1
|
Johnson RM, Li K, Chen X, Morgan GL, Aubé J, Li B. The Hybrid Antibiotic Thiomarinol A Overcomes Intrinsic Resistance in Escherichia coli Using a Privileged Dithiolopyrrolone Moiety. ACS Infect Dis 2024; 10:582-593. [PMID: 38226592 PMCID: PMC11235417 DOI: 10.1021/acsinfecdis.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
An impermeable outer membrane and multidrug efflux pumps work in concert to provide Gram-negative bacteria with intrinsic resistance against many antibiotics. These resistance mechanisms reduce the intracellular concentrations of antibiotics and render them ineffective. The natural product thiomarinol A combines holothin, a dithiolopyrrolone antibiotic, with marinolic acid A, a close analogue of mupirocin. The hybridity of thiomarinol A converts the mupirocin scaffold from inhibiting Gram-positive bacteria to inhibiting both Gram-positive and -negative bacteria. We found that thiomarinol A accumulates significantly more than mupirocin within the Gram-negative bacterium Escherichia coli, likely contributing to its broad-spectrum activity. Antibiotic susceptibility testing of E. coli mutants reveals that thiomarinol A overcomes the intrinsic resistance mechanisms that render mupirocin inactive. Structure-activity relationship studies suggest that the dithiolopyrrolone is a privileged moiety for improving the accumulation and antibiotic activity of the mupirocin scaffold without compromising binding to isoleucyl-tRNA synthetase. These studies also highlight that accumulation is required but not sufficient for antibiotic activity. Our work reveals a role of the dithiolopyrrolone moiety in overcoming intrinsic mupirocin resistance in E. coli and provides a starting point for designing dual-acting and high-accumulating hybrid antibiotics.
Collapse
Affiliation(s)
- Rachel M Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gina L Morgan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Wu Y, Wang M, Liu L. Advances on structure, bioactivity, and biosynthesis of amino acid-containing trans-AT polyketides. Eur J Med Chem 2023; 262:115890. [PMID: 37907023 DOI: 10.1016/j.ejmech.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Trans-AT polyketides represent a class of natural compounds utilizing independent acyltransferase during their biosynthesis. They are well known for their diverse chemical structures and potent bioactivities. Trans-AT polyketides are synthesized through biosynthetic gene clusters predominantly composed of polyketide synthases (PKS), but often found in hybrid with non-ribosomal peptide synthetases (NRPS). This genetic hybridization results in the incorporation of amino acid residues into polyketide structures, significantly enhancing their structural diversity. Numerous amino acid-containing trans-AT polyketides have been identified, drawing significant attention to the mechanisms underlying amino acid incorporation and their impact on the biological activity of polyketides. Here, we discussed their origins, structures, biological activities, and the specific roles of amino acids in modulating both the bioactivity and biosynthesis of 38 trans-AT polyketides containing amino acids for the first time. This comprehensive analysis will serve as a crucial reference for the exploration of novel compounds and the improvement of structures and activities.
Collapse
Affiliation(s)
- Yunqiang Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Min Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Liwei Liu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
3
|
Louwen JJR, Kautsar SA, van der Burg S, Medema MH, van der Hooft JJJ. iPRESTO: Automated discovery of biosynthetic sub-clusters linked to specific natural product substructures. PLoS Comput Biol 2023; 19:e1010462. [PMID: 36758069 PMCID: PMC9946207 DOI: 10.1371/journal.pcbi.1010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/22/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Microbial specialised metabolism is full of valuable natural products that are applied clinically, agriculturally, and industrially. The genes that encode their biosynthesis are often physically clustered on the genome in biosynthetic gene clusters (BGCs). Many BGCs consist of multiple groups of co-evolving genes called sub-clusters that are responsible for the biosynthesis of a specific chemical moiety in a natural product. Sub-clusters therefore provide an important link between the structures of a natural product and its BGC, which can be leveraged for predicting natural product structures from sequence, as well as for linking chemical structures and metabolomics-derived mass features to BGCs. While some initial computational methodologies have been devised for sub-cluster detection, current approaches are not scalable, have only been run on small and outdated datasets, or produce an impractically large number of possible sub-clusters to mine through. Here, we constructed a scalable method for unsupervised sub-cluster detection, called iPRESTO, based on topic modelling and statistical analysis of co-occurrence patterns of enzyme-coding protein families. iPRESTO was used to mine sub-clusters across 150,000 prokaryotic BGCs from antiSMASH-DB. After annotating a fraction of the resulting sub-cluster families, we could predict a substructure for 16% of the antiSMASH-DB BGCs. Additionally, our method was able to confirm 83% of the experimentally characterised sub-clusters in MIBiG reference BGCs. Based on iPRESTO-detected sub-clusters, we could correctly identify the BGCs for xenorhabdin and salbostatin biosynthesis (which had not yet been annotated in BGC databases), as well as propose a candidate BGC for akashin biosynthesis. Additionally, we show for a collection of 145 actinobacteria how substructures can aid in linking BGCs to molecules by correlating iPRESTO-detected sub-clusters to MS/MS-derived Mass2Motifs substructure patterns. This work paves the way for deeper functional and structural annotation of microbial BGCs by improved linking of orphan molecules to their cognate gene clusters, thus facilitating accelerated natural product discovery.
