1
|
Ferreira RC, Alves GV, Ramon M, Antoneli F, Briones MRS. Reconstructing Prehistoric Viral Genomes from Neanderthal Sequencing Data. Viruses 2024; 16:856. [PMID: 38932149 PMCID: PMC11209150 DOI: 10.3390/v16060856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.
Collapse
Affiliation(s)
- Renata C. Ferreira
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
- Epigene LLC, São Paulo, SP 04537-080, Brazil
| | - Gustavo V. Alves
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| | | | - Fernando Antoneli
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| | - Marcelo R. S. Briones
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil (F.A.)
| |
Collapse
|
2
|
Van Etten J, Stephens TG, Bhattacharya D. A k-mer-Based Approach for Phylogenetic Classification of Taxa in Environmental Genomic Data. Syst Biol 2023; 72:1101-1118. [PMID: 37314057 DOI: 10.1093/sysbio/syad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023] Open
Abstract
In the age of genome sequencing, whole-genome data is readily and frequently generated, leading to a wealth of new information that can be used to advance various fields of research. New approaches, such as alignment-free phylogenetic methods that utilize k-mer-based distance scoring, are becoming increasingly popular given their ability to rapidly generate phylogenetic information from whole-genome data. However, these methods have not yet been tested using environmental data, which often tends to be highly fragmented and incomplete. Here, we compare the results of one alignment-free approach (which utilizes the D2 statistic) to traditional multi-gene maximum likelihood trees in 3 algal groups that have high-quality genome data available. In addition, we simulate lower-quality, fragmented genome data using these algae to test method robustness to genome quality and completeness. Finally, we apply the alignment-free approach to environmental metagenome assembled genome data of unclassified Saccharibacteria and Trebouxiophyte algae, and single-cell amplified data from uncultured marine stramenopiles to demonstrate its utility with real datasets. We find that in all instances, the alignment-free method produces phylogenies that are comparable, and often more informative, than those created using the traditional multi-gene approach. The k-mer-based method performs well even when there are significant missing data that include marker genes traditionally used for tree reconstruction. Our results demonstrate the value of alignment-free approaches for classifying novel, often cryptic or rare, species, that may not be culturable or are difficult to access using single-cell methods, but fill important gaps in the tree of life.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Broeks D, Hendlin Y, Zwart H. Fake cells and the aura of life: A philosophical diagnostic of synthetic life. ENDEAVOUR 2022; 46:100845. [PMID: 36194916 DOI: 10.1016/j.endeavour.2022.100845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/09/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Synthetic biology is often seen as the engineering turn in biology. Philosophically speaking, entities created by synthetic biology, from synthetic cells to xenobots, challenge the ontological divide between the organic and inorganic, as well as between the natural and the artificial. Entities such as synthetic cells can be seen as hybrid or transitory objects, or neo-things. However, what has remained philosophically underexplored so far is the impact these hybrid neo-things will have on (our phenomenological experience of) the living world. By extrapolating from Walter Benjamin's account of how technological reproducibility affects the aura of art, we embark upon an exploratory inquiry that seeks to fathom how the technological reproducibility of life itself may influence our experience and understanding of the living. We conclude that, much as technologies that enabled reproduction corroded the aura of original artworks (as Benjamin argued), so too will the aura of life be under siege in the era of synthetic lifeforms. This article zooms in on a specific case study, namely the research project Building a Synthetic Cell (BaSyC) and its mission to create a synthetic cell-like entity, as autonomous as possible, focusing on the properties that differentiate organic from synthetic cells.
Collapse
Affiliation(s)
- Daphne Broeks
- Institute for Science in Society, Radboud University Nijmegen, the Netherlands
| | - Yogi Hendlin
- Erasmus School of Philosophy, Erasmus University Rotterdam, the Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Santella B, Schettino MT, Franci G, De Franciscis P, Colacurci N, Schiattarella A, Galdiero M. Microbiota and HPV: the role of viral infection on vaginal microbiota. J Med Virol 2022; 94:4478-4484. [PMID: 35527233 PMCID: PMC9544303 DOI: 10.1002/jmv.27837] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
Abstract
The World Health Organization (WHO) estimates that the prevalence of human papillomaviruses (HPV) infection is between 9% and 13% of the world population and only in the United States, more than 6.2 million are positive every year. There are more than 100 types of HPV, among them, two serotypes (16 and 18) are related to 70% of cervical cancers and precancerous cervical lesions. The vaginal microbiota could play a considerable role in HPV infection and the genesis of cervical tumors caused by HPV. Moreover, bacteria are strongly associated with vaginal inflammation and oncogenic mutations in human cells. We aim to investigate whether HPV infection could influence the bacterial microbiota composition in the uterine cervix. A total of 31 women were enrolled in this study. The vaginal swabs were collected; the HPV‐DNA was extracted with QIAamp DNA Microbiome. The V3–V4–V6 region of the 16S rDNA gene was amplified by polymerase chain reaction (PCR) followed by sequencing with MiSeq Illumina. The main phylum identified in the vaginal microbiota were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. The phylum of Actinobacteria, Proteobacteria, and Bacteroides was more represented in HPV‐positive patients. Lactobacilli represented the dominant genus, with a high percentage of Lactobacilli iners, Lactobacilli jensenii, and Lactobacilli crispatus as species. Gardnerella vaginalis, Enterococcus spp., Staphylococcus spp., Proteus spp., and Atopobium were the most represented in HPV‐positive patients. An altered vaginal microbiota might play a functional role in HPV cervical infection, progression, and clearance. The relationship between infection and microbiota could spur the development of new probiotics. However, further studies are needed to clarify the role of the vaginal microbiota in HPV infection.
Collapse
Affiliation(s)
- Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”80138NaplesItaly
| | - Maria Teresa Schettino
- Department of Woman, Child and General and Specialized SurgeryUniversity of Campania "Luigi Vanvitelli"80138NaplesItaly
| | - Gianluigi Franci
- Dai Dipartimento Di Igiene Sanitaria e Medicina Valutativa U.O.C. Patologia Clinica E Microbiologica,Azienda Ospedaliero‐Universitaria S. Giovanni di Dio e Ruggi D’Aragona Scuola Medica Salernitana,Largo Città di Ippocrate84131SalernoItaly
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”, University of Salerno84081BaronissiItaly
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized SurgeryUniversity of Campania "Luigi Vanvitelli"80138NaplesItaly
| | - Nicola Colacurci
- Department of Woman, Child and General and Specialized SurgeryUniversity of Campania "Luigi Vanvitelli"80138NaplesItaly
| | - Antonio Schiattarella
- Department of Woman, Child and General and Specialized SurgeryUniversity of Campania "Luigi Vanvitelli"80138NaplesItaly
| | - Massimiliano Galdiero
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”80138NaplesItaly
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”80138NaplesItaly
| |
Collapse
|
5
|
Abstract
Accurate DNA repair and replication are critical for genomic stability and cancer prevention. RAD51 and its gene family are key regulators of DNA fidelity through diverse roles in double-strand break repair, replication stress, and meiosis. RAD51 is an ATPase that forms a nucleoprotein filament on single-stranded DNA. RAD51 has the function of finding and invading homologous DNA sequences to enable accurate and timely DNA repair. Its paralogs, which arose from ancient gene duplications of RAD51, have evolved to regulate and promote RAD51 function. Underscoring its importance, misregulation of RAD51, and its paralogs, is associated with diseases such as cancer and Fanconi anemia. In this review, we focus on the mammalian RAD51 structure and function and highlight the use of model systems to enable mechanistic understanding of RAD51 cellular roles. We also discuss how misregulation of the RAD51 gene family members contributes to disease and consider new approaches to pharmacologically inhibit RAD51.
Collapse
Affiliation(s)
- Braulio Bonilla
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - Sarah R Hengel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - McKenzie K Grundy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
6
|
Real-time tracking reveals catalytic roles for the two DNA binding sites of Rad51. Nat Commun 2020; 11:2950. [PMID: 32528002 PMCID: PMC7289862 DOI: 10.1038/s41467-020-16750-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/19/2020] [Indexed: 02/03/2023] Open
Abstract
During homologous recombination, Rad51 forms a nucleoprotein filament on single-stranded DNA to promote DNA strand exchange. This filament binds to double-stranded DNA (dsDNA), searches for homology, and promotes transfer of the complementary strand, producing a new heteroduplex. Strand exchange proceeds via two distinct three-strand intermediates, C1 and C2. C1 contains the intact donor dsDNA whereas C2 contains newly formed heteroduplex DNA. Here, we show that the conserved DNA binding motifs, loop 1 (L1) and loop 2 (L2) in site I of Rad51, play distinct roles in this process. L1 is involved in formation of the C1 complex whereas L2 mediates the C1–C2 transition, producing the heteroduplex. Another DNA binding motif, site II, serves as the DNA entry position for initial Rad51 filament formation, as well as for donor dsDNA incorporation. Our study provides a comprehensive molecular model for the catalytic process of strand exchange mediated by eukaryotic RecA-family recombinases. Rad51 drives DNA strand exchange, the central reaction in recombinational DNA repair. Two sites of Rad51 are responsible for DNA binding, but the function of these sites has proven elusive. Here, the authors employ real-time assays to reveal catalytic roles for the two DNA binding sites of Rad51.
