Systematic reviews and Meta-Analyses-based systematic review. Our study allowed us to conclude that there is no replicated finding in the timeframe considered. We were also unable to further confirm prior results of the BDNF gene polymorphisms to affect brain structure and function in BD. The most consistent finding is an influence of the CACNA1C rs1006737 polymorphism in brain connectivity and grey matter structure and function. There was a tendency of undersized studies to obtain positive results and large, genome-wide polygenic risk studies to find negative results in BD. The neuroimaging genetics in BD field is rapidly expanding.
Collapse
Affiliation(s)
- Delfina Janiri
- Department of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
- Department of Psychiatry and Neurology, Sapienza University of Rome
| | - Georgios D Kotzalidis
- NESMOS Department, Sant'Andrea University Hospital, School of Medicine and Psychology, Sapienza University
| | - Michelangelo di Luzio
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Giuseppin
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio Simonetti
- Department of Psychiatry and Neurology, Sapienza University of Rome
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Luigi Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Chen WY, Chen JC, Cheng YC, Liu HC, Kuo PH, Huang MC. Gene polymorphisms of cognitive function in patients with bipolar disorder: A systematic review and meta-analysis. TAIWANESE JOURNAL OF PSYCHIATRY 2020. [DOI: 10.4103/tpsy.tpsy_2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Mack AA, Gao Y, Ratajczak MZ, Kakar S, El-Mallakh RS. Review of animal models of bipolar disorder that alter ion regulation. Neurosci Biobehav Rev 2019; 107:208-214. [PMID: 31521699 DOI: 10.1016/j.neubiorev.2019.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Accurate modeling of psychiatric disorders in animals is essential for advancement in our understanding and treatment of the severe mental illnesses. Of the multiple models available for bipolar illness, the ones that disrupt ion flux are currently the only ones that meet the three criteria for validity: face validity, construct validity, and predictive validity. METHODS A directed review was performed to evaluate animal models for mania in which ion dysregulation was the key intervention. RESULTS Three models are identified. All focus on disruption of the sodium potassium pump. One is pharmacologic and requires surgical insertion of an intracerebroventricular (ICV) cannula and subsequent administration of ouabain. Two are genetic and are based on heterozygote knockout (KO) of the alpha2 or alpha3 subunits of the sodium pump. Alpha2 KOs are believed to have altered glial function, and they do not appear to have a full array of manic symptoms. Alpha3 KOs appear to be the best characterized animal model for bipolar disorder currently available. CONCLUSION Animal models that disrupt ion regulation are more inclined to model both mania and depression; and are thus the most promising models available. However, other models are important for demonstrating mechanisms in important pathophysiologic aspect of bipolar disorder.
Collapse
Affiliation(s)
- Aaron A Mack
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA.
| | - Yonglin Gao
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- University of Louisville School of Medicine, Department of Medicine, Louisville, KY, USA
| | - Sham Kakar
- University of Louisville School of Medicine, Department of Physiology, Louisville, KY, USA
| | - Rif S El-Mallakh
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA
| |
Collapse
|
7
|
Khalid M, Driessen TM, Lee JS, Tejwani L, Rasool A, Saqlain M, Shiaq PA, Hanif M, Nawaz A, DeWan AT, Raja GK, Lim J. Association of CACNA1C with bipolar disorder among the Pakistani population. Gene 2018; 664:119-126. [PMID: 29684488 DOI: 10.1016/j.gene.2018.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
Abstract
Many single nucleotide polymorphisms (SNPs) have been identified for Bipolar disorder (BD), but association between SNPs and BD can vary depending on the population tested. SNPs rs10994336 and rs9804190 in ANK3 and rs1006737 in CACNA1C have emerged as the most highly replicated SNPs significantly associated with BD. The aim of the present study was to assess the association of these SNPs with BD in the Pakistani population, which has never before been examined. A total of 120 BD and 120 control individuals from Pakistan were examined in this analysis. Genotyping results indicated that rs1006737 in CACNA1C was significantly associated with BD, while rs10994336 or rs9804190 in ANK3 was not significant when examined individually. However, risk score assessment found that the presence of two or more risk alleles was significantly associated with disease, indicating that risk alleles from ANK3 and CACNA1C may additively contribute to BD. A protein-protein interaction network was generated using STRING to probe the relationship between ANK3 and CACNA1C interactors and their associations with BD. While none of the interactors are directly linked to BD, they play a role in pathways linked to BD, including oxytocin and dopamine signaling pathways. Collectively, these results reveal a significant association of CACNA1C with BD among the Pakistani population, extending results from other ethnic groups to the Pakistani population for the first time.
Collapse
Affiliation(s)
- Madiha Khalid
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Pakistan; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Terri M Driessen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jong Seo Lee
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA
| | - Leon Tejwani
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Asad Rasool
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Muhammad Saqlain
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Pakeeza Arzoo Shiaq
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Muhammad Hanif
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Amber Nawaz
- Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06510, USA.
| | - Ghazala Kaukab Raja
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Janghoo Lim
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Abstract
OBJECTIVE Converging evidence has suggested ankyrin 3 (ANK3) as a risk gene for bipolar disorder (BD). However, association studies investigating its genetic variants and BD susceptibility have reported inconsistent results. In the present meta-analysis, we aimed to establish whether ANK3 single nucleotide polymorphisms (SNPs) confer increased risk for BD. METHODS PubMed, Medline, PsycINFO, Embase, and Scopus were searched for literature published up to January 2017. Fourteen case-control studies met our eligibility criteria. We targeted ANK3 SNPs that have been reported by three or more studies to be included in the current meta-analysis, resulting in a final list of four SNPs: rs10994336, rs9804190, rs10994397, and rs1938526. Odds ratios (ORs) for the allele model were calculated using a random effect model as a measure of association. Additional experimental characteristics and between-study heterogeneity were explored using sensitivity test, subgroup analysis, and meta-regression techniques. Publication bias was also assessed using Egger's test and rank correlation test. RESULTS Overall, a significant association was found between BD and rs10994336 (OR=1.18; 95% confidence interval: 1.06-1.31; P=0.0027) as well as rs1938526 (OR=1.16; 95% confidence interval: 1.06-1.28; P=0.0016). Subsequent sensitivity analysis and publication bias test reaffirmed the stability and consistency of these results. CONCLUSION The current meta-analysis provides corroborating evidence suggesting two ANK3 SNPs are associated with an increased susceptibility for developing BD. However, broader coverage is needed on less explored SNPs to further elucidate the genetic effect of other ANK3 variants that may harbor potential BD risk.