Collapse
Affiliation(s)
- Joris J. R. Louwen
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Satria A. Kautsar
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | | | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
- * E-mail: (MHM); (JJJvdH)
| | - Justin J. J. van der Hooft
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- * E-mail: (MHM); (JJJvdH)
| |
Collapse
|
4
|
Chen X, Johnson RM, Li B. A Permissive Amide N-Methyltransferase for Dithiolopyrrolones. ACS Catal 2023; 13:1899-1905. [PMID: 38106463 PMCID: PMC10720983 DOI: 10.1021/acscatal.2c05439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amide N-methylation is important for the activity and permeability of bioactive compounds but can be challenging to perform selectively. The broad-spectrum antimicrobial natural products thiolutin and holomycin differ only by an N-methyl group at the endocyclic amide of thiolutin, but only thiolutin exhibits antifungal activity. The enzyme responsible for amide N--methylation in thiolutin biosynthesis has remained elusive. Here, we identified and characterized the amide N-methyltransferase DtpM that is encoded >400 kb outside of the thiolutin gene cluster. DtpM catalyzes efficient conversion of holomycin to thiolutin, exhibits broad substrate scope toward dithiolopyrrolones, and has high thermal stability. In addition, sequence similarity network analysis suggests DtpM is more closely related to phenol O-methyltransferases than some amide methyltransferases. This study expands the limited examples of amide N-methyltransferases and may facilitate chemoenzymatic synthesis of diverse dithiolopyrrolone compounds as potential therapeutics.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel M Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Núñez-Montero K, Rojas-Villalta D, Barrientos L. Antarctic Sphingomonas sp. So64.6b showed evolutive divergence within its genus, including new biosynthetic gene clusters. Front Microbiol 2022; 13:1007225. [DOI: 10.3389/fmicb.2022.1007225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
IntroductionThe antibiotic crisis is a major human health problem. Bioprospecting screenings suggest that proteobacteria and other extremophile microorganisms have biosynthetic potential for the production novel antimicrobial compounds. An Antarctic Sphingomonas strain (So64.6b) previously showed interesting antibiotic activity and elicitation response, then a relationship between environmental adaptations and its biosynthetic potential was hypothesized. We aimed to determine the genomic characteristics in So64.6b strain related to evolutive traits for the adaptation to the Antarctic environment that could lead to its diversity of potentially novel antibiotic metabolites.MethodsThe complete genome sequence of the Antarctic strain was obtained and mined for Biosynthetic Gene Clusters (BGCs) and other unique genes related to adaptation to extreme environments. Comparative genome analysis based on multi-locus phylogenomics, BGC phylogeny, and pangenomics were conducted within the closest genus, aiming to determine the taxonomic affiliation and differential characteristics of the Antarctic strain.Results and discussionThe Antarctic strain So64.6b showed a closest identity with Sphingomonas alpina, however containing a significant genomic difference of ortholog cluster related to degradation multiple pollutants. Strain So64.6b had a total of six BGC, which were predicted with low to no similarity with other reported clusters; three were associated with potential novel antibiotic compounds using ARTS tool. Phylogenetic and synteny analysis of a common BGC showed great diversity between Sphingomonas genus but grouping in clades according to similar isolation environments, suggesting an evolution of BGCs that could be linked to the specific ecosystems. Comparative genomic analysis also showed that Sphingomonas species isolated from extreme environments had the greatest number of predicted BGCs and a higher percentage of genetic content devoted to BGCs than the isolates from mesophilic environments. In addition, some extreme-exclusive clusters were found related to oxidative and thermal stress adaptations, while pangenome analysis showed unique resistance genes on the Antarctic strain included in genetic islands. Altogether, our results showed the unique genetic content on Antarctic strain Sphingomonas sp. So64.6, −a probable new species of this genetically divergent genus–, which could have potentially novel antibiotic compounds acquired to cope with Antarctic poly-extreme conditions.