Collapse
|
7
|
Lamprecht-Grandío M, Cortesão M, Mirete S, de la Cámara MB, de Figueras CG, Pérez-Pantoja D, White JJ, Farías ME, Rosselló-Móra R, González-Pastor JE. Novel Genes Involved in Resistance to Both Ultraviolet Radiation and Perchlorate From the Metagenomes of Hypersaline Environments. Front Microbiol 2020; 11:453. [PMID: 32292392 PMCID: PMC7135895 DOI: 10.3389/fmicb.2020.00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Microorganisms that thrive in hypersaline environments on the surface of our planet are exposed to the harmful effects of ultraviolet radiation. Therefore, for their protection, they have sunscreen pigments and highly efficient DNA repair and protection systems. The present study aimed to identify new genes involved in UV radiation resistance from these microorganisms, many of which cannot be cultured in the laboratory. Thus, a functional metagenomic approach was used and for this, small-insert libraries were constructed with DNA isolated from microorganisms of high-altitude Andean hypersaline lakes in Argentina (Diamante and Ojo Seco lakes, 4,589 and 3,200 m, respectively) and from the Es Trenc solar saltern in Spain. The libraries were hosted in a UV radiation-sensitive strain of Escherichia coli (recA mutant) and they were exposed to UVB. The resistant colonies were analyzed and as a result, four clones were identified with environmental DNA fragments containing five genes that conferred resistance to UV radiation in E. coli. One gene encoded a RecA-like protein, complementing the mutation in recA that makes the E. coli host strain more sensitive to UV radiation. Two other genes from the same DNA fragment encoded a TATA-box binding protein and an unknown protein, both responsible for UV resistance. Interestingly, two other genes from different and remote environments, the Ojo Seco Andean lake and the Es Trenc saltern, encoded two hypothetical proteins that can be considered homologous based on their significant amino acid similarity (49%). All of these genes also conferred resistance to 4-nitroquinoline 1-oxide (4-NQO), a compound that mimics the effect of UV radiation on DNA, and also to perchlorate, a powerful oxidant that can induce DNA damage. Furthermore, the hypothetical protein from the Es Trenc salterns was localized as discrete foci possibly associated with damaged sites in the DNA in cells treated with 4-NQO, so it could be involved in the repair of damaged DNA. In summary, novel genes involved in resistance to UV radiation, 4-NQO and perchlorate have been identified in this work and two of them encoding hypothetical proteins that could be involved in DNA damage repair activities not previously described.
Collapse
Affiliation(s)
| | - Marta Cortesão
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Salvador Mirete
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | | | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Joseph John White
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | | |
Collapse
|
8
|
Pascoal F, Magalhães C, Costa R. The Link Between the Ecology of the Prokaryotic Rare Biosphere and Its Biotechnological Potential. Front Microbiol 2020; 11:231. [PMID: 32140148 PMCID: PMC7042395 DOI: 10.3389/fmicb.2020.00231] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Current research on the prokaryotic low abundance taxa, the prokaryotic rare biosphere, is growing, leading to a greater understanding of the mechanisms underlying organismal rarity and its relevance in ecology. From this emerging knowledge it is possible to envision innovative approaches in biotechnology applicable to several sectors. Bioremediation and bioprospecting are two of the most promising areas where such approaches could find feasible implementation, involving possible new solutions to the decontamination of polluted sites and to the discovery of novel gene variants and pathways based on the attributes of rare microbial communities. Bioremediation can be improved through the realization that diverse rare species can grow abundant and degrade different pollutants or possibly transfer useful genes. Further, most of the prokaryotic diversity found in virtually all environments belongs in the rare biosphere and remains uncultivatable, suggesting great bioprospecting potential within this vast and understudied genetic pool. This Mini Review argues that knowledge of the ecophysiology of rare prokaryotes can aid the development of future, efficient biotechnology-based processes, products and services. However, this promise may only be fulfilled through improvements in (and optimal blending of) advanced microbial culturing and physiology, metagenomics, genome annotation and editing, and synthetic biology, to name a few areas of relevance. In the future, it will be important to understand how activity profiles relate with abundance, as some rare taxa can remain rare and increase activity, whereas other taxa can grow abundant. The metabolic mechanisms behind those patterns can be useful in designing biotechnological processes.
Collapse
Affiliation(s)
- Francisco Pascoal
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal.,School of Science & Engineering, University of Waikato, Hamilton, New Zealand.,Ocean Frontier Institute, Dalhousie University, Halitax, NS, Canada
| | - Rodrigo Costa
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.,Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
9
|
Albright MBN, Chase AB, Martiny JBH. Experimental Evidence that Stochasticity Contributes to Bacterial Composition and Functioning in a Decomposer Community. mBio 2019; 10:e00568-19. [PMID: 30992354 PMCID: PMC6469972 DOI: 10.1128/mbio.00568-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
Stochasticity emerging from random differences in replication, death, mutation, and dispersal is thought to alter the composition of ecological communities. However, the importance of stochastic effects remains somewhat speculative because stochasticity is not directly measured but is instead inferred from unexplained variations in beta-diversity. Here, we performed a field experiment to more directly disentangle the role of stochastic processes, environmental selection, and dispersal in the composition and functioning of a natural bacterial decomposer community in the field. To increase our ability to detect these effects, we reduced initial biological and environmental heterogeneity using replicate nylon litterbags in the field. We then applied two treatments: ambient/added precipitation and bacterial and fungal dispersal using "open" litterbags (made from 18.0-μm-pore-size mesh) ("open bacterial dispersal") versus bacterial and fungal dispersal using "closed" litterbags (made from 22.0-μm-pore-size mesh) ("closed bacterial dispersal"). After 5 months, we assayed composition and functioning by the use of three subsamples from each litterbag to disentangle stochastic effects from residual variation. Our results indicate that stochasticity via ecological drift can contribute to beta-diversity in bacterial communities. However, residual variation, which had previously been included in stochasticity estimates, accounted for more than four times as much variability. At the same time, stochastic effects on beta-diversity were not attenuated at the functional level, as measured by genetic functional potential and extracellular enzyme activity. Finally, dispersal was found to interact with precipitation availability to influence the degree to which stochasticity contributed to functional variation. Together, our results demonstrate that the ability to quantify stochastic processes is key to understanding microbial diversity and its role in ecosystem functioning.IMPORTANCE Randomness can alter the diversity and composition of ecological communities. Such stochasticity may therefore obscure the relationship between the environment and community composition and hinder our ability to predict the relationship between biodiversity and ecosystem functioning. This study investigated the role of stochastic processes, environmental selection, and dispersal in microbial composition and its functioning on an intact field community. To do this, we used a controlled and replicated experiment that was similar to that used to study population genetics in the laboratory. Our study showed that, while the stochastic effects on taxonomic composition are smaller than expected, the degree to which stochasticity contributes to variability in ecosystem processes may be much higher than previously assumed.