Collapse
|
9
|
Abstract
Variation in telomere length is heritable and is currently considered a promising biomarker of susceptibility for neuropsychiatric disorders, particularly because of its association with memory function and hippocampal morphology. Here, we investigate telomere length in connection to familial risk and disease expression in bipolar disorder (BD). We used quantitative PCRs and a telomere-sequence to single-copy-gene-sequence ratio method to determine telomere length in genomic DNA extracted from buccal smears from 63 patients with BD, 74 first-degree relatives (49 relatives had no lifetime psychopathology and 25 had a non-BD mood disorder), and 80 unrelated healthy individuals. Participants also underwent magnetic resonance imaging to determine hippocampal volumes and cognitive assessment to evaluate episodic memory using the verbal paired associates test. Telomere length was shorter in psychiatrically well relatives (p=0.007) compared with unrelated healthy participants. Telomere length was also shorter in relatives (regardless of psychiatric status; p<0.01) and patients with BD not on lithium (p=0.02) compared with lithium-treated patients with BD. In the entire sample, telomere length was positively associated with left and right hippocampal volume and with delayed recall. This study provides evidence that shortened telomere length is associated with familial risk for BD. Lithium may have neuroprotective properties that require further investigation using prospective designs.
Collapse
|
10
|
Pereira LP, Köhler CA, de Sousa RT, Solmi M, de Freitas BP, Fornaro M, Machado-Vieira R, Miskowiak KW, Vieta E, Veronese N, Stubbs B, Carvalho AF. The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies. Neurosci Biobehav Rev 2017; 79:87-109. [DOI: 10.1016/j.neubiorev.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
|
11
|
Frangou S, Dima D, Jogia J. Towards person-centered neuroimaging markers for resilience and vulnerability in Bipolar Disorder. Neuroimage 2016; 145:230-237. [PMID: 27622393 DOI: 10.1016/j.neuroimage.2016.08.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 08/01/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022] Open
Abstract
Improved clinical care for Bipolar Disorder (BD) relies on the identification of diagnostic markers that can reliably detect disease-related signals in clinically heterogeneous populations. At the very least, diagnostic markers should be able to differentiate patients with BD from healthy individuals and from individuals at familial risk for BD who either remain well or develop other psychopathology, most commonly Major Depressive Disorder (MDD). These issues are particularly pertinent to the development of translational applications of neuroimaging as they represent challenges for which clinical observation alone is insufficient. We therefore applied pattern classification to task-based functional magnetic resonance imaging (fMRI) data of the n-back working memory task, to test their predictive value in differentiating patients with BD (n=30) from healthy individuals (n=30) and from patients' relatives who were either diagnosed with MDD (n=30) or were free of any personal lifetime history of psychopathology (n=30). Diagnostic stability in these groups was confirmed with 4-year prospective follow-up. Task-based activation patterns from the fMRI data were analyzed with Gaussian Process Classifiers (GPC), a machine learning approach to detecting multivariate patterns in neuroimaging datasets. Consistent significant classification results were only obtained using data from the 3-back versus 0-back contrast. Using contrast, patients with BD were correctly classified compared to unrelated healthy individuals with an accuracy of 83.5%, sensitivity of 84.6% and specificity of 92.3%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their relatives with MDD, were respectively 73.1%, 53.9% and 94.5%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their healthy relatives were respectively 81.8%, 72.7% and 90.9%. We show that significant individual classification can be achieved using whole brain pattern analysis of task-based working memory fMRI data. The high accuracy and specificity achieved by all three classifiers suggest that multivariate pattern recognition analyses can aid clinicians in the clinical care of BD in situations of true clinical uncertainty regarding the diagnosis and prognosis.
Collapse
Affiliation(s)
- Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, USA.
| | - Danai Dima
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, USA; King's College London, UK; City University, UK
| | | |
Collapse
|
12
|
Zhao W, Zhang Q, Yu P, Zhang Z, Chen X, Gu H, Zhai J, Chen M, Du B, Deng X, Ji F, Wang C, Xiang YT, Li D, Wu H, Dong Q, Luo Y, Li J, Chen C. The ANK3 gene and facial affect processing: An ERP study. Am J Med Genet B Neuropsychiatr Genet 2016; 171:861-6. [PMID: 27177275 DOI: 10.1002/ajmg.b.32456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 01/25/2023]
Abstract
ANK3 is one of the most promising candidate genes for bipolar disorder (BD). A polymorphism (rs10994336) within the ANK3 gene has been associated with BD in at least three genome-wide association studies of BD [McGuffin et al., 2003; Kieseppä, 2004; Edvardsen et al., 2008]. Because facial affect processing is disrupted in patients with BD, the current study aimed to explore whether the BD risk alleles are associated with the N170, an early event-related potential (ERP) component related to facial affect processing. We collected data from two independent samples of healthy individuals (Ns = 83 and 82, respectively) to test the association between rs10994336 and an early event-related potential (ERP) component (N170) that is sensitive to facial affect processing. Repeated-measures analysis of covariance in both samples consistently revealed significant main effects of rs10994336 genotype (Sample I: F (1, 72) = 7.24, P = 0.009; Sample II: F (1, 69) = 11.81, P = 0.001), but no significant interaction of genotype × electrodes (Ps > 0.05) or genotype × emotional conditions (Ps > 0.05). These results suggested that rs10994336 was linked to early ERP component reflecting facial structural encoding during facial affect processing. These results shed new light on the brain mechanism of this risk SNP and associated disorders such as BD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Qiumei Zhang
- School of Mental Health, Jining Medical University, Jining, Shandong Province, P.R. China
| | - Ping Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Zhifang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Xiongying Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Huang Gu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, Jining, Shandong Province, P.R. China
| | - Min Chen
- School of Mental Health, Jining Medical University, Jining, Shandong Province, P.R. China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, Shandong Province, P.R. China
| | | | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, P.R. China
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Hongjie Wu
- Shengli Hospital of Shengli Petroleum Administration Bureau, Dongying, Shandong Province, P.R. China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Yuejia Luo