Collapse
|
6
|
Assessing the genomic composition, putative ecological relevance and biotechnological potential of plasmids from sponge bacterial symbionts. Microbiol Res 2022; 265:127183. [PMID: 36108440 DOI: 10.1016/j.micres.2022.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Plasmid-mediated transfer of genes can have direct consequences in several biological processes within sponge microbial communities. However, very few studies have attempted genomic and functional characterization of plasmids from marine host-associated microbial communities in general and those of sponges in particular. In the present study, we used an endogenous plasmid isolation method to obtain plasmids from bacterial symbionts of the marine sponges Stylissa carteri and Paratetilla sp. and investigated the genomic composition, putative ecological relevance and biotechnological potential of these plasmids. In total, we isolated and characterized three complete plasmids, three plasmid prophages and one incomplete plasmid. Our results highlight the importance of plasmids to transfer relevant genetic traits putatively involved in microbial symbiont adaptation and host-microbe and microbe-microbe interactions. For example, putative genes involved in bacterial response to chemical stress, competition, metabolic versatility and mediation of bacterial colonization and pathogenicity were detected. Genes coding for enzymes and toxins of biotechnological potential were also detected. Most plasmid prophage coding sequences were, however, hypothetical proteins with unknown functions. Overall, this study highlights the ecological relevance of plasmids in the marine sponge microbiome and provides evidence that plasmids of sponge bacterial symbionts may represent an untapped resource of genes of biotechnological interest.
Collapse
|
7
|
Lau NS, Heng WL, Miswan N, Azami NA, Furusawa G. Comparative Genomic Analyses of the Genus Photobacterium Illuminate Biosynthetic Gene Clusters Associated with Antagonism. Int J Mol Sci 2022; 23:ijms23179712. [PMID: 36077108 PMCID: PMC9456166 DOI: 10.3390/ijms23179712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Photobacterium is known for its ecophysiological versatility encompassing free-living, symbiotic, and pathogenic lifestyles. Photobacterium sp. CCB-ST2H9 was isolated from estuarine sediment collected at Matang Mangrove, Malaysia. In this study, the genome of CCB-ST2H9 was sequenced, and the pan-genome of 37 Photobacterium strains was analysed. Phylogeny based on core genes showed that CCB-ST2H9 clustered with P. galatheae, forming a distinct clade with P. halotolerans, P. salinisoli, and P. arenosum. The core genome of Photobacterium was conserved in housekeeping functions, while the flexible genome was well represented by environmental genes related to energy production and carbohydrate metabolism. Genomic metrics including 16S rRNA sequence similarity, average nucleotide identity, and digital DNA–DNA hybridization values were below the cut-off for species delineation, implying that CCB-ST2H9 potentially represents a new species. Genome mining revealed that biosynthetic gene clusters (BGCs) involved in producing antimicrobial compounds such as holomycin in CCB-ST2H9 could contribute to the antagonistic potential. Furthermore, the EtOAc extract from the culture broth of CCB-ST2H9 exhibited antagonistic activity against Vibrio spp. Intriguingly, clustering based on BGCs profiles grouped P. galatheae, P. halotolerans, P. salinisoli, P. arenosum, and CCB-ST2H9 together in the heatmap by the presence of a large number of BGCs. These BGCs-rich Photobacterium strains represent great potential for bioactive secondary metabolites production and sources for novel compounds.