Collapse
Affiliation(s)
- Michaeline B N Albright
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Alexander B Chase
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Jennifer B H Martiny
- Dept. of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
10
|
|
11
|
Colson P, Levasseur A, La Scola B, Sharma V, Nasir A, Pontarotti P, Caetano-Anollés G, Raoult D. Ancestrality and Mosaicism of Giant Viruses Supporting the Definition of the Fourth TRUC of Microbes. Front Microbiol 2018; 9:2668. [PMID: 30538677 PMCID: PMC6277510 DOI: 10.3389/fmicb.2018.02668] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
Giant viruses of amoebae were discovered in 2003. Since then, their diversity has greatly expanded. They were suggested to form a fourth branch of life, collectively named ‘TRUC’ (for “Things Resisting Uncompleted Classifications”) alongside Bacteria, Archaea, and Eukarya. Their origin and ancestrality remain controversial. Here, we specify the evolution and definition of giant viruses. Phylogenetic and phenetic analyses of informational gene repertoires of giant viruses and selected bacteria, archaea and eukaryota were performed, including structural phylogenomics based on protein structural domains grouped into 289 universal fold superfamilies (FSFs). Hierarchical clustering analysis was performed based on a binary presence/absence matrix constructed using 727 informational COGs from cellular organisms. The presence/absence of ‘universal’ FSF domains was used to generate an unrooted maximum parsimony phylogenomic tree. Comparison of the gene content of a giant virus with those of a bacterium, an archaeon, and a eukaryote with small genomes was also performed. Overall, both cladistic analyses based on gene sequences of very central and ancient proteins and on highly conserved protein fold structures as well as phenetic analyses were congruent regarding the delineation of a fourth branch of microbes comprised by giant viruses. Giant viruses appeared as a basal group in the tree of all proteomes. A pangenome and core genome determined for Rickettsia bellii (bacteria), Methanomassiliicoccus luminyensis (archaeon), Encephalitozoon intestinalis (eukaryote), and Tupanvirus (giant virus) showed a substantial proportion of Tupanvirus genes that overlap with those of the cellular microbes. In addition, a substantial genome mosaicism was observed, with 51, 11, 8, and 0.2% of Tupanvirus genes best matching with viruses, eukaryota, bacteria, and archaea, respectively. Finally, we found that genes themselves may be subject to lateral sequence transfers. In summary, our data highlight the quantum leap between classical and giant viruses. Phylogenetic and phyletic analyses and the study of protein fold superfamilies confirm previous evidence of the existence of a fourth TRUC of life that includes giant viruses, and highlight its ancestrality and mosaicism. They also point out that best evolutionary representations for giant viruses and cellular microorganisms are rhizomes, and that sequence transfers rather than gene transfers have to be considered.
Collapse
Affiliation(s)
- Philippe Colson
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Vikas Sharma
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| | - Arshan Nasir
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States.,Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Pierre Pontarotti
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France.,Centre National de la Recherche Scientifique, Marseille, France
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Didier Raoult
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM); Microbes, Evolution, Phylogeny and Infection (MEΦI); Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| |
Collapse
|
12
|
Harish A. What is an archaeon and are the Archaea really unique? PeerJ 2018; 6:e5770. [PMID: 30357005 PMCID: PMC6196074 DOI: 10.7717/peerj.5770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 12/05/2022] Open
Abstract
The recognition of the group Archaea as a major branch of the tree of life (ToL) prompted a new view of the evolution of biodiversity. The genomic representation of archaeal biodiversity has since significantly increased. In addition, advances in phylogenetic modeling of multi-locus datasets have resolved many recalcitrant branches of the ToL. Despite the technical advances and an expanded taxonomic representation, two important aspects of the origins and evolution of the Archaea remain controversial, even as we celebrate the 40th anniversary of the monumental discovery. These issues concern (i) the uniqueness (monophyly) of the Archaea, and (ii) the evolutionary relationships of the Archaea to the Bacteria and the Eukarya; both of these are relevant to the deep structure of the ToL. To explore the causes for this persistent ambiguity, I examine multiple datasets and different phylogenetic approaches that support contradicting conclusions. I find that the uncertainty is primarily due to a scarcity of information in standard datasets-universal core-genes datasets-to reliably resolve the conflicts. These conflicts can be resolved efficiently by comparing patterns of variation in the distribution of functional genomic signatures, which are less diffused unlike patterns of primary sequence variation. Relatively lower heterogeneity in distribution patterns minimizes uncertainties and supports statistically robust phylogenetic inferences, especially of the earliest divergences of life. This case study further highlights the limitations of primary sequence data in resolving difficult phylogenetic problems, and raises questions about evolutionary inferences drawn from the analyses of sequence alignments of a small set of core genes. In particular, the findings of this study corroborate the growing consensus that reversible substitution mutations may not be optimal phylogenetic markers for resolving early divergences in the ToL, nor for determining the polarity of evolutionary transitions across the ToL.
Collapse
Affiliation(s)
- Ajith Harish
- Department of Cell and Molecular Biology, Program in Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Kwasniewski W, Wolun-Cholewa M, Kotarski J, Warchol W, Kuzma D, Kwasniewska A, Gozdzicka-Jozefiak A. Microbiota dysbiosis is associated with HPV-induced cervical carcinogenesis. Oncol Lett 2018; 16:7035-7047. [PMID: 30546437 DOI: 10.3892/ol.2018.9509] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022] Open
Abstract
Cervical microbial communities serve a crucial role in the persistence and development of oncogenic human papilloma virus (HPV) infections. In the present study, the authors hypothesised that disturbed heterogeneity of microbial flora was associated with HPV-induced carcinogenesis. Swabs of the cervical microbiota were collected from 250 women and the 16S ribosomal DNA was sequenced using a high throughput assay. The swabs of cervical microbiota were grouped according to the community state types (CSTs) as follows: Healthy cervical swabs; swabs taken from low-grade squamous intra-epithelial lesions (LSIL) and swabs taken from high-grade squamous intra-epithelial lesions (HSIL). Analysis of the bacterial classes revealed that the CST cervical swabs of the volunteers were characterised by Lactobacillus crispatus, Lactobacillus iners and Lactobacillus taiwanensis, however, Gardnerella vaginalis and Lactobacillus acidophilus were absent. In the CST of patients with LSIL the predominant type of bacteria was Lactobacillus acidophilus and Lactobacillus iners, however Lactobacillus crispatus was not detected. Swabs from CST women diagnosed with HSIL exhibited abundant Gardnerella vaginalis and Lactobacillus acidophilus, however, lacked Lactobacillus taiwanensis, Lactobacillus iners and Lactobacillus crispatus. The abundance of Lactobacillus acidophilus in swabs from the healthy women was compared with the swabs from the women with LSIL. The results of the present study indicated that the development of HPV-induced cancer is associated with a high diversity of vaginal microbiota, which is involved in the control of viral persistence, and is therefore indicative of disease prognosis.
Collapse
Affiliation(s)
- Wojciech Kwasniewski
- Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Maria Wolun-Cholewa
- Department of Cell Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jan Kotarski
- Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Wojciech Warchol
- Department of Biophysics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Dorota Kuzma
- Department of Molecular Virology, Adam Mickiewicz University, 61-712 Poznan, Poland
| | - Anna Kwasniewska
- Department of Obstetrics and Gynaecology, Medical University of Lublin, 20-081 Lublin, Poland
| | | |
Collapse
|
14
|
Laskar BA, Kumar V, Kundu S, Darshan A, Tyagi K, Chandra K. DNA barcoding of fishes from River Diphlu within Kaziranga National Park in northeast India. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:126-134. [PMID: 29669453 DOI: 10.1080/24701394.2018.1463373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
DNA barcoding technique has been gaining importance in biodiversity research for its easy and rapid ability of delineating organisms' partial DNA sequences into molecular operational taxonomic units (MOTUs), and identification based on referral sequences from expert identified species. We generated mtCOI barcode sequences from morphologically identified fishes from River Diphlu in northeast India. A portion of this river falls within an important rhinoceros and tiger conservation site, the Kaziranga National Park. Partial mtCOI sequences for 103 fish specimens belonging to six orders, 19 families, 37 genera and 47 a priori identified species, were delineated into 48 MOTUs based on reciprocal monophyly criteria in maximum likelihood and Bayesian tree, and 49 groups by automatic barcode gap discovery (ABGD). Morphological and molecular basis of species identification was congruent for around 80% straightforward cases. We contributed barcodes for eight species which either had no barcodes in databases or are having ambiguous barcodes. We detected four 'near threatened' and two data deficient species as per the IUCN Red List status, besides a few 'least concerned' species. We also observed a wide scope of barcoding studies on fishes from northeast India to cover the endemic species and to resolve the prevailing taxonomic problems.
Collapse
Affiliation(s)
- Boni Amin Laskar
- a Freshwater Biology Regional Centre, Zoological Survey of India , Hyderabad , India
| | - Vikas Kumar
- b Molecular Systematics Division , Centre for DNA Taxonomy, Zoological Survey of India , Kolkata , India
| | - Shantanu Kundu
- b Molecular Systematics Division , Centre for DNA Taxonomy, Zoological Survey of India , Kolkata , India
| | - Achom Darshan
- c Center with Potential for Excellence in Biodiversity, Rajiv Gandhi University , Doimukh , India
| | - Kaomud Tyagi
- b Molecular Systematics Division , Centre for DNA Taxonomy, Zoological Survey of India , Kolkata , India
| | - Kailash Chandra
- b Molecular Systematics Division , Centre for DNA Taxonomy, Zoological Survey of India , Kolkata , India
| |
Collapse
|
15
|
Colson P, Aherfi S, La Scola B. Evidence of giant viruses of amoebae in the human gut. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Colson P, La Scola B, Raoult D. Giant Viruses of Amoebae: A Journey Through Innovative Research and Paradigm Changes. Annu Rev Virol 2017; 4:61-85. [PMID: 28759330 DOI: 10.1146/annurev-virology-101416-041816] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Giant viruses of amoebae were discovered serendipitously in 2003; they are visible via optical microscopy, making them bona fide microbes. Their lifestyle, structure, and genomes break the mold of classical viruses. Giant viruses of amoebae are complex microorganisms. Their genomes harbor between 444 and 2,544 genes, including many that are unique to viruses, and encode translation components; their virions contain >100 proteins as well as mRNAs. Mimiviruses have a specific mobilome, including virophages, provirophages, and transpovirons, and can resist virophages through a system known as MIMIVIRE (mimivirus virophage resistance element). Giant viruses of amoebae bring upheaval to the definition of viruses and tend to separate the current virosphere into two categories: very simple viruses and viruses with complexity similar to that of other microbes. This new paradigm is propitious for enhanced detection and characterization of giant viruses of amoebae, and a particular focus on their role in humans is warranted.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France;
| |
Collapse
|
17
|
Colson P, La Scola B, Levasseur A, Caetano-Anollés G, Raoult D. Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat Rev Microbiol 2017; 15:243-254. [PMID: 28239153 PMCID: PMC7096837 DOI: 10.1038/nrmicro.2016.197] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acanthamoeba polyphaga mimivirus (APMV) and subsequently discovered giant viruses of amoebae challenge the previous definition of viruses and their classification. The replication cycle, structure, genomic make-up and plasticity of giant viruses differ from those of traditional viruses. They extend the definition of viruses into a broader range of biological entities, some of which are very simple and others of which have a complexity that is comparable to that of other microorganisms. Giant viruses of amoebae have virus particles as large as some microorganisms that are visible by light microscopy and that have a stunning level of complexity. Their genomes are mosaics and contain large repertoires of genes, some of which are hallmarks of cellular organisms, although the majority of which have unknown functions. Mimiviruses are associated with a specific mobilome and are parasitized by viruses that they can defend against. Several hypotheses on the ancient origin and evolutionary relationship between cellular organisms and giant viruses of amoebae have been proposed, and these topics continue to be debated. The detection of giant viruses of amoebae in humans and the study of their potential pathogenicity are emerging fields.
The discovery of the giant amoebal virus mimivirus, in 2003, opened up a new area of virology. Extended studies, including those of mimiviruses, have since revealed that these viruses have genetic, proteomic and structural features that are more complex than those of conventional viruses. The accidental discovery of the giant virus of amoeba — Acanthamoeba polyphaga mimivirus (APMV; more commonly known as mimivirus) — in 2003 changed the field of virology. Viruses were previously defined by their submicroscopic size, which probably prevented the search for giant viruses, which are visible by light microscopy. Extended studies of giant viruses of amoebae revealed that they have genetic, proteomic and structural complexities that were not thought to exist among viruses and that are comparable to those of bacteria, archaea and small eukaryotes. The giant virus particles contain mRNA and more than 100 proteins, they have gene repertoires that are broader than those of other viruses and, notably, some encode translation components. The infection cycles of giant viruses of amoebae involve virus entry by amoebal phagocytosis and replication in viral factories. In addition, mimiviruses are infected by virophages, defend against them through the mimivirus virophage resistance element (MIMIVIRE) system and have a unique mobilome. Overall, giant viruses of amoebae, including mimiviruses, marseilleviruses, pandoraviruses, pithoviruses, faustoviruses and molliviruses, challenge the definition and classification of viruses, and have increasingly been detected in humans.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Anthony Levasseur
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, 332 National Soybean Research Center, 1101 West Peabody Drive, Urbana, Illinois 61801, USA
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| |
Collapse
|
18
|
SSUnique: Detecting Sequence Novelty in Microbiome Surveys. mSystems 2016; 1:mSystems00133-16. [PMID: 28028549 PMCID: PMC5183599 DOI: 10.1128/msystems.00133-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Extensive SSU rRNA gene sequence libraries, constructed from DNA extracts of environmental or host-associated samples, often contain many unclassified sequences, many representing organisms with novel taxonomy (taxonomic “blind spots”) and potentially unique ecology. This novelty is poorly explored in standard workflows, which narrows the breadth and discovery potential of such studies. Here we present the SSUnique analysis pipeline, which will promote the exploration of unclassified diversity in microbiome research and, importantly, enable the discovery of substantial novel taxonomic lineages through the analysis of a large variety of existing data sets. High-throughput sequencing of small-subunit (SSU) rRNA genes has revolutionized understanding of microbial communities and facilitated investigations into ecological dynamics at unprecedented scales. Such extensive SSU rRNA gene sequence libraries, constructed from DNA extracts of environmental or host-associated samples, often contain a substantial proportion of unclassified sequences, many representing organisms with novel taxonomy (taxonomic “blind spots”) and potentially unique ecology. Indeed, these novel taxonomic lineages are associated with so-called microbial “dark matter,” which is the genomic potential of these lineages. Unfortunately, characterization beyond “unclassified” is challenging due to relatively short read lengths and large data set sizes. Here we demonstrate how mining of phylogenetically novel sequences from microbial ecosystems can be automated using SSUnique, a software pipeline that filters unclassified and/or rare operational taxonomic units (OTUs) from 16S rRNA gene sequence libraries by screening against consensus structural models for SSU rRNA. Phylogenetic position is inferred against a reference data set, and additional characterization of novel clades is also included, such as targeted probe/primer design and mining of assembled metagenomes for genomic context. We show how SSUnique reproduced a previous analysis of phylogenetic novelty from an Arctic tundra soil and demonstrate the recovery of highly novel clades from data sets associated with both the Earth Microbiome Project (EMP) and Human Microbiome Project (HMP). We anticipate that SSUnique will add to the expanding computational toolbox supporting high-throughput sequencing approaches for the study of microbial ecology and phylogeny. IMPORTANCE Extensive SSU rRNA gene sequence libraries, constructed from DNA extracts of environmental or host-associated samples, often contain many unclassified sequences, many representing organisms with novel taxonomy (taxonomic “blind spots”) and potentially unique ecology. This novelty is poorly explored in standard workflows, which narrows the breadth and discovery potential of such studies. Here we present the SSUnique analysis pipeline, which will promote the exploration of unclassified diversity in microbiome research and, importantly, enable the discovery of substantial novel taxonomic lineages through the analysis of a large variety of existing data sets.
Collapse
|
19
|
González C, Lazcano M, Valdés J, Holmes DS. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation. Front Microbiol 2016; 7:2035. [PMID: 28082953 PMCID: PMC5186765 DOI: 10.3389/fmicb.2016.02035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023] Open
Abstract
Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e−5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD).
Collapse
Affiliation(s)
- Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Marcelo Lazcano
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Jorge Valdés
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor Santiago, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
20
|
Hofstatter PG, Tice AK, Kang S, Brown MW, Lahr DJG. Evolution of bacterial recombinase A (recA) in eukaryotes explained by addition of genomic data of key microbial lineages. Proc Biol Sci 2016; 283:20161453. [PMID: 27708147 PMCID: PMC5069510 DOI: 10.1098/rspb.2016.1453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 11/12/2022] Open
Abstract
Recombinase enzymes promote DNA repair by homologous recombination. The genes that encode them are ancestral to life, occurring in all known dominions: viruses, Eubacteria, Archaea and Eukaryota. Bacterial recombinases are also present in viruses and eukaryotic groups (supergroups), presumably via ancestral events of lateral gene transfer. The eukaryotic recA genes have two distinct origins (mitochondrial and plastidial), whose acquisition by eukaryotes was possible via primary (bacteria-eukaryote) and/or secondary (eukaryote-eukaryote) endosymbiotic gene transfers (EGTs). Here we present a comprehensive phylogenetic analysis of the recA genealogy, with substantially increased taxonomic sampling in the bacteria, viruses, eukaryotes and a special focus on the key eukaryotic supergroup Amoebozoa, earlier represented only by Dictyostelium We demonstrate that several major eukaryotic lineages have lost the bacterial recombinases (including Opisthokonta and Excavata), whereas others have retained them (Amoebozoa, Archaeplastida and the SAR-supergroups). When absent, the bacterial recA homologues may have been lost entirely (secondary loss of canonical mitochondria) or replaced by other eukaryotic recombinases. RecA proteins have a transit peptide for organellar import, where they act. The reconstruction of the RecA phylogeny with its EGT events presented here retells the intertwined evolutionary history of eukaryotes and bacteria, while further illuminating the events of endosymbiosis in eukaryotes by expanding the collection of widespread genes that provide insight to this deep history.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Department of Zoology, Universidade de São Paulo/USP, Cidade Universitária, São Paulo, Brazil
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Seungho Kang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel J G Lahr
- Department of Zoology, Universidade de São Paulo/USP, Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
21
|
Bell JC, Kowalczykowski SC. RecA: Regulation and Mechanism of a Molecular Search Engine. Trends Biochem Sci 2016; 41:491-507. [PMID: 27156117 PMCID: PMC4892382 DOI: 10.1016/j.tibs.2016.04.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022]
Abstract
Homologous recombination maintains genomic integrity by repairing broken chromosomes. The broken chromosome is partially resected to produce single-stranded DNA (ssDNA) that is used to search for homologous double-stranded DNA (dsDNA). This homology driven 'search and rescue' is catalyzed by a class of DNA strand exchange proteins that are defined in relation to Escherichia coli RecA, which forms a filament on ssDNA. Here, we review the regulation of RecA filament assembly and the mechanism by which RecA quickly and efficiently searches for and identifies a unique homologous sequence among a vast excess of heterologous DNA. Given that RecA is the prototypic DNA strand exchange protein, its behavior affords insight into the actions of eukaryotic RAD51 orthologs and their regulators, BRCA2 and other tumor suppressors.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Microbiology and Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
22
|
|
23
|
Aherfi S, Colson P, La Scola B, Raoult D. Giant Viruses of Amoebas: An Update. Front Microbiol 2016; 7:349. [PMID: 27047465 PMCID: PMC4801854 DOI: 10.3389/fmicb.2016.00349] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/04/2016] [Indexed: 11/16/2022] Open
Abstract
During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea, and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreover, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages.
Collapse
Affiliation(s)
- Sarah Aherfi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre National de la Recherche Scientifique 7278 Institut de Recherche pour le Développement 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre National de la Recherche Scientifique 7278 Institut de Recherche pour le Développement 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre National de la Recherche Scientifique 7278 Institut de Recherche pour le Développement 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63 Centre National de la Recherche Scientifique 7278 Institut de Recherche pour le Développement 198 Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille UniversitéMarseille, France; Institut Hospitalo-Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| |
Collapse
|
24
|
Cibrián-Jaramillo A, Barona-Gómez F. Increasing Metagenomic Resolution of Microbiome Interactions Through Functional Phylogenomics and Bacterial Sub-Communities. Front Genet 2016; 7:4. [PMID: 26904093 PMCID: PMC4748306 DOI: 10.3389/fgene.2016.00004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/17/2016] [Indexed: 11/13/2022] Open
Abstract
The genomic composition of the microbiome and its relationship with the environment is an exciting open question in biology. Metagenomics is a useful tool in the discovery of previously unknown taxa, but its use to understand the functional and ecological capacities of the microbiome is limited until taxonomy and function are understood in the context of the community. We suggest that this can be achieved using a combined functional phylogenomics and co-culture-based experimental strategy that can increase our capacity to measure sub-community interactions. Functional phylogenomics can identify and partition the genome such that hidden gene functions and gene clusters with unique evolutionary signals are revealed. We can test these phylogenomic predictions using an experimental model based on sub-community populations that represent a subset of the diversity directly obtained from environmental samples. These populations increase the detection of mechanisms that drive functional forces in the assembly of the microbiome, in particular the role of metabolites from key taxa in community interactions. Our combined approach leverages the potential of metagenomics to address biological questions from ecological systems.
Collapse
Affiliation(s)
- Angélica Cibrián-Jaramillo
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav) Irapuato, Mexico
| | - Francisco Barona-Gómez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav) Irapuato, Mexico
| |
Collapse
|
25
|
Sharma V, Colson P, Pontarotti P, Raoult D. Mimivirus inaugurated in the 21st century the beginning of a reclassification of viruses. Curr Opin Microbiol 2016; 31:16-24. [PMID: 26829206 DOI: 10.1016/j.mib.2015.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 11/30/2022]
Abstract
Mimivirus and other giant viruses are visible by light microscopy and bona fide microbes that differ from other viruses and from cells that have a ribosome. They can be defined by: giant virion and genome sizes; their complexity, with the presence of DNA and mRNAs and dozens or hundreds of proteins in virions; the presence of translation-associated components; a mobilome including (pro)virophages (and a defence mechanism, named MIMIVIRE, against them) and transpovirons; their monophyly; the presence of the most archaic protein motifs they share with cellular organisms but not other viruses; a broader host range than other viruses. These features show that giant viruses are specific, autonomous, biological entities that warrant the creation of a new branch of microbes.
Collapse
Affiliation(s)
- Vikas Sharma
- Aix-Marseille Univ., Ecole Centrale de Marseille, I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 264 rue Saint-Pierre, 13385 Marseille Cedex 05, France; Aix-Marseille Univ., URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Pierre Pontarotti
- Aix-Marseille Univ., Ecole Centrale de Marseille, I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 264 rue Saint-Pierre, 13385 Marseille Cedex 05, France; Aix-Marseille Univ., URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France.
| |
Collapse
|
26
|
Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME JOURNAL 2016; 10:2048-59. [PMID: 26800233 PMCID: PMC5029168 DOI: 10.1038/ismej.2015.246] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/28/2015] [Accepted: 11/27/2015] [Indexed: 12/15/2022]
Abstract
Selenium (Se) is an important micronutrient for many organisms, which is required for the biosynthesis of selenocysteine, selenouridine and Se-containing cofactor. Several key genes involved in different Se utilization traits have been characterized; however, systematic studies on the evolution and ecological niches of Se utilization are very limited. Here, we analyzed more than 5200 sequenced organisms to examine the occurrence patterns of all Se traits in bacteria. A global species map of all Se utilization pathways has been generated, which demonstrates the most detailed understanding of Se utilization in bacteria so far. In addition, the selenophosphate synthetase gene, which is used to define the overall Se utilization, was also detected in some organisms that do not have any of the known Se traits, implying the presence of a novel Se form in this domain. Phylogenetic analyses of components of different Se utilization traits revealed new horizontal gene transfer events for each of them. Moreover, by characterizing the selenoproteomes of all organisms, we found a new selenoprotein-rich phylum and additional selenoprotein-rich species. Finally, the relationship between ecological environments and Se utilization was investigated and further verified by metagenomic analysis of environmental samples, which indicates new macroevolutionary trends of each Se utilization trait in bacteria. Our data provide insights into the general features of Se utilization in bacteria and should be useful for a further understanding of the evolutionary dynamics of Se utilization in nature.
Collapse
|
27
|
Highly divergent ancient gene families in metagenomic samples are compatible with additional divisions of life. Biol Direct 2015; 10:64. [PMID: 26502935 PMCID: PMC4624368 DOI: 10.1186/s13062-015-0092-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022] Open
Abstract
Background Microbial genetic diversity is often investigated via the comparison of relatively similar 16S molecules through multiple alignments between reference sequences and novel environmental samples using phylogenetic trees, direct BLAST matches, or phylotypes counts. However, are we missing novel lineages in the microbial dark universe by relying on standard phylogenetic and BLAST methods? If so, how can we probe that universe using alternative approaches? We performed a novel type of multi-marker analysis of genetic diversity exploiting the topology of inclusive sequence similarity networks. Results Our protocol identified 86 ancient gene families, well distributed and rarely transferred across the 3 domains of life, and retrieved their environmental homologs among 10 million predicted ORFs from human gut samples and other metagenomic projects. Numerous highly divergent environmental homologs were observed in gut samples, although the most divergent genes were over-represented in non-gut environments. In our networks, most divergent environmental genes grouped exclusively with uncultured relatives, in maximal cliques. Sequences within these groups were under strong purifying selection and presented a range of genetic variation comparable to that of a prokaryotic domain. Conclusions Many genes families included environmental homologs that were highly divergent from cultured homologs: in 79 gene families (including 18 ribosomal proteins), Bacteria and Archaea were less divergent than some groups of environmental sequences were to any cultured or viral homologs. Moreover, some groups of environmental homologs branched very deeply in phylogenetic trees of life, when they were not too divergent to be aligned. These results underline how limited our understanding of the most diverse elements of the microbial world remains, and encourage a deeper exploration of natural communities and their genetic resources, hinting at the possibility that still unknown yet major divisions of life have yet to be discovered. Reviewers This article was reviewed by Eugene Koonin, William Martin and James McInerney. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0092-3) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Moreira D, López-García P. Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes? Philos Trans R Soc Lond B Biol Sci 2015; 370:20140327. [PMID: 26323758 PMCID: PMC4571566 DOI: 10.1098/rstb.2014.0327] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 01/14/2023] Open
Abstract
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origin of the nucleus. Thanks to the increasing availability of genome sequences for these giant viruses, those hypotheses are amenable to testing via comparative genomic and phylogenetic analyses. This task is made very difficult by the high evolutionary rate of viruses, which induces phylogenetic artefacts, such as long branch attraction, when inadequate methods are applied. It can be demonstrated that phylogenetic trees supporting viruses as a fourth domain of life are artefactual. In most cases, the presence of homologues of cellular genes in viruses is best explained by recurrent horizontal gene transfer from cellular hosts to their infecting viruses and not the opposite. Today, there is no solid evidence for the existence of a viral domain of life or for a significant implication of viruses in the origin of the cellular domains.
Collapse
Affiliation(s)
- David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
29
|
Nasir A, Caetano-Anollés G. A phylogenomic data-driven exploration of viral origins and evolution. SCIENCE ADVANCES 2015; 1:e1500527. [PMID: 26601271 PMCID: PMC4643759 DOI: 10.1126/sciadv.1500527] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/30/2015] [Indexed: 05/05/2023]
Abstract
The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the "viral supergroup" and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts.
Collapse
|
30
|
Sharma V, Colson P, Chabrol O, Pontarotti P, Raoult D. Pithovirus sibericum, a new bona fide member of the "Fourth TRUC" club. Front Microbiol 2015; 6:722. [PMID: 26300849 PMCID: PMC4523831 DOI: 10.3389/fmicb.2015.00722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/02/2015] [Indexed: 11/13/2022] Open
Abstract
Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, include giant viruses of Acanthamoeba that were discovered over the last 12 years and are bona fide microbes. Phylogenies based on a few genes conserved amongst these megaviruses and shared by microbes classified as Eukarya, Bacteria, and Archaea, allowed for delineation of a fourth monophylogenetic group or “TRUC” (Things Resisting Uncompleted Classification) composed of the Megavirales representatives. A new Megavirales member named Pithovirus sibericum was isolated from a >30,000-year-old dated Siberian permafrost sample. This virion is as large as recently described pandoraviruses but has a genome that is approximately three to four times shorter. Our objective was to update the classification of P. sibericum as a new member of the “Fourth TRUC” club. Phylogenetic trees were constructed based on four conserved ancient genes and a phyletic analysis was concurrently conducted based on the presence/absence patterns of a set of informational genes from members of Megavirales, Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on the four conserved genes revealed that P. sibericum is part of the fourth TRUC composed of Megavirales members, and is closely related to the families Marseilleviridae and Ascoviridae/Iridoviridae. Additionally, hierarchical clustering delineated four branches, and showed that P. sibericum is part of this fourth TRUC. Overall, phylogenetic and phyletic analyses using informational genes clearly indicate that P. sibericum is a new bona fide member of the “Fourth TRUC” club composed of representatives of Megavirales, alongside Bacteria, Archaea, and Eukarya.
Collapse
Affiliation(s)
- Vikas Sharma
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National de la Recherche Scientifique 7278, IRD 198, Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille University Marseille, France ; I2M UMR 7373, Centre National de la Recherche Scientifique Équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National de la Recherche Scientifique 7278, IRD 198, Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille University Marseille, France ; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille Marseille, France
| | - Olivier Chabrol
- I2M UMR 7373, Centre National de la Recherche Scientifique Équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Pierre Pontarotti
- I2M UMR 7373, Centre National de la Recherche Scientifique Équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, Centre National de la Recherche Scientifique 7278, IRD 198, Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille University Marseille, France ; Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille Marseille, France
| |
Collapse
|
31
|
Aguiar ERGR, Olmo RP, Paro S, Ferreira FV, de Faria IJDS, Todjro YMH, Lobo FP, Kroon EG, Meignin C, Gatherer D, Imler JL, Marques JT. Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Res 2015; 43:6191-206. [PMID: 26040701 PMCID: PMC4513865 DOI: 10.1093/nar/gkv587] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
Virus surveillance in vector insects is potentially of great benefit to public health. Large-scale sequencing of small and long RNAs has previously been used to detect viruses, but without any formal comparison of different strategies. Furthermore, the identification of viral sequences largely depends on similarity searches against reference databases. Here, we developed a sequence-independent strategy based on virus-derived small RNAs produced by the host response, such as the RNA interference pathway. In insects, we compared sequences of small and long RNAs, demonstrating that viral sequences are enriched in the small RNA fraction. We also noted that the small RNA size profile is a unique signature for each virus and can be used to identify novel viral sequences without known relatives in reference databases. Using this strategy, we characterized six novel viruses in the viromes of laboratory fruit flies and wild populations of two insect vectors: mosquitoes and sandflies. We also show that the small RNA profile could be used to infer viral tropism for ovaries among other aspects of virus biology. Additionally, our results suggest that virus detection utilizing small RNAs can also be applied to vertebrates, although not as efficiently as to plants and insects.
Collapse
Affiliation(s)
- Eric Roberto Guimarães Rocha Aguiar
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | - Simona Paro
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | - Flavia Viana Ferreira
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - Isaque João da Silva de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - Yaovi Mathias Honore Todjro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - Francisco Pereira Lobo
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Campinas, São Paulo, CEP 13083-886, Brazil
| | - Erna Geessien Kroon
- Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| | - Carine Meignin
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France Faculté des Sciences de la Vie, Université de Strasbourg, 67083 Strasbourg Cedex, France
| | - Derek Gatherer
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, Lancashire, LA1 4YQ, UK
| | - Jean-Luc Imler
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France Faculté des Sciences de la Vie, Université de Strasbourg, 67083 Strasbourg Cedex, France Institut d'Etudes Avancées de l'Université de Strasbourg (USIAS), 67084 Strasbourg Cedex, France
| | - João Trindade Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 30270-901, Brazil
| |
Collapse
|
32
|
Sharma V, Colson P, Chabrol O, Scheid P, Pontarotti P, Raoult D. Welcome to pandoraviruses at the 'Fourth TRUC' club. Front Microbiol 2015; 6:423. [PMID: 26042093 PMCID: PMC4435241 DOI: 10.3389/fmicb.2015.00423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/21/2015] [Indexed: 01/21/2023] Open
Abstract
Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9–2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the ‘Fourth TRUC’ club, encompassing distinct life forms compared with cellular organisms.
Collapse
Affiliation(s)
- Vikas Sharma
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UM63 CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Aix-Marseille University Marseille, France ; I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UM63 CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Aix-Marseille University Marseille, France ; Institut Hospitalo-Universitaire Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille Marseille, France
| | - Olivier Chabrol
- I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Patrick Scheid
- Medical Parasitology Laboratory, Laboratory Department I (Medicine), Diagnostics, Central Institute of the Bundeswehr Medical Service Koblenz, Germany
| | - Pierre Pontarotti
- I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UM63 CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Aix-Marseille University Marseille, France ; Institut Hospitalo-Universitaire Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille Marseille, France
| |
Collapse
|
33
|
Eyice Ö, Namura M, Chen Y, Mead A, Samavedam S, Schäfer H. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME JOURNAL 2015; 9:2336-48. [PMID: 25822481 PMCID: PMC4611497 DOI: 10.1038/ismej.2015.37] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. Overall, these data suggest that unlike in the marine environment where gammaproteobacterial populations were identified by SIP as DMS degraders, betaproteobacterial Methylophilaceae may have a key role in DMS cycling in terrestrial environments.
Collapse
Affiliation(s)
- Özge Eyice
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Motonobu Namura
- MOAC Doctoral Training Centre, University of Warwick, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Siva Samavedam
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
34
|
Abstract
The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations—the 'rare biosphere'—have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.
Collapse
|
35
|
Hollister EB, Brooks JP, Gentry TJ. Bioinformation and ’Omic Approaches for Characterization of Environmental Microorganisms. Environ Microbiol 2015. [DOI: 10.1016/b978-0-12-394626-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Affiliation(s)
- Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward M. Rubin
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Abstract
Homologous DNA pairing and strand exchange are at the core of homologous recombination. These reactions are promoted by a DNA-strand-exchange protein assembled into a nucleoprotein filament comprising the DNA-pairing protein, ATP, and single-stranded DNA. The catalytic activity of this molecular machine depends on control of its dynamic instability by accessory factors. Here we discuss proteins known as recombination mediators that facilitate formation and functional activation of the DNA-strand-exchange protein filament. Although the basics of homologous pairing and DNA-strand exchange are highly conserved in evolution, differences in mediator function are required to cope with differences in how single-stranded DNA is packaged by the single-stranded DNA-binding protein in different species, and the biochemical details of how the different DNA-strand-exchange proteins nucleate and extend into a nucleoprotein filament. The set of (potential) mediator proteins has apparently expanded greatly in evolution, raising interesting questions about the need for additional control and coordination of homologous recombination in more complex organisms.
Collapse
Affiliation(s)
- Alex Zelensky
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Claire Wyman
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Carr R, Borenstein E. Comparative analysis of functional metagenomic annotation and the mappability of short reads. PLoS One 2014; 9:e105776. [PMID: 25148512 PMCID: PMC4141809 DOI: 10.1371/journal.pone.0105776] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022] Open
Abstract
To assess the functional capacities of microbial communities, including those inhabiting the human body, shotgun metagenomic reads are often aligned to a database of known genes. Such homology-based annotation practices critically rely on the assumption that short reads can map to orthologous genes of similar function. This assumption, however, and the various factors that impact short read annotation, have not been systematically evaluated. To address this challenge, we generated an extremely large database of simulated reads (totaling 15.9 Gb), spanning over 500,000 microbial genes and 170 curated genomes and including, for many genomes, every possible read of a given length. We annotated each read using common metagenomic protocols, fully characterizing the effect of read length, sequencing error, phylogeny, database coverage, and mapping parameters. We additionally rigorously quantified gene-, genome-, and protocol-specific annotation biases. Overall, our findings provide a first comprehensive evaluation of the capabilities and limitations of functional metagenomic annotation, providing crucial goal-specific best-practice guidelines to inform future metagenomic research.
Collapse
Affiliation(s)
- Rogan Carr
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, United States of America
- Santa Fe Institute, Santa Fe, NM, United States of America
| |
Collapse
|
39
|
Forterre P, Krupovic M, Prangishvili D. Cellular domains and viral lineages. Trends Microbiol 2014; 22:554-8. [PMID: 25129822 DOI: 10.1016/j.tim.2014.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022]
Abstract
It has been claimed that giant DNA viruses represent a separate, fourth domain of life in addition to the domains of Bacteria, Archaea, and Eukarya. Such classification disregards fundamental differences between the two types of living entities - viruses and cells - and results in confusion and controversies in evolutionary scenarios. We highlight these problems and emphasize the importance of restricting the term 'domain' to the descendants of the last universal cellular ancestor (LUCA), based on the shared ribosome structure. We suggest tracing phylogeny of viruses along evolutionary lineages primarily defined by virion architectures and the structures of the major capsid proteins.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France; Institut de Génétique et Microbiologie, University Paris-Sud, Centre National de la Recherche Scientifique (CNRS) UMR 8621, 91405 Orsay CEDEX, France.
| | - Mart Krupovic
- Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | | |
Collapse
|
40
|
Cady LP, Brack A, Bueno Prieto JE, Cockell C, Horneck G, Kasting JF, Lineweaver CH, Raulin F, Schopf JW, Sleep N, von Bloh W, Westall F, Deamer D, Lehman N, Pérez-Mercader J. Where do we go from here? Astrobiology editorial board opinions. ASTROBIOLOGY 2014; 14:629-644. [PMID: 25102138 DOI: 10.1089/ast.2014.1405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
41
|
Sharma V, Colson P, Giorgi R, Pontarotti P, Raoult D. DNA-dependent RNA polymerase detects hidden giant viruses in published databanks. Genome Biol Evol 2014; 6:1603-10. [PMID: 24929085 PMCID: PMC4122926 DOI: 10.1093/gbe/evu128] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Environmental metagenomic studies show that there is a “dark matter,” composed of sequences not linked to any known organism, as determined mainly using ribosomal DNA (rDNA) sequences, which therefore ignore giant viruses. DNA-dependent RNA polymerase (RNAP) genes are universal in microbes and conserved in giant viruses and may replace rDNA for identifying microbes. We found while reconstructing RNAP subunit 2 (RNAP2) phylogeny that a giant virus sequenced together with the genome of a large eukaryote, Hydra magnipapillata, has been overlooked. To explore the dark matter, we used viral RNAP2 and reconstructed putative ancestral RNAP2, which were significantly superior in detecting distant clades than current sequences, and we revealed two additional unknown mimiviruses, misclassified as an euryarchaeote and an oomycete plant pathogen, and detected unknown putative viral clades. We suggest using RNAP systematically to decipher the black matter and identify giant viruses.
Collapse
Affiliation(s)
- Vikas Sharma
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Marseille, FranceAix-Marseille Univ., I2M UMR-CNRS 7373, Evolution Biologique et Modélisation, Marseille, France
| | - Philippe Colson
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Marseille, FranceFondation Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Roch Giorgi
- Aix-Marseille Université, UMR S 912 (SESSTIM), INSERM, IRD, Marseille, FranceAssistance Publique-Hôpitaux de Marseille, hôpital Timone, Service Biostatistique et Technologies de l'Information et de la Communication, Marseille, France
| | - Pierre Pontarotti
- Aix-Marseille Univ., I2M UMR-CNRS 7373, Evolution Biologique et Modélisation, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Marseille, FranceFondation Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
42
|
Wu D, Jospin G, Eisen JA. Systematic identification of gene families for use as "markers" for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One 2013; 8:e77033. [PMID: 24146954 PMCID: PMC3798382 DOI: 10.1371/journal.pone.0077033] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/06/2013] [Indexed: 02/01/2023] Open
Abstract
With the astonishing rate that genomic and metagenomic sequence data sets are accumulating, there are many reasons to constrain the data analyses. One approach to such constrained analyses is to focus on select subsets of gene families that are particularly well suited for the tasks at hand. Such gene families have generally been referred to as “marker” genes. We are particularly interested in identifying and using such marker genes for phylogenetic and phylogeny-driven ecological studies of microbes and their communities (e.g., construction of species trees, phylogenetic based assignment of metagenomic sequence reads to taxonomic groups, phylogeny-based assessment of alpha- and beta-diversity of microbial communities from metagenomic data). We therefore refer to these as PhyEco (for phylogenetic and phylogenetic ecology) markers. The dual use of these PhyEco markers means that we needed to develop and apply a set of somewhat novel criteria for identification of the best candidates for such markers. The criteria we focused on included universality across the taxa of interest, ability to be used to produce robust phylogenetic trees that reflect as much as possible the evolution of the species from which the genes come, and low variation in copy number across taxa. We describe here an automated protocol for identifying potential PhyEco markers from a set of complete genome sequences. The protocol combines rapid searching, clustering and phylogenetic tree building algorithms to generate protein families that meet the criteria listed above. We report here the identification of PhyEco markers for different taxonomic levels including 40 for “all bacteria and archaea”, 114 for “all bacteria (greatly expanding on the ∼30 commonly used), and 100 s to 1000 s for some of the individual phyla of bacteria. This new list of PhyEco markers should allow much more detailed automated phylogenetic and phylogenetic ecology analyses of these groups than possible previously.
Collapse
Affiliation(s)
- Dongying Wu
- Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Energy (DOE)-Joint Genome Institute, Walnut Creek, California, United States of America
- * E-mail:
| | - Guillaume Jospin
- Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Jonathan A. Eisen
- Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California Davis Genome Center, University of California Davis, Davis, California, United States of America
| |
Collapse
|
43
|
Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. Metagenomics for pathogen detection in public health. Genome Med 2013; 5:81. [PMID: 24050114 PMCID: PMC3978900 DOI: 10.1186/gm485] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Traditional pathogen detection methods in public health infectious disease surveillance rely upon the identification of agents that are already known to be associated with a particular clinical syndrome. The emerging field of metagenomics has the potential to revolutionize pathogen detection in public health laboratories by allowing the simultaneous detection of all microorganisms in a clinical sample, without a priori knowledge of their identities, through the use of next-generation DNA sequencing. A single metagenomics analysis has the potential to detect rare and novel pathogens, and to uncover the role of dysbiotic microbiomes in infectious and chronic human disease. Making use of advances in sequencing platforms and bioinformatics tools, recent studies have shown that metagenomics can even determine the whole-genome sequences of pathogens, allowing inferences about antibiotic resistance, virulence, evolution and transmission to be made. We are entering an era in which more novel infectious diseases will be identified through metagenomics-based methods than through traditional laboratory methods. The impetus is now on public health laboratories to integrate metagenomics techniques into their diagnostic arsenals.
Collapse
Affiliation(s)
- Ruth R Miller
- UBC School of Population and Public Health, Faculty of Medicine, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Vincent Montoya
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Jennifer L Gardy
- UBC School of Population and Public Health, Faculty of Medicine, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - David M Patrick
- UBC School of Population and Public Health, Faculty of Medicine, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Patrick Tang
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada ; Public Health Microbiology and Reference Laboratory, British Columbia Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC V5Z 2B4, Canada
| |
Collapse
|
44
|
Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. MICROBIOME 2013; 1:22. [PMID: 24450983 PMCID: PMC3971608 DOI: 10.1186/2049-2618-1-22] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Sediments are massive reservoirs of carbon compounds and host a large fraction of microbial life. Microorganisms within terrestrial aquifer sediments control buried organic carbon turnover, degrade organic contaminants, and impact drinking water quality. Recent 16S rRNA gene profiling indicates that members of the bacterial phylum Chloroflexi are common in sediment. Only the role of the class Dehalococcoidia, which degrade halogenated solvents, is well understood. Genomic sampling is available for only six of the approximate 30 Chloroflexi classes, so little is known about the phylogenetic distribution of reductive dehalogenation or about the broader metabolic characteristics of Chloroflexi in sediment. RESULTS We used metagenomics to directly evaluate the metabolic potential and diversity of Chloroflexi in aquifer sediments. We sampled genomic sequence from 86 Chloroflexi representing 15 distinct lineages, including members of eight classes previously characterized only by 16S rRNA sequences. Unlike in the Dehalococcoidia, genes for organohalide respiration are rare within the Chloroflexi genomes sampled here. Near-complete genomes were reconstructed for three Chloroflexi. One, a member of an unsequenced lineage in the Anaerolinea, is an aerobe with the potential for respiring diverse carbon compounds. The others represent two genomically unsampled classes sibling to the Dehalococcoidia, and are anaerobes likely involved in sugar and plant-derived-compound degradation to acetate. Both fix CO2 via the Wood-Ljungdahl pathway, a pathway not previously documented in Chloroflexi. The genomes each encode unique traits apparently acquired from Archaea, including mechanisms of motility and ATP synthesis. CONCLUSIONS Chloroflexi in the aquifer sediments are abundant and highly diverse. Genomic analyses provide new evolutionary boundaries for obligate organohalide respiration. We expand the potential roles of Chloroflexi in sediment carbon cycling beyond organohalide respiration to include respiration of sugars, fermentation, CO2 fixation, and acetogenesis with ATP formation by substrate-level phosphorylation.
Collapse
Affiliation(s)
- Laura A Hug
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kelly C Wrighton
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Itai Sharon
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kyle R Frischkorn
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| | - Kenneth H Williams
- Geophysics Department, Earth Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Susannah G Tringe
- Metagenome Program, DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
45
|
Abstract
Microbes were defined in the 19th century by L. Pasteur. Prokaryotes and eukaryotes, which are divided into two worlds of microbes, were introduced by E. Chatton in 1925. R. Woese divided this world into three domains based on ribosomal analysis (Bacteria, Archaea, and Eukarya). The discovery of Mimivirus and other Megavirales, that are microbes, led to divide the microbiological world into four branches. I introduced the name TRUC (Things Resisting Uncompleted Classifications) to accommodate the division in four of the currently known microbiological world.
Collapse
Affiliation(s)
- Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, CNRS UMR 7278, IRD 198, INSERM 1095, Faculté de Médecine, Marseille, France
| |
Collapse
|
46
|
Cotterill FP, Augustin H, Medicus R, Foissner W. Conservation of Protists: The Krauthügel Pond in Austria. DIVERSITY 2013; 5:374-392. [PMID: 24072980 PMCID: PMC3781290 DOI: 10.3390/d5020374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although constituting more than 100,000 described species, protists are virtually ignored within the arena of biodiversity conservation. One reason is the widespread belief that the majority of protists have cosmopolitan distributions, in contrast to the highly hetereogenous biogeography of the "mega-Metazoa". However, modern research reveals that about one third of the known protists have restricted distributions, which endorses their conservation, at least in special cases. Here, we report what probably ranks as the first successful conservation intervention focused directly on known protist diversity. It is justified by unique species, type localities, and landscape maintenance as evidence for legislation. The protected habitat comprises an ephemeral pond, which is now a "Natural Monument" for ciliated protozoa. This wetland occupies a natural depression on the Krauthügel ("cabbage hill") south of the fortress of Salzburg City. When filled, the claviform pond has a size of ~30 × 15 m and a depth rarely surpassing 30 cm. Water is present only for some days or weeks, depending on heavy and/or prolonged rain. The pond occupied an agricultural field where root and leafy vegetables were cultivated for possibly more than 200 years. In the 1960s, this area became a grassland utilized as an autumn pasture, but was abandoned in the 1990s. Repeated sampling between 1982 and 2012 recovered a total of at least 150 ciliate taxa, of which 121 were identified to species level. Eight species were new to science, and an additional 10 poorly known species were reinvestigated and neotypified with populations from the Krauthügel pond. Both endemism and type localities justify the argument that the "integrative approach" in biodiversity and conservation issues should include protists and micro-metazoans. We argue that Krauthügel holds a unique reference node for biodiversity inventories to obtain the baseline knowledge-which is the prerequisite to monitor ecosystem integrity-and detect and evaluate impacts of natural and anthropogenic disturbances.
Collapse
Affiliation(s)
- Fenton P.D. Cotterill
- AEON-Africa Earth Observatory Network, Geoecodynamics Research Hub, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Hannes Augustin
- GF Naturschutzbund Salzburg, Museumsplatz 2, 5020 Salzburg, Austria;
| | - Reinhard Medicus
- Magistrat der Stadt Salzburg, Schwarzstrasse 44, 5020 Salzburg, Austria;
| | - Wilhelm Foissner
- FB Organismische Biologie, Universität Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| |
Collapse
|
47
|
Abstract
During the past decade, there has been an explosion in the quantity of sequencing data that has come out of the studies of microbiomes. This has resulted primarily from new technological developments to interrogating any environment of choice. Additional downstream applications to interrogating these datasets include "omics" studies such as transcriptomics and proteomics, all leading to a deeper understanding of microbial diversity and the multitude of species that remain uncultured. Metagenomic studies are now being performed routinely on a wide range of environments including soils, oceans, air, plants, and various animal species. They are being used to identify novel microbial species, new pathways, and to elucidate the roles of viruses and phage in the environment. In this review, we get a perspective on where the science is headed and what we expect to learn as additional studies unfold.
Collapse
Affiliation(s)
- Karen E Nelson
- J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
48
|
Chintapalli SV, Bhardwaj G, Babu J, Hadjiyianni L, Hong Y, Todd GK, Boosalis CA, Zhang Z, Zhou X, Ma H, Anishkin A, van Rossum DB, Patterson RL. Reevaluation of the evolutionary events within recA/RAD51 phylogeny. BMC Genomics 2013; 14:240. [PMID: 23574621 PMCID: PMC3637515 DOI: 10.1186/1471-2164-14-240] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/28/2013] [Indexed: 11/20/2022] Open
Abstract
Background The recA/RAD51 gene family encodes a diverse set of recombinase proteins that affect homologous recombination, DNA-repair, and genome stability. The recA gene family is expressed across all three domains of life - Eubacteria, Archaea, and Eukaryotes - and even in some viruses. To date, efforts to resolve the deep evolutionary origins of this ancient protein family have been hindered by the high sequence divergence between paralogous groups (i.e. ~30% average pairwise identity). Results Through large taxon sampling and the use of a phylogenetic algorithm designed for inferring evolutionary events in highly divergent paralogs, we obtained a robust, parsimonious and more refined phylogenetic history of the recA/RAD51 superfamily. Conclusions In summary, our model for the evolution of recA/RAD51 family provides a better understanding of the ancient origin of recA proteins and the multiple events that lead to the diversification of recA homologs in eukaryotes, including the discovery of additional RAD51 sub-families.
Collapse
Affiliation(s)
- Sree V Chintapalli
- Department of Physiology and Membrane Biology, School of Medicine, University of California-Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- David P. Mindell
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
50
|
Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, Phillippy AM, Pop M. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol 2013; 14:R2. [PMID: 23320958 PMCID: PMC4053804 DOI: 10.1186/gb-2013-14-1-r2] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 01/15/2013] [Indexed: 12/31/2022] Open
Abstract
We describe MetAMOS, an open source and modular metagenomic assembly and analysis pipeline. MetAMOS represents an important step towards fully automated metagenomic analysis, starting with next-generation sequencing reads and producing genomic scaffolds, open-reading frames and taxonomic or functional annotations. MetAMOS can aid in reducing assembly errors, commonly encountered when assembling metagenomic samples, and improves taxonomic assignment accuracy while also reducing computational cost. MetAMOS can be downloaded from: https://github.com/treangen/MetAMOS.
Collapse
|