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, P.R. China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, California
| |
Collapse
|
13
|
O'Halloran R, Kopell BH, Sprooten E, Goodman WK, Frangou S. Multimodal Neuroimaging-Informed Clinical Applications in Neuropsychiatric Disorders. Front Psychiatry 2016; 7:63. [PMID: 27148092 PMCID: PMC4835492 DOI: 10.3389/fpsyt.2016.00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023] Open
Abstract
Recent advances in neuroimaging data acquisition and analysis hold the promise to enhance the ability to make diagnostic and prognostic predictions and perform treatment planning in neuropsychiatric disorders. Prior research using a variety of types of neuroimaging techniques has confirmed that neuropsychiatric disorders are associated with dysfunction in anatomical and functional brain circuits. We first discuss current challenges associated with the identification of reliable neuroimaging markers for diagnosis and prognosis in mood disorders and for neurosurgical treatment planning for deep brain stimulation (DBS). We then present data on the use of neuroimaging for the diagnosis and prognosis of mood disorders and for DBS treatment planning. We demonstrate how multivariate analyses of functional activation and connectivity parameters can be used to differentiate patients with bipolar disorder from those with major depressive disorder and non-affective psychosis. We also present data on connectivity parameters that mediate acute treatment response in affective and non-affective psychosis. We then focus on precision mapping of functional connectivity in native space. We describe the benefits of integrating anatomical fiber reconstruction with brain functional parameters and cortical surface measures to derive anatomically informed connectivity metrics within the morphological context of each individual brain. We discuss how this approach may be particularly promising in psychiatry, given the clinical and etiological heterogeneity of the disorders, and particularly in treatment response prediction and planning. Precision mapping of connectivity is essential for DBS. In DBS, treatment electrodes are inserted into positions near key gray matter nodes within the circuits considered relevant to disease expression. However, targeting white matter tracts that underpin connectivity within these circuits may increase treatment efficacy and tolerability therefore relevant for effective treatment. We demonstrate how this approach can be validated in the treatment of Parkinson's disease by identifying connectivity patterns that can be used as biomarkers for treatment planning and thus refine the traditional approach of DBS planning that uses only gray matter landmarks. Finally, we describe how this approach could be used in planning DBS treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Rafael O'Halloran
- Brain Imaging Center, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Brian H Kopell
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Wayne K Goodman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
14
|
Delvecchio G, Dima D, Frangou S. The effect of ANK3 bipolar-risk polymorphisms on the working memory circuitry differs between loci and according to risk-status for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:188-96. [PMID: 25711502 DOI: 10.1002/ajmg.b.32294] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polymorphisms at the rs10994336 and rs9804190 loci of the Ankyrin 3 (ANK3) gene have been strongly associated with increased risk for bipolar disorder (BD). However, their potential pathogenetic effect on BD-relevant neural circuits remains unknown. We examined the effect of BD-risk polymorphisms at rs10994336 and rs9804190 on the working memory (WM) circuit using functional magnetic resonance imaging (fMRI) data obtained from euthymic patients with BD (n = 41), their psychiatrically healthy first-degree relatives (n = 25) and unrelated individuals without personal or family history of psychiatric disorders (n = 46) while performing the N-back task. In unrelated healthy individuals, the rs10994336-risk-allele was associated with reduced activation of the ventral visual cortical components of the WM circuit while the rs9804190-risk-allele was associated with inefficient hyperactivation of the prefrontal cortical components of the WM. In patients and their healthy relatives, risk alleles at either loci were associated with hyperactivation in the ventral anterior cingulate cortex. Additionally, Rs9804190-risk-allele carriers with BD evidenced abnormal hyperactivation within the posterior cingulate cortex. This study provides new insights on the neurogenetic correlates of allelic variation at different genome-wide supported BD-risk associated ANK3 loci that support their involvement in BD and highlight the modulatory influence of increased background genetic risk for BD.
Collapse
Affiliation(s)
- Giuseppe Delvecchio
- Social Genetic and Developmental Psychiatry Center, Institute of Psychiatry, King's College London, London, UK
| | | | | |
Collapse
|
15
|
Wesseling H, Gottschalk MG, Bahn S. Targeted multiplexed selected reaction monitoring analysis evaluates protein expression changes of molecular risk factors for major psychiatric disorders. Int J Neuropsychopharmacol 2014; 18:pyu015. [PMID: 25539505 PMCID: PMC4368865 DOI: 10.1093/ijnp/pyu015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extensive research efforts have generated genomic, transcriptomic, proteomic, and functional data hoping to elucidate psychiatric pathophysiology. Selected reaction monitoring, a recently developed targeted proteomic mass spectrometric approach, has made it possible to evaluate previous findings and hypotheses with high sensitivity, reproducibility, and quantitative accuracy. METHODS Here, we have developed a labelled multiplexed selected reaction monitoring assay, comprising 56 proteins previously implicated in the aetiology of major psychiatric disorders, including cell type markers or targets and effectors of known psychopharmacological interventions. We analyzed postmortem anterior prefrontal cortex (Brodmann area 10) tissue of patients diagnosed with schizophrenia (n=22), bipolar disorder (n=23), and major depressive disorder with (n=11) and without (n=11) psychotic features compared with healthy controls (n=22). RESULTS Results agreed with several previous studies, with the finding of alterations of Wnt-signalling and glutamate receptor abundance predominately in bipolar disorder and abnormalities in energy metabolism across the neuropsychiatric disease spectrum. Calcium signalling was predominantly affected in schizophrenia and affective psychosis. Interestingly, we were able to show a decrease of all 4 tested oligodendrocyte specific proteins (MOG, MBP, MYPR, CNPase) in bipolar disorder and to a lesser extent in schizophrenia and affective psychosis. Finally, we provide new evidence linking ankyrin 3 specifically to affective psychosis and the 22q11.2 deletion syndrome-associated protein septin 5 to schizophrenia. CONCLUSIONS Our study highlights the potential of selected reaction monitoring to evaluate the protein abundance levels of candidate markers of neuropsychiatric spectrum disorders, providing a high throughput multiplex platform for validation of putative disease markers and drug targets.
Collapse
Affiliation(s)
| | | | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom (Wesseling, Gottschalk, and Bahn); Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands (Dr Bahn).H.W. and M.G.G. contributed equally to this work.
| |
Collapse
|
16
|
Abstract
The last several years have been breakthrough ones in bipolar disorder (BPD) genetics, as the field has identified robust risk variants for the first time. Leading the way have been genome-wide association studies (GWAS) that have assessed common genetic markers across very large groups of patients and controls. These have resulted in findings in genes including ANK3, CACNA1C, SYNE1, ODZ4, and TRANK1. Additional studies have begun to examine the biology of these genes and how risk variants influence aspects of brain and behavior that underlie BPD. For example, carriers of the CACNA1C risk variant have been found to exhibit hippocampal and anterior cingulate dysfunction during episodic memory recall. This work has shed additional light on the relationship of bipolar susceptibility variants to other disorders, particularly schizophrenia. Even larger BPD GWAS are expected with samples now amassed of 21,035 cases and 28,758 controls. Studies have examined the pharmacogenomics of BPD with studies of lithium response, yielding high profile results that remain to be confirmed. The next frontier in the field is the identification of rare bipolar susceptibility variants through large-scale DNA sequencing. While only a couple of papers have been published to date, many studies are underway. The Bipolar Sequencing Consortium has been formed to bring together all of the groups working in this area, and to perform meta-analyses of the data generated. The consortium, with 13 member groups, now has exome data on ~3,500 cases and ~5,000 controls, and on ~162 families. The focus will likely shift within several years from exome data to whole genome data as costs of obtaining such data continue to drop. Gene-mapping studies are now providing clear results that provide insights into the pathophysiology of the disorder. Sequencing studies should extend this process further. Findings could eventually set the stage for rational therapeutic development.
Collapse
Affiliation(s)
- Gen Shinozaki
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | |
Collapse
|
17
|
Zhang C, Cai J, Zhang J, Li Z, Guo Z, Zhang X, Lu W, Zhang Y, Yuan A, Yu S, Fang Y. Genetic modulation of working memory deficits by ankyrin 3 gene in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:110-115. [PMID: 24361380 DOI: 10.1016/j.pnpbp.2013.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 12/16/2022]
Abstract
Neuropsychological endophenotype approach is an emerging strategy in schizophrenia research to understand and identify the functional importance of genetically transmitted, brain-based deficits present in this disorder. Accumulating evidence indicated that working memory deficit is a core neuropsychological dysfunction in schizophrenia and a primary endophenotype indexing the liability to develop schizophrenia. Genetic variation in ankyrin 3 gene (ANK3) is likely to have widespread cognitive effects. Our previous study has identified a significant association of ANK3 SNPs and schizophrenia. In this study, we aimed to examine whether the schizophrenia-risk SNPs within ANK3 may affect working memory deficits in schizophrenia patients. Herein, we assess the working memory performance in 163 patients with first-episode, antipsychotic-naïve schizophrenia and 42 sex, age-matched healthy subjects using N-back task. Two SNPs rs10761482 and rs10994336 were genotyped among the patients and 209 controls. Our results showed that schizophrenia patients showed significantly poorer performance than healthy controls on N-back task (ps<0.01). After adjusting for the scores of intelligence quotient, memory quotient and the demographic factors, there was a significant genotype effect of the rs10994336 on the accuracy rate and reaction time of 2-back item (p=0.048 and 0.024, respectively). Post-hoc analyses showed that patients with rs10994336T/T genotype had significantly lower accuracy rate and more reaction time at 2-back task than those with T/C and C/C genotypes. The association of SNP rs10994336 with schizophrenia was replicated in our sample (genotypic p=0.024 and allelic p=0.006). However, we did not find any significant association of rs10761482 with schizophrenia and parameters in N-back task. Our results indicated that genetic variation within ANK3 may exert gene-specific modulating effects on working memory deficits in schizophrenia.
Collapse
Affiliation(s)
- Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangtao Zhang
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zezhi Li
- Department of Neurology, Shanghai Changhai Hospital, Secondary Military Medical University, Shanghai, China
| | - Zhongwei Guo
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xu Zhang
- Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihong Lu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Yuan
- Department of Genetics, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Department of Genetics, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Hori H, Yamamoto N, Teraishi T, Ota M, Fujii T, Sasayama D, Matsuo J, Kinoshita Y, Hattori K, Nagashima A, Ishida I, Koga N, Higuchi T, Kunugi H. Cognitive effects of the ANK3 risk variants in patients with bipolar disorder and healthy individuals. J Affect Disord 2014; 158:90-6. [PMID: 24655771 DOI: 10.1016/j.jad.2014.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/03/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND Genetic variants within the ankyrin 3 gene (ANK3) have been identified as a risk factor for bipolar disorder. ANK3 influences action potential generation by clustering sodium gated channels and plays an integral role in neurotransmission. Thus, this gene may influence cognition, a process compromised in bipolar disorder. We investigated whether genetic variants of ANK3 would be associated with an array of cognitive functions in patients with bipolar disorder and healthy individuals. METHODS In a sample of 49 patients with bipolar disorder and 633 healthy subjects, we examined possible effects of 2 risk variants within ANK3, rs10994336 and rs10761482, on 7 neurocognitive domains. RESULTS Compared to healthy subjects, patients with bipolar disorder demonstrated significantly poorer performance on most of the cognitive domains examined. The risk C-allele of rs10761482 was significantly associated with worse performance on verbal comprehension, logical memory and processing speed in patients. This allele was significantly associated with worse performance on executive function and visual memory in healthy individuals. No significant association was observed between rs10994336 and cognition either in patients or healthy individuals. LIMITATIONS The sample size of patients with bipolar disorder was small, and most of the patients were on psychotropic medication. CONCLUSIONS These results indicate that a risk variant within ANK3 may have an impact on neurocognitive function, suggesting a mechanism by which ANK3 confers risk for bipolar disorder.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Noriko Yamamoto
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Fujii
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukiko Kinoshita
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Anna Nagashima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norie Koga
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
19
|
Cassidy C, Buchy L, Bodnar M, Dell’Elce J, Choudhry Z, Fathalli F, Sengupta S, Fox R, Malla A, Lepage M, Iyer S, Joober R. Association of a risk allele of ANK3 with cognitive performance and cortical thickness in patients with first-episode psychosis. J Psychiatry Neurosci 2014; 39:31-9. [PMID: 24016415 PMCID: PMC3868663 DOI: 10.1503/jpn.120242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The gene ANK3 is implicated in bipolar disorder and schizophrenia. The present study investigated the influence of this gene on cognitive performance and brain structure among individuals with first-episode psychosis (FEP). The brief illness duration of an FEP sample makes it well suited for studying the effects of genetic variation. METHODS We genotyped 2 single nucleotide polymorphisms (SNPs; rs1938526 and rs10994336) in ANK3 in patients with FEP. Multivariate analysis of variance compared risk allele carriers and noncarriers on 6 domains of cognition consistent with MATRICS consensus. A subsample of 82 patients was assessed using magnetic resonance imaging. We compared brain structure between carriers and noncarriers using cortical thickness analysis and voxel-based morphometry on white matter. RESULTS In the 173 patients with FEP included in our study, rs1938526 and rs10994336 were in very high linkage disequilibrium (d' = 0.95), and analyses were therefore only carried out on the SNP (rs1938526) with the highest minor allele frequency (G). Allele G of rs1938526, was associated with lower cognitive performance across domains (F6,164 = 2.38, p = 0.030) and significantly lower scores on the domains of verbal memory (p = 0.015), working memory (p = 0.006) and attention (p = 0.019). The significant effects of this SNP on cognition were not maintained when controlling for IQ. Cortical thinning was observed in risk allele carriers at diverse sites across cortical lobes bilaterally at a threshold of p < 0.01, false discovery rate-corrected. Risk-allele carriers did not show any regions of reduced white matter volume. LIMITATIONS The sample size is modest given that a low-frequency variant was being examined. CONCLUSION The ANK3 risk allele rs1938526 appears to be associated with general cognitive impairment and widespread cortical thinning in patients with FEP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ridha Joober
- Correspondence to: R. Joober, Douglas Mental Health University Institute, 6875 LaSalle Blvd., Montréal QC Canada H4H 1R3;
| |
Collapse
|
20
|
Gray JD, McEwen BS. Lithium's role in neural plasticity and its implications for mood disorders. Acta Psychiatr Scand 2013; 128:347-61. [PMID: 23617566 PMCID: PMC3743945 DOI: 10.1111/acps.12139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Lithium (Li) is often an effective treatment for mood disorders, especially bipolar disorder (BPD), and can mitigate the effects of stress on the brain by modulating several pathways to facilitate neural plasticity. This review seeks to summarize what is known about the molecular mechanisms underlying Li's actions in the brain in response to stress, particularly how Li is able to facilitate plasticity through regulation of the glutamate system and cytoskeletal components. METHOD The authors conducted an extensive search of the published literature using several search terms, including Li, plasticity, and stress. Relevant articles were retrieved, and their bibliographies consulted to expand the number of articles reviewed. The most relevant articles from both the clinical and preclinical literature were examined in detail. RESULTS Chronic stress results in morphological and functional remodeling in specific brain regions where structural differences have been associated with mood disorders, such as BPD. Li has been shown to block stress-induced changes and facilitate neural plasticity. The onset of mood disorders may reflect an inability of the brain to properly respond after stress, where changes in certain regions may become 'locked in' when plasticity is lost. Li can enhance plasticity through several molecular mechanisms, which have been characterized in animal models. Further, the expanding number of clinical imaging studies has provided evidence that these mechanisms may be at work in the human brain. CONCLUSION This work supports the hypothesis that Li is able to improve clinical symptoms by facilitating neural plasticity and thereby helps to 'unlock' the brain from its maladaptive state in patients with mood disorders.
Collapse
Affiliation(s)
- Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| |
Collapse
|
21
|
Rueckert EH, Barker D, Ruderfer D, Bergen SE, O’Dushlaine C, Luce CJ, Sheridan SD, Theriault KM, Chambert K, Moran J, Purcell S, Madison JM, Haggarty SJ, Sklar P. Cis-acting regulation of brain-specific ANK3 gene expression by a genetic variant associated with bipolar disorder. Mol Psychiatry 2013; 18:922-9. [PMID: 22850628 PMCID: PMC3856665 DOI: 10.1038/mp.2012.104] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 12/13/2022]
Abstract
Several genome-wide association studies for bipolar disorder (BD) have found a strong association of the Ankyrin 3 (ANK3) gene. This association spans numerous linked single-nucleotide polymorphisms (SNPs) in an ~250-kb genomic region overlapping ANK3. The associated region encompasses predicted regulatory elements as well as two of the six validated alternative first exons, which encode distinct protein domains at the N-terminus of the protein also known as Ankyrin-G. Using RNA ligase-mediated rapid amplification of cDNA ends to identify novel transcripts in conjunction with a highly sensitive, exon-specific multiplexed mRNA expression assay, we detected differential regulation of distinct ANK3 transcription start sites and coupling of specific 5' ends with 3' mRNA splicing events in postmortem human brain and human stem cell-derived neural progenitors and neurons. Furthermore, allelic variation at the BD-associated SNP rs1938526 correlated with a significant difference in cerebellar expression of a brain-specific ANK3 transcript. These findings suggest a brain-specific cis-regulatory transcriptional effect of ANK3 that may be relevant to BD pathophysiology.
Collapse
Affiliation(s)
- Erroll H. Rueckert
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Douglas Barker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Douglas Ruderfer
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Analytic Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Sarah E. Bergen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Colm O’Dushlaine
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Catherine J. Luce
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven D. Sheridan
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA,Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kraig M. Theriault
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA,Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer Moran
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shaun Purcell
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Analytic Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jon M. Madison
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stephen J. Haggarty
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA,Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence to: Pamela Sklar, MD/PhD: , Stephen J. Haggarty, PhD:
| | - Pamela Sklar
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA,Correspondence to: Pamela Sklar, MD/PhD: , Stephen J. Haggarty, PhD:
| |
Collapse
|
22
|
Frey BN, Andreazza AC, Houenou J, Jamain S, Goldstein BI, Frye MA, Leboyer M, Berk M, Malhi GS, Lopez-Jaramillo C, Taylor VH, Dodd S, Frangou S, Hall GB, Fernandes BS, Kauer-Sant'Anna M, Yatham LN, Kapczinski F, Young LT. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force. Aust N Z J Psychiatry 2013; 47:321-32. [PMID: 23411094 DOI: 10.1177/0004867413478217] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the etiology of bipolar disorder remains uncertain, multiple studies examining neuroimaging, peripheral markers and genetics have provided important insights into the pathophysiologic processes underlying bipolar disorder. Neuroimaging studies have consistently demonstrated loss of gray matter, as well as altered activation of subcortical, anterior temporal and ventral prefrontal regions in response to emotional stimuli in bipolar disorder. Genetics studies have identified several potential candidate genes associated with increased risk for developing bipolar disorder that involve circadian rhythm, neuronal development and calcium metabolism. Notably, several groups have found decreased levels of neurotrophic factors and increased pro-inflammatory cytokines and oxidative stress markers. Together these findings provide the background for the identification of potential biomarkers for vulnerability, disease expression and to help understand the course of illness and treatment response. In other areas of medicine, validated biomarkers now inform clinical decision-making. Although the findings reviewed herein hold promise, further research involving large collaborative studies is needed to validate these potential biomarkers prior to employing them for clinical purposes. Therefore, in this positional paper from the ISBD-BIONET (biomarkers network from the International Society for Bipolar Disorders), we will discuss our view of biomarkers for these three areas: neuroimaging, peripheral measurements and genetics; and conclude the paper with our position for the next steps in the search for biomarkers for bipolar disorder.
Collapse
Affiliation(s)
- Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leussis MP, Berry-Scott EM, Saito M, Jhuang H, de Haan G, Alkan O, Luce CJ, Madison JM, Sklar P, Serre T, Root DE, Petryshen TL. The ANK3 bipolar disorder gene regulates psychiatric-related behaviors that are modulated by lithium and stress. Biol Psychiatry 2013; 73:683-90. [PMID: 23237312 DOI: 10.1016/j.biopsych.2012.10.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/25/2012] [Accepted: 10/12/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ankyrin 3 (ANK3) has been strongly implicated as a risk gene for bipolar disorder (BD) by recent genome-wide association studies of patient populations. However, the genetic variants of ANK3 contributing to BD risk and their pathological function are unknown. METHODS To gain insight into the potential disease relevance of ANK3, we examined the function of mouse Ank3 in the regulation of psychiatric-related behaviors using genetic, neurobiological, pharmacological, and gene-environment interaction (G×E) approaches. Ank3 expression was reduced in mouse brain either by viral-mediated RNA interference or through disruption of brain-specific Ank3 in a heterozygous knockout mouse. RESULTS RNA interference of Ank3 in hippocampus dentate gyrus induced a highly specific and consistent phenotype marked by decreased anxiety-related behaviors and increased activity during the light phase, which were attenuated by chronic treatment with the mood stabilizer lithium. Similar behavioral alterations of reduced anxiety and increased motivation for reward were also exhibited by Ank3+/- heterozygous mice compared with wild-type Ank3+/+ mice. Remarkably, the behavioral traits of Ank3+/- mice transitioned to depression-related features after chronic stress, a trigger of mood episodes in BD. Ank3+/- mice also exhibited elevated serum corticosterone, suggesting that reduced Ank3 expression is associated with elevated stress reactivity. CONCLUSIONS This study defines a new role for Ank3 in the regulation of psychiatric-related behaviors and stress reactivity that lends support for its involvement in BD and establishes a general framework for determining the disease relevance of genes implicated by patient genome-wide association studies.
Collapse
Affiliation(s)
- Melanie P Leussis
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brambilla P, Perlini C, Bellani M, Tomelleri L, Ferro A, Cerruti S, Marinelli V, Rambaldelli G, Christodoulou T, Jogia J, Dima D, Tansella M, Balestrieri M, Frangou S. Increased salience of gains versus decreased associative learning differentiate bipolar disorder from schizophrenia during incentive decision making. Psychol Med 2013; 43:571-580. [PMID: 22687364 DOI: 10.1017/s0033291712001304] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Abnormalities in incentive decision making, typically assessed using the Iowa Gambling Task (IGT), have been reported in both schizophrenia (SZ) and bipolar disorder (BD). We applied the Expectancy-Valence (E-V) model to determine whether motivational, cognitive and response selection component processes of IGT performance are differentially affected in SZ and BD. METHOD Performance on the IGT was assessed in 280 individuals comprising 70 remitted patients with SZ, 70 remitted patients with BD and 140 age-, sex- and IQ-matched healthy individuals. Based on the E-V model, we extracted three parameters, 'attention to gains or loses', 'expectancy learning' and 'response consistency', that respectively reflect motivational, cognitive and response selection influences on IGT performance. RESULTS Both patient groups underperformed in the IGT compared to healthy individuals. However, the source of these deficits was diagnosis specific. Associative learning underlying the representation of expectancies was disrupted in SZ whereas BD was associated with increased incentive salience of gains. These findings were not attributable to non-specific effects of sex, IQ, psychopathology or medication. CONCLUSIONS Our results point to dissociable processes underlying abnormal incentive decision making in BD and SZ that could potentially be mapped to different neural circuits.
Collapse
Affiliation(s)
- P Brambilla
- DISM, Inter-University Centre for Behavioural Neurosciences (ICBN), University of Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Iqbal Z, Vandeweyer G, van der Voet M, Waryah AM, Zahoor MY, Besseling JA, Roca LT, Vulto-van Silfhout AT, Nijhof B, Kramer JM, Van der Aa N, Ansar M, Peeters H, Helsmoortel C, Gilissen C, Vissers LELM, Veltman JA, de Brouwer APM, Frank Kooy R, Riazuddin S, Schenck A, van Bokhoven H, Rooms L. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Hum Mol Genet 2013; 22:1960-70. [PMID: 23390136 DOI: 10.1093/hmg/ddt043] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AnkyrinG, encoded by the ANK3 gene, is involved in neuronal development and signaling. It has previously been implicated in bipolar disorder and schizophrenia by association studies. Most recently, de novo missense mutations in this gene were identified in autistic patients. However, the causative nature of these mutations remained controversial. Here, we report inactivating mutations in the Ankyrin 3 (ANK3) gene in patients with severe cognitive deficits. In a patient with a borderline intelligence, severe attention deficit hyperactivity disorder (ADHD), autism and sleeping problems, all isoforms of the ANK3 gene, were disrupted by a balanced translocation. Furthermore, in a consanguineous family with moderate intellectual disability (ID), an ADHD-like phenotype and behavioral problems, we identified a homozygous truncating frameshift mutation in the longest isoform of the same gene, which represents the first reported familial mutation in the ANK3 gene. The causality of ANK3 mutations in the two families and the role of the gene in cognitive function were supported by memory defects in a Drosophila knockdown model. Thus we demonstrated that ANK3 plays a role in intellectual functioning. In addition, our findings support the suggested association of ANK3 with various neuropsychiatric disorders and illustrate the genetic and molecular relation between a wide range of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zafar Iqbal
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Donders Institute for Brain, Cognitionand Behaviour, Radboud University Medical Centre, Nijmegen, TheNetherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lazzaretti M, Morandotti N, Sala M, Isola M, Frangou S, De Vidovich G, Marraffini E, Gambini F, Barale F, Zappoli F, Caverzasi E, Brambilla P. Impaired working memory and normal sustained attention in borderline personality disorder. Acta Neuropsychiatr 2012; 24:349-55. [PMID: 25287177 DOI: 10.1111/j.1601-5215.2011.00630.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lazzaretti M, Morandotti N, Sala M, Isola M, Frangou S, De Vidovich G, Marraffini E, Gambini F, Barale F, Zappoli F, Caverzasi E, Brambilla P. Impaired working memory and normal sustained attention in borderline personality disorder.Objective: Although reports in the literature describe deficits in working memory in borderline personality disorder (BPD), the evidence is limited and inconsistent. The aim of this study was to evaluate further this cognitive dimension and its clinical correlates in BPD.Method: We compared the performance of 15 BPD patients to 1:1 matched healthy controls on verbal working memory as determined by the sequential letter N-back test and sustained attention as measured using the continuous performance test (CPT).Results: BPD patients performed significantly worse on the N-back test compared to healthy controls (p < 0.05), but not on the CPT. The N-back deficit was more pronounced and significant in the 3-back condition and inversely correlated with impulsivity.Conclusions: These results suggest the presence of working memory deficits in BPD that may be linked to greater impulsivity and sustained by impairment in the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Matteo Lazzaretti
- Interdepartmental Centre for research on Personality Disorders. Department of Applied and Behavioural Health Sciences, Section of Psychiatry, University of Pavia, Pavia, Italy
| | - Niccolò Morandotti
- Interdepartmental Centre for research on Personality Disorders. Department of Applied and Behavioural Health Sciences, Section of Psychiatry, University of Pavia, Pavia, Italy
| | - Michela Sala
- Interdepartmental Centre for research on Personality Disorders. Department of Applied and Behavioural Health Sciences, Section of Psychiatry, University of Pavia, Pavia, Italy
| | - Miriam Isola
- Department of Medical and Morphological Research, Section of Statistics, University of Udine, Udine, Italy
| | - Sophia Frangou
- Psychosis Clinical Academic Group, Section of Neurobiology of Psychosis, Institute of Psychiatry, King's College London, London, UK
| | - Giulia De Vidovich
- Interdepartmental Centre for research on Personality Disorders. Department of Applied and Behavioural Health Sciences, Section of Psychiatry, University of Pavia, Pavia, Italy
| | - Elisa Marraffini
- Interdepartmental Centre for research on Personality Disorders. Department of Applied and Behavioural Health Sciences, Section of Psychiatry, University of Pavia, Pavia, Italy
| | - Francesca Gambini
- Interdepartmental Centre for research on Personality Disorders. Department of Applied and Behavioural Health Sciences, Section of Psychiatry, University of Pavia, Pavia, Italy
| | - Francesco Barale
- Interdepartmental Centre for research on Personality Disorders. Department of Applied and Behavioural Health Sciences, Section of Psychiatry, University of Pavia, Pavia, Italy
| | - Federico Zappoli
- Service of Radiology, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Edgardo Caverzasi
- Interdepartmental Centre for research on Personality Disorders. Department of Applied and Behavioural Health Sciences, Section of Psychiatry, University of Pavia, Pavia, Italy
| | | |
Collapse
|
27
|
Bipolar disorder ANK3 risk variant effect on sustained attention is replicated in a large healthy population. Psychiatr Genet 2012; 22:210-3. [PMID: 22498896 DOI: 10.1097/ypg.0b013e328353ae79] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Independent genome-wide association studies have implicated a common single nucleotide polymorphism within the ANK3 gene (rs10994336) in bipolar disorder (BD) susceptibility, thus establishing rs10994336 marker as a strong candidate predisposing genetic factor for BD. Furthermore, recent findings demonstrate that this variant impacts on cognitive functioning in BD patients, their unaffected relatives, and healthy controls by influencing sustained attention. Here, we aimed to replicate this finding in a large population-based sample of healthy young adults (n=1808). Sustained attention was evaluated using the Continuous Performance Test as in the original study and working memory was assessed with the n-back task. Individuals carrying the BD risk T-allele showed significantly reduced sensitivity in target detection, increased errors of commission, and atypical response latency variability. In addition, we confirmed the lack of an association between the rs10994336 variant and working memory, as well as general intellectual ability, suggesting a specific effect on the Continuous Performance Test performance.
Collapse
|
28
|
Leussis MP, Madison JM, Petryshen TL. Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:18. [PMID: 23025490 PMCID: PMC3492013 DOI: 10.1186/2045-5380-2-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/20/2012] [Indexed: 11/26/2022]
Abstract
Bipolar disorder (BD) is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS) using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3), a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention approaches.
Collapse
Affiliation(s)
- Melanie P Leussis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.
| | | | | |
Collapse
|
29
|
Christodoulou T, Messinis L, Papathanasopoulos P, Frangou S. The impact of familial risk for schizophrenia or bipolar disorder on cognitive control during episodic memory retrieval. Psychiatry Res 2012; 197:212-6. [PMID: 22417935 DOI: 10.1016/j.psychres.2011.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 12/24/2022]
Abstract
Episodic memory impairment is a robust correlate of familial risk for schizophrenia (SZ) and bipolar disorder (BD); still much is unknown about the processes that underlie this deficit and how they may be implicated in BD and SZ. We examined the possibility that (a) episodic memory impairment may arise from abnormalities in the cognitive control of interference between task-relevant and task-irrelevant memories during retrieval; inability to suppress task-irrelevant representations could give rise to intrusions of inappropriate memories and increased rate of forgetting, (b) cognitive control deficits during retrieval may be differentially affected by familial predisposition to SZ or BD. We examined episodic memory in relatives of patients with SZ (SZ-R) (n=15) or BD (BD-R) (n=17) compared to healthy controls (n=23) using the California Verbal Learning Test (CVLT) and the Doors and People Test (DPT). All relatives were free of any psychiatric morbidity and were matched to controls on age, sex, educational achievement and general intellectual ability. During the CVLT, both relatives' groups made significantly more perseverative recall errors than controls. However, intrusion errors were significantly increased in SZ-R only. SZ-R also showed increased rate of forgetting in the DPT while BD-R were comparable to controls. Familial predisposition to SZ, compared to that of BD, was associated with significantly greater impairment in cognitive control processes during episodic memory retrieval with some evidence of specificity for SZ in connection with mechanisms relating to increased forgetting.
Collapse
Affiliation(s)
- Tessa Christodoulou
- Section of Neurobiology of Psychosis, Institute of Psychiatry, King's College London, UK.
| | | | | | | |
Collapse
|
30
|
Dissociable and common deficits in inhibitory control in schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2012; 262:125-30. [PMID: 21512857 DOI: 10.1007/s00406-011-0213-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/07/2011] [Indexed: 01/30/2023]
Abstract
Current research focuses on delineating the neurobiological boundaries between familial risk for schizophrenia (SZ) and bipolar disorder (BD). Available evidence suggests that inhibitory control may be affected in both disorders. Inhibitory control relies on the dual processes of contextual information maintenance and response inhibition. This study investigated the effect of familial risk of SZ or BD on these two aspects of inhibitory control. Seventeen healthy first-degree relatives of patients with BD (BD-R), 15 healthy relatives of patients with SZ (SZ-R) and 23 demographically matched controls were compared in terms of their performance during Controlled Oral Word Association (COWA), which measures contextually driven response selection, and during the Hayling Sentence Completion Test (HSCT), which assesses contextual response selection and inhibition. Compared to controls and BD-R, SZ-R showed deficits in contextual information processing that resulted in spontaneous errors in the COWA as well as deficits in response inhibition during the HSCT that resulted in higher error rates. BD-R also showed deficits in response inhibition during the HSCT relative to controls, which were, however, less pronounced than for SZ-R. Both relatives groups had longer response times. Our results suggest that failure in contextual maintenance is primarily associated with familial risk for SZ, while response inhibition may be a shared marker of familial risk for both disorders.
Collapse
|
31
|
Linke J, Witt SH, King AV, Nieratschker V, Poupon C, Gass A, Hennerici MG, Rietschel M, Wessa M. Genome-wide supported risk variant for bipolar disorder alters anatomical connectivity in the human brain. Neuroimage 2012; 59:3288-96. [DOI: 10.1016/j.neuroimage.2011.10.083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022] Open
|
32
|
Expression profiling in neuropsychiatric disorders: emphasis on glutamate receptors in bipolar disorder. Pharmacol Biochem Behav 2011; 100:705-11. [PMID: 22005598 DOI: 10.1016/j.pbb.2011.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 09/20/2011] [Accepted: 09/30/2011] [Indexed: 02/08/2023]
Abstract
Functional genomics and proteomics approaches are being employed to evaluate gene and encoded protein expression changes with the tacit goal to find novel targets for drug discovery. Genome-wide association studies (GWAS) have attempted to identify valid candidate genes through single nucleotide polymorphism (SNP) analysis. Furthermore, microarray analysis of gene expression in brain regions and discrete cell populations has enabled the simultaneous quantitative assessment of relevant genes. The ability to associate gene expression changes with neuropsychiatric disorders, including bipolar disorder (BP), and their response to therapeutic drugs provides a novel means for pharmacotherapeutic interventions. This review summarizes gene and pathway targets that have been identified in GWAS studies and expression profiling of human postmortem brain in BP, with an emphasis on glutamate receptors (GluRs). Although functional genomic assessment of BP is in its infancy, results to date point towards a dysregulation of GluRs that bear some similarity to schizophrenia (SZ), although the pattern is complex, and likely to be more complementary than overlapping. The importance of single population expression profiling of specific neurons and intrinsic circuits is emphasized, as this approach provides informative gene expression profile data that may be underappreciated in regional studies with admixed neuronal and non-neuronal cell types.
Collapse
|