Collapse
|
8
|
Haines AS, Kendrew SG, Crowhurst N, Stephens ER, Connolly J, Hothersall J, Miller CE, Collis AJ, Huckle BD, Thomas CM. High quality genome annotation and expression visualisation of a mupirocin-producing bacterium. PLoS One 2022; 17:e0268072. [PMID: 35511780 PMCID: PMC9070926 DOI: 10.1371/journal.pone.0268072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas strain NCIMB10586, in the P. fluorescens subgroup, produces the polyketide antibiotic mupirocin, and has potential as a host for industrial production of a range of valuable products. To underpin further studies on its genetics and physiology, we have used a combination of standard and atypical approaches to achieve a quality of the genome sequence and annotation, above current standards for automated pathways. Assembly of Illumina reads to a PacBio genome sequence created a retrospectively hybrid assembly, identifying and fixing 415 sequencing errors which would otherwise affect almost 5% of annotated coding regions. Our annotation pipeline combined automation based on related well-annotated genomes and stringent, partially manual, tests for functional features. The strain was close to P. synxantha and P. libaniensis and was found to be highly similar to a strain being developed as a weed-pest control agent in Canada. Since mupirocin is a secondary metabolite whose production is switched on late in exponential phase, we carried out RNAseq analysis over an 18 h growth period and have developed a method to normalise RNAseq samples as a group, rather than pair-wise. To review such data we have developed an easily interpreted way to present the expression profiles across a region, or the whole genome at a glance. At the 2-hour granularity of our time-course, the mupirocin cluster increases in expression as an essentially uniform bloc, although the mupirocin resistance gene stands out as being expressed at all the time points.
Collapse
Affiliation(s)
- Anthony S. Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Steve G. Kendrew
- Manufacturing Science and Technology, GlaxoSmithKline, Worthing, West Sussex, United Kingdom
| | - Nicola Crowhurst
- Manufacturing Science and Technology, GlaxoSmithKline, Worthing, West Sussex, United Kingdom
| | - Elton R. Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jack Connolly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Claire E. Miller
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew J. Collis
- Manufacturing Science and Technology, GlaxoSmithKline, Worthing, West Sussex, United Kingdom
| | - Benjamin D. Huckle
- Manufacturing Science and Technology, GlaxoSmithKline, Worthing, West Sussex, United Kingdom
| | - Christopher M. Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
9
|
Yang M, Feng Y, Yuan L, Zhao H, Gao S, Li Z. High Concentration and Frequent Application of Disinfection Increase the Detection of Methicillin-Resistant Staphylococcus aureus Infections in Psychiatric Hospitals During the COVID-19 Pandemic. Front Med (Lausanne) 2021; 8:722219. [PMID: 34778288 PMCID: PMC8578793 DOI: 10.3389/fmed.2021.722219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023] Open
Abstract
The tolerance of certain multi-drug resistant bacteria to disinfectants may be promoted while the requirements of environmental disinfection have been raised in the high-risk areas of medical institutions during the COVID-19 pandemic. The current research addressed the mechanisms underlying a sharp increase in the detection of methicillin-resistant Staphylococcus aureus (MRSA) observed in a closed-management unit of elderly patients with mental disorders in 2020 as compared with the previous 4 years. We first conducted microbial detection in staff-hand and environment and a molecular epidemiology analysis, rejecting the hypothesis that the MRSA increase was due to an outbreak. Afterward, we turned to disinfectant concentration and frequency of use and analyzed the varied MRSA detection rates with different concentrations and frequencies of disinfection in 2020 and the previous 4 years. The MRSA detection rate increased with elevated concentration and frequency of disinfection, with 1,000 or 500 mg/L two times per day since January in 2020 vs. 500 mg/L 2-3 times per week in 2016-2019. When the disinfectant concentration was reduced from 1,000 to 500 mg/L, the MRSA detection decreased which indicated a modulatory role of disinfectant concentration. With a sustained frequency of disinfection in 2020, the MRSA detection rate was still higher, even after May, than that in the previous years. This suggested that the frequency of disinfection also contributed to the MRSA increase. Overall, the MRSA detection was augmented with the increase in disinfection concentration and frequency during the COVID-19 epidemic, suggesting that highly-concentrated and highly-frequent preventive long-term disinfection is not recommended without risk assessments in psychiatric hospitals.
Collapse
Affiliation(s)
- Mi Yang
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yuan
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Huachang Zhao
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shan Gao
- University of Electronic Science and Technology of China, Chengdu, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Johnson RA, Chan AN, Ward RD, McGlade CA, Hatfield BM, Peters JM, Li B. Inhibition of Isoleucyl-tRNA Synthetase by the Hybrid Antibiotic Thiomarinol. J Am Chem Soc 2021; 143:12003-12013. [PMID: 34342433 DOI: 10.1021/jacs.1c02622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hybrid antibiotics are an emerging antimicrobial strategy to overcome antibiotic resistance. The natural product thiomarinol A is a hybrid of two antibiotics: holothin, a dithiolopyrrolone (DTP), and marinolic acid, a close analogue of the drug mupirocin that is used to treat methicillin-resistant Staphylococcus aureus (MRSA). DTPs disrupt metal homeostasis by chelating metal ions in cells, whereas mupirocin targets the essential enzyme isoleucyl-tRNA synthetase (IleRS). Thiomarinol A is over 100-fold more potent than mupirocin against mupirocin-sensitive MRSA; however, its mode of action has been unknown. We show that thiomarinol A targets IleRS. A knockdown of the IleRS-encoding gene, ileS, exhibited sensitivity to a synthetic analogue of thiomarinol A in a chemical genomics screen. Thiomarinol A inhibits MRSA IleRS with a picomolar Ki and binds to IleRS with low femtomolar affinity, 1600 times more tightly than mupirocin. We find that thiomarinol A remains effective against high-level mupirocin-resistant MRSA and provide evidence to support a dual mode of action for thiomarinol A that may include both IleRS inhibition and metal chelation. We demonstrate that MRSA develops resistance to thiomarinol A to a substantially lesser degree than mupirocin and the potent activity of thiomarinol A requires hybridity between DTP and mupirocin. Our findings identify a mode of action of a natural hybrid antibiotic and demonstrate the potential of hybrid antibiotics to combat antibiotic resistance.
Collapse
Affiliation(s)
- Rachel A Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew N Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ryan D Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Caylie A McGlade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Breanne M Hatfield
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
A Pseudoalteromonas Clade with Remarkable Biosynthetic Potential. Appl Environ Microbiol 2021; 87:AEM.02604-20. [PMID: 33397702 DOI: 10.1128/aem.02604-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/19/2020] [Indexed: 02/02/2023] Open
Abstract
Pseudoalteromonas species produce a diverse range of biologically active compounds, including those biosynthesized by nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs). Here, we report the biochemical and genomic analysis of Pseudoalteromonas sp. strain HM-SA03, isolated from the blue-ringed octopus, Hapalochlaena sp. Genome mining for secondary metabolite pathways revealed seven putative NRPS/PKS biosynthesis gene clusters, including those for the biosynthesis of alterochromides, pseudoalterobactins, alteramides, and four novel compounds. Among these was a novel siderophore biosynthesis gene cluster with unprecedented architecture (NRPS-PKS-NRPS-PKS-NRPS-PKS-NRPS). Alterochromide production in HM-SA03 was also confirmed by liquid chromatography-mass spectrometry. An investigation of the biosynthetic potential of 42 publicly available Pseudoalteromonas genomes indicated that some of these gene clusters are distributed throughout the genus. Through the phylogenetic analysis, a particular subset of strains formed a clade with extraordinary biosynthetic potential, with an average density of 10 biosynthesis gene clusters per genome. In contrast, the majority of Pseudoalteromonas strains outside this clade contained an average of three clusters encoding complex biosynthesis. These results highlight the underexplored potential of Pseudoalteromonas as a source of new natural products.IMPORTANCE This study demonstrates that the Pseudoalteromonas strain HM-SA03, isolated from the venomous blue-ringed octopus, Hapalochalaena sp., is a biosynthetically talented organism, capable of producing alterochromides and potentially six other specialized metabolites. We identified a pseudoalterobactin biosynthesis gene cluster and proposed a pathway for the production of the associated siderophore. A novel siderophore biosynthesis gene cluster with unprecedented architecture was also identified in the HM-SA03 genome. Finally, we demonstrated that HM-SA03 belongs to a phylogenetic clade of strains with extraordinary biosynthetic potential. While our results do not support a role of HM-SA03 in Hapalochalaena sp. venom (tetrodotoxin) production, they emphasize the untapped potential of Pseudoalteromonas as a source of novel natural products.
Collapse
|
12
|
Walker PD, Weir ANM, Willis CL, Crump MP. Polyketide β-branching: diversity, mechanism and selectivity. Nat Prod Rep 2021; 38:723-756. [PMID: 33057534 DOI: 10.1039/d0np00045k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to August 2020 Polyketides are a family of natural products constructed from simple building blocks to generate a diverse range of often complex chemical structures with biological activities of both pharmaceutical and agrochemical importance. Their biosynthesis is controlled by polyketide synthases (PKSs) which catalyse the condensation of thioesters to assemble a functionalised linear carbon chain. Alkyl-branches may be installed at the nucleophilic α- or electrophilic β-carbon of the growing chain. Polyketide β-branching is a fascinating biosynthetic modification that allows for the conversion of a β-ketone into a β-alkyl group or functionalised side-chain. The overall transformation is catalysed by a multi-protein 3-hydroxy-3-methylglutaryl synthase (HMGS) cassette and is reminiscent of the mevalonate pathway in terpene biosynthesis. The first step most commonly involves the aldol addition of acetate to the electrophilic carbon of the β-ketothioester catalysed by a 3-hydroxy-3-methylglutaryl synthase (HMGS). Subsequent dehydration and decarboxylation selectively generates either α,β- or β,γ-unsaturated β-alkyl branches which may be further modified. This review covers 2008 to August 2020 and summarises the diversity of β-branch incorporation and the mechanistic details of each catalytic step. This is extended to discussion of polyketides containing multiple β-branches and the selectivity exerted by the PKS to ensure β-branching fidelity. Finally, the application of HMGS in data mining, additional β-branching mechanisms and current knowledge of the role of β-branches in this important class of biologically active natural products is discussed.
Collapse
Affiliation(s)
- P D Walker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A N M Weir
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - C L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
13
|
Merrouche R, Yekkour A, Coppel Y, Bouras N, Zitouni A, Mathieu F, Sabaou N. Saccharothrix algeriensis NRRL B-24137, the first non-Streptomyces actinobacterium, produces holomycin after cystine feeding. Arch Microbiol 2020; 202:2509-2516. [DOI: 10.1007/s00203-020-01971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
|
14
|
Hawaiian Bobtail Squid Symbionts Inhibit Marine Bacteria via Production of Specialized Metabolites, Including New Bromoalterochromides BAC-D/D'. mSphere 2020; 5:5/4/e00166-20. [PMID: 32611694 PMCID: PMC7333567 DOI: 10.1128/msphere.00166-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Animals that deposit eggs must protect their embryos from fouling and disease by microorganisms to ensure successful development. Although beneficial bacteria are hypothesized to contribute to egg defense in many organisms, the mechanisms of this protection are only recently being elucidated. Our previous studies of the Hawaiian bobtail squid focused on fungal inhibition by beneficial bacterial symbionts of a female reproductive gland and eggs. Herein, using genomic and chemical analyses, we demonstrate that symbiotic bacteria from this gland can also inhibit other marine bacteria in vitro. One bacterial strain in particular, Pseudoalteromonas sp. JC28, had broad-spectrum abilities to inhibit potential fouling bacteria, in part via production of novel bromoalterochromide metabolites, confirmed via genomic annotation of the associated biosynthetic gene cluster. Our results suggest that these bacterial metabolites may contribute to antimicrobial activity in this association and that such defensive symbioses are underutilized sources for discovering novel antimicrobial compounds. The Hawaiian bobtail squid, Euprymna scolopes, has a symbiotic bacterial consortium in the accessory nidamental gland (ANG), a female reproductive organ that protects eggs against fouling microorganisms. To test the antibacterial activity of ANG community members, 19 bacterial isolates were screened for their ability to inhibit Gram-negative and Gram-positive bacteria, of which two strains were inhibitory. These two antibacterial isolates, Leisingera sp. ANG59 and Pseudoalteromonas sp. JC28, were subjected to further genomic characterization. Genomic analysis of Leisingera sp. ANG59 revealed a biosynthetic gene cluster encoding the antimicrobial compound indigoidine. The genome of Pseudoalteromonas sp. JC28 had a 14-gene cluster with >95% amino acid identity to a known bromoalterochromide (BAC) cluster. Chemical analysis confirmed production of known BACs, BAC-A/A′ (compounds 1a/1b), as well as two new derivatives, BAC-D/D′ (compounds 2a/2b). Extensive nuclear magnetic resonance (NMR) analyses allowed complete structural elucidation of compounds 2a/2b, and the absolute stereochemistry was unambiguously determined using an optimized Marfey’s method. The BACs were then investigated for in vitro antibacterial, antifungal, and nitric oxide (NO) inhibitory activity. Compounds 1a/1b were active against the marine bacteria Bacillus algicola and Vibrio fischeri, while compounds 2a/2b were active only against B. algicola. Compounds 1a/1b inhibited NO production via lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophage cells and also inhibited the pathogenic fungus Fusarium keratoplasticum, which, coupled with their antibacterial activity, suggests that these polyketide-nonribosomal peptides may be used for squid egg defense against potential pathogens and/or fouling microorganisms. These results indicate that BACs may provide Pseudoalteromonas sp. JC28 an ecological niche, facilitating competition against nonsymbiotic microorganisms in the host’s environment. IMPORTANCE Animals that deposit eggs must protect their embryos from fouling and disease by microorganisms to ensure successful development. Although beneficial bacteria are hypothesized to contribute to egg defense in many organisms, the mechanisms of this protection are only recently being elucidated. Our previous studies of the Hawaiian bobtail squid focused on fungal inhibition by beneficial bacterial symbionts of a female reproductive gland and eggs. Herein, using genomic and chemical analyses, we demonstrate that symbiotic bacteria from this gland can also inhibit other marine bacteria in vitro. One bacterial strain in particular, Pseudoalteromonas sp. JC28, had broad-spectrum abilities to inhibit potential fouling bacteria, in part via production of novel bromoalterochromide metabolites, confirmed via genomic annotation of the associated biosynthetic gene cluster. Our results suggest that these bacterial metabolites may contribute to antimicrobial activity in this association and that such defensive symbioses are underutilized sources for discovering novel antimicrobial compounds.
Collapse
|
15
|
Yan Y, Liu N, Tang Y. Recent developments in self-resistance gene directed natural product discovery. Nat Prod Rep 2020; 37:879-892. [PMID: 31912842 PMCID: PMC7340575 DOI: 10.1039/c9np00050j] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: 2000 to 2019Natural products (NPs) are important sources of human therapeutic agents and pesticides. To prevent self-harm from bioactive NPs, some microbial producers employ self-resistance genes to protect themselves. One effective strategy is to employ a self-resistance enzyme (SRE), which is a slightly mutated version of the original metabolic enzyme, and is resistant to the toxic NP but is still functional. The presence of a SRE in a gene cluster can serve as a predictive window to the biological activity of the NPs synthesized by the pathway. In this highlight, we summarize representative examples of NP biosynthetic pathways that utilize self-resistance genes for protection. Recent discoveries based on self-resistance gene identification have helped in bridging the gap between activity-guided and genome-driven approaches for NP discovery and functional assignment.
Collapse
Affiliation(s)
- Yan Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
16
|
Walker PD, Rowe MT, Winter AJ, Weir AN, Akter N, Wang L, Race PR, Williams C, Song Z, Simpson TJ, Willis CL, Crump MP. A Priming Cassette Generates Hydroxylated Acyl Starter Units in Mupirocin and Thiomarinol Biosynthesis. ACS Chem Biol 2020; 15:494-503. [PMID: 31977176 DOI: 10.1021/acschembio.9b00969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mupirocin, a commercially available antibiotic produced by Pseudomonas fluorescens NCIMB 10586, and thiomarinol, isolated from the marine bacterium Pseudoalteromonas sp. SANK 73390, both consist of a polyketide-derived monic acid homologue esterified with either 9-hydroxynonanoic acid (mupirocin, 9HN) or 8-hydroxyoctanoic acid (thiomarinol, 8HO). The mechanisms of formation of these deceptively simple 9HN and 8HO fatty acid moieties in mup and tml, respectively, remain unresolved. To define starter unit generation, the purified mupirocin proteins MupQ, MupS, and MacpD and their thiomarinol equivalents (TmlQ, TmlS and TacpD) have been expressed and shown to convert malonyl coenzyme A (CoA) and succinyl CoA to 3-hydroxypropionoyl (3-HP) or 4-hydroxybutyryl (4-HB) fatty acid starter units, respectively, via the MupQ/TmlQ catalyzed generation of an unusual bis-CoA/acyl carrier protein (ACP) thioester, followed by MupS/TmlS catalyzed reduction. Mix and match experiments show MupQ/TmlQ to be highly selective for the correct CoA. MacpD/TacpD were interchangeable but alternate trans-acting ACPs from the mupirocin pathway (MacpA/TacpA) or a heterologous ACP (BatA) were nonfunctional. MupS and TmlS selectivity was more varied, and these reductases differed in their substrate and ