1
|
Duke-Cohan JS, Akitsu A, Mallis RJ, Messier CM, Lizotte PH, Aster JC, Hwang W, Lang MJ, Reinherz EL. Pre-T cell receptor self-MHC sampling restricts thymocyte dedifferentiation. Nature 2023; 613:565-574. [PMID: 36410718 PMCID: PMC9851994 DOI: 10.1038/s41586-022-05555-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/11/2022] [Indexed: 11/22/2022]
Abstract
Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific β chain, is a critical early checkpoint in thymocyte development within the αβ T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αβ T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αβ T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting β chain repertoire broadening for subsequent αβ T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.
Collapse
Affiliation(s)
- Jonathan S Duke-Cohan
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Aoi Akitsu
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Robert J Mallis
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Cameron M Messier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick H Lizotte
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Topaloğlu U, Aydın Ketani M. The distribution of some homeobox proteins in the bovine placenta during gestation. Theriogenology 2021; 166:71-82. [PMID: 33678478 DOI: 10.1016/j.theriogenology.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
Homeobox proteins are transcription factors known to be involved in the molecular basics of body model formation and transformation. Some homeobox proteins are known to play critical roles in the control of the extraembryonic development of the placenta during gestation and in the regulation of uterine and placental physiology in adults. The gravid uteruses and placentas of 27 Holsteins cows, obtained from private slaughterhouses, were used in this study. The tissues were assigned to three groups as belonging to the first, second and third timesters of gestation, based on the fetal ages determined. Subsequently, the tissues were subjected to immunohistochemical staining using antibodies specific to the proteins investigated in the study. The evaluation of the immunohistochemical findings obtained in this study, demonstrated the presence of trimester-dependent varying intensities of immunoreactions in the uterus and placenta. Immunoreactivity was observed particularly in the luminal and glandular epithelial cells of the uterus, as well as in stromal and some endothelial cells. Furthermore, immunoreactivity for the proteins HOXA10, HOXB6, HOXC6 and Dlx-5 was determined in the smooth muscle cells. Moreover, immunoreactivity was also detected in the maternal epithelium and fetal trophoblasts found in the structure of the placenta. The results suggest that the homeobox proteins investigated may have critical roles in the regulation of endometrial functions in cows, and the proliferation and differentiation of endometrial and placental cells. It is concluded that these proteins may have physiological roles in the formation and development of the placenta, as well as in the maintenance of pregnancy.
Collapse
Affiliation(s)
- Uğur Topaloğlu
- Department of Histology and Embryology, Faculty of Veterinary Medicine Dicle University, Diyarbakır, 21280, Turkey.
| | - Muzaffer Aydın Ketani
- Department of Histology and Embryology, Faculty of Veterinary Medicine Dicle University, Diyarbakır, 21280, Turkey
| |
Collapse
|
3
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
4
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. RECENT FINDINGS NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. SUMMARY Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.
Collapse
|
6
|
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129:1113-1123. [PMID: 28115373 PMCID: PMC5363819 DOI: 10.1182/blood-2016-10-706465] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy caused by the accumulation of genomic lesions that affect the development of T cells. For many years, it has been established that deregulated expression of transcription factors, impairment of the CDKN2A/2B cell-cycle regulators, and hyperactive NOTCH1 signaling play prominent roles in the pathogenesis of this leukemia. In the past decade, systematic screening of T-ALL genomes by high-resolution copy-number arrays and next-generation sequencing technologies has revealed that T-cell progenitors accumulate additional mutations affecting JAK/STAT signaling, protein translation, and epigenetic control, providing novel attractive targets for therapy. In this review, we provide an update on our knowledge of T-ALL pathogenesis, the opportunities for the introduction of targeted therapy, and the challenges that are still ahead.
Collapse
Affiliation(s)
- Tiziana Girardi
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Carmen Vicente
- Leuven Cancer Institute (LKI), Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Jan Cools
- Leuven Cancer Institute (LKI), Leuven, Belgium
- VIB Center for the Biology of Disease, Leuven, Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, Leuven, Belgium
- Leuven Cancer Institute (LKI), Leuven, Belgium
| |
Collapse
|
7
|
High selective pressure for Notch1 mutations that induce Myc in T-cell acute lymphoblastic leukemia. Blood 2016; 128:2229-2240. [PMID: 27670423 DOI: 10.1182/blood-2016-01-692855] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Activating NOTCH1 mutations are frequent in human T-cell acute lymphoblastic leukemia (T-ALL) and Notch inhibitors (γ-secretase inhibitors [GSIs]) have produced responses in patients with relapsed, refractory disease. However, sustained responses, although reported, are uncommon, suggesting that other pathways can substitute for Notch in T-ALL. To address this possibility, we first generated KrasG12D transgenic mice with T-cell-specific expression of the pan-Notch inhibitor, dominant-negative Mastermind (DNMAML). These mice developed leukemia, but instead of accessing alternative oncogenic pathways, the tumor cells acquired Notch1 mutations and subsequently deleted DNMAML, reinforcing the notion that activated Notch1 is particularly transforming within the context of T-cell progenitors. We next took a candidate approach to identify oncogenic pathways downstream of Notch, focusing on Myc and Akt, which are Notch targets in T-cell progenitors. KrasG12D mice transduced with Myc developed T-ALLs that were GSI-insensitive and lacked Notch1 mutations. In contrast, KrasG12D mice transduced with myristoylated AKT developed GSI-sensitive T-ALLs that acquired Notch1 mutations. Thus, Myc can substitute for Notch1 in leukemogenesis, whereas Akt cannot. These findings in primary tumors extend recent work using human T-ALL cell lines and xenografts and suggest that the Notch/Myc signaling axis is of predominant importance in understanding both the selective pressure for Notch mutations in T-ALL and response and resistance of T-ALL to Notch pathway inhibitors.
Collapse
|
8
|
Abstract
T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematological malignancy derived from early T cell progenitors. In recent years genomic and transcriptomic studies have uncovered major oncogenic and tumour suppressor pathways involved in T-ALL transformation and identified distinct biological groups associated with prognosis. An increased understanding of T-ALL biology has already translated into new prognostic biomarkers and improved animal models of leukaemia and has opened opportunities for the development of targeted therapies for the treatment of this disease. In this Review we examine our current understanding of the molecular mechanisms of T-ALL and recent developments in the translation of these results to the clinic.
Collapse
Affiliation(s)
- Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
9
|
Durinck K, Van Loocke W, Van der Meulen J, Van de Walle I, Ongenaert M, Rondou P, Wallaert A, de Bock CE, Van Roy N, Poppe B, Cools J, Soulier J, Taghon T, Speleman F, Van Vlierberghe P. Characterization of the genome-wide TLX1 binding profile in T-cell acute lymphoblastic leukemia. Leukemia 2015; 29:2317-27. [PMID: 26108691 DOI: 10.1038/leu.2015.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023]
Abstract
The TLX1 transcription factor is critically involved in the multi-step pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and often cooperates with NOTCH1 activation during malignant T-cell transformation. However, the exact molecular mechanism by which these T-cell specific oncogenes cooperate during transformation remains to be established. Here, we used chromatin immunoprecipitation followed by sequencing to establish the genome-wide binding pattern of TLX1 in human T-ALL. This integrative genomics approach showed that ectopic TLX1 expression drives repression of T cell-specific enhancers and mediates an unexpected transcriptional antagonism with NOTCH1 at critical target genes, including IL7R and NOTCH3. These phenomena coordinately trigger a TLX1-driven pre-leukemic phenotype in human thymic precursor cells, reminiscent of the thymus regression observed in murine TLX1 tumor models, and create a strong genetic pressure for acquiring activating NOTCH1 mutations as a prerequisite for full leukemic transformation. In conclusion, our results uncover a functional antagonism between cooperative oncogenes during the earliest phases of tumor development and provide novel insights in the multi-step pathogenesis of TLX1-driven human leukemia.
Collapse
Affiliation(s)
- K Durinck
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - W Van Loocke
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - J Van der Meulen
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - I Van de Walle
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - M Ongenaert
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - P Rondou
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - A Wallaert
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - C E de Bock
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven and Center for the Biology of Disease, VIB, Leuven, Belgium
| | - N Van Roy
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - B Poppe
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - J Cools
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven and Center for the Biology of Disease, VIB, Leuven, Belgium
| | - J Soulier
- Genome Rearrangements and Cancer Laboratory, U944 INSERM, University Paris Diderot and Hematology Laboratory, Saint-Louis Hospital, Paris, France
| | - T Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - F Speleman
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - P Van Vlierberghe
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Role of different aberrant cell signalling pathways prevalent in acute lymphoblastic leukemia. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0428-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Krutikov K, Zheng Y, Chesney A, Huang X, Vaags AK, Evdokimova V, Hough MR, Chen E. Ectopic TLX1 expression accelerates malignancies in mice deficient in DNA-PK. PLoS One 2014; 9:e89649. [PMID: 24586935 PMCID: PMC3935916 DOI: 10.1371/journal.pone.0089649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 01/26/2014] [Indexed: 11/22/2022] Open
Abstract
The noncluster homeobox gene HOX11/TLX1 (TLX1) is detected at the breakpoint of the t(10;14)(q24;q11) chromosome translocation in patients with T cell acute lymphoblastic leukemia (T-ALL). This translocation results in the inappropriate expression of TLX1 in T cells. The oncogenic potential of TLX1 was demonstrated in IgHμ-TLX1Tg mice which develop mature B cell lymphoma after a long latency period, suggesting the requirement of additional mutations to initiate malignancy. To determine whether dysregulation of genes involved in the DNA damage response contributed to tumor progression, we crossed IgHμ-TLX1Tg mice with mice deficient in the DNA repair enzyme DNA-PK (PrkdcScid/Scid mice). IgHµ-TLX1TgPrkdcScid/Scid mice developed T-ALL and acute myeloid leukemia (AML) with reduced latency relative to control PrkdcScid/Scid mice. Further analysis of thymi from premalignant mice revealed greater thymic cellularity concomitant with increased thymocyte proliferation and decreased apoptotic index. Moreover, premalignant and malignant thymocytes exhibited impaired spindle checkpoint function, in association with aneuploid karyotypes. Gene expression profiling of premalignant IgHµ-TLX1TgPrkdcScid/Scid thymocytes revealed dysregulated expression of cell cycle, apoptotic and mitotic spindle checkpoint genes in double negative 2 (DN2) and DN3 stage thymocytes. Collectively, these findings reveal a novel synergy between TLX1 and impaired DNA repair pathway in leukemogenesis.
Collapse
Affiliation(s)
- Konstantin Krutikov
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yanzhen Zheng
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alden Chesney
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoyong Huang
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Andrea K. Vaags
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Valentina Evdokimova
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Margaret R. Hough
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EC); (MRH)
| | - Edwin Chen
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
- * E-mail: (EC); (MRH)
| |
Collapse
|
12
|
Pinnell NE, Chiang MY. Collaborating Pathways that Functionally Amplify NOTCH1 Signals in T-Cell Acute Lymphoblastic Leukemia. JOURNAL OF HEMATOLOGY & TRANSFUSION 2013; 1:1004. [PMID: 26998506 PMCID: PMC4798248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
| | - Mark Y. Chiang
- Mark Y. Chiang. Department of Internal Medicne, Division of Hematology/Oncology, University of Michigan Cancer Center, Toubman Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA, Tel: 734-615-7513;
| |
Collapse
|
13
|
Zweier-Renn LA, Riz I, Hawley TS, Hawley RG. The DN2 Myeloid-T (DN2mt) Progenitor is a Target Cell for Leukemic Transformation by the TLX1 Oncogene. JOURNAL OF BONE MARROW RESEARCH 2013; 1:105. [PMID: 25309961 PMCID: PMC4191823 DOI: 10.4172/2329-8820.1000105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Inappropriate activation of the TLX1 (T-cell leukemia homeobox 1) gene by chromosomal translocation is a recurrent event in human T-cell Acute Lymphoblastic Leukemia (T-ALL). Ectopic expression of TLX1 in murine bone marrow progenitor cells using a conventional retroviral vector efficiently yields immortalized cell lines and induces T-ALL-like tumors in mice after long latency. METHODS To eliminate a potential contribution of retroviral insertional mutagenesis to TLX1 immortalizing and transforming function, we incorporated the TLX1 gene into an insulated self-inactivating retroviral vector. RESULTS Retrovirally transduced TLX1-expressing murine bone marrow progenitor cells had a growth/survival advantage and readily gave rise to immortalized cell lines. Extensive characterization of 15 newly established cell lines failed to reveal a common retroviral integration site. This comprehensive analysis greatly extends our previous study involving a limited number of cell lines, providing additional support for the view that constitutive TLX1 expression is sufficient to initiate the series of events culminating in hematopoietic progenitor cell immortalization. When TLX1-immortalized cells were co-cultured on OP9-DL1 monolayers under conditions permissive for T-cell differentiation, a latent T-lineage potential was revealed. However, the cells were unable to transit the DN2 myeloid-T (DN2mt)-DN2 T-lineage determined (DN2t) commitment step. The differentiation block coincided with failure to upregulate the zinc finger transcription factor gene Bcl11b, the human ortholog of which was shown to be a direct transcriptional target of TLX1 downregulated in the TLX1+ T-ALL cell line ALL-SIL. Other studies have described the ability of TLX1 to promote bypass of mitotic checkpoint arrest, leading to aneuploidy. We likewise found that diploid TLX1-expressing DN2mt cells treated with the mitotic inhibitor paclitaxel bypassed the mitotic checkpoint and displayed chromosomal instability. This was associated with elevated expression of TLX1 transcriptional targets involved in DNA replication and mitosis, including Ccna2 (cyclin A2), Ccnb1 (cyclin B1), Ccnb2 (cyclin B2) and Top2a (topoisomerase IIα). Notably, enforced expression of BCL11B in ALL-SIL T-ALL cells conferred resistance to the topoisomerase IIα poison etoposide. CONCLUSION Taken together with previous findings, the data reinforce a mechanism of TLX1 oncogenic activity linked to chromosomal instability resulting from dysregulated expression of target genes involved in mitotic processes. We speculate that repression of BCL11B expression may provide part of the explanation for the observation that aneuploid DNA content in TLX1+ leukemic T cells does not necessarily portend an unfavorable prognosis. This TLX1 hematopoietic progenitor cell immortalization/T-cell differentiation assay should help further our understanding of the mechanisms of TLX1-mediated evolution to malignancy and has the potential to be a useful predictor of disease response to novel therapeutic agents in TLX1+ T-ALL.
Collapse
Affiliation(s)
- Lynnsey A Zweier-Renn
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
- Graduate Program in Biochemistry and Molecular Genetics, George Washington University, Washington, DC, USA
| | - Irene Riz
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| | - Teresa S Hawley
- Flow Cytometry Core Facility, George Washington University, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
- Sino-US Joint Laboratory of Translational Medicine, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
14
|
De Keersmaecker K, Ferrando AA. TLX1-Induced T-cell Acute Lymphoblastic Leukemia: Figure 1. Clin Cancer Res 2011; 17:6381-6. [DOI: 10.1158/1078-0432.ccr-10-3037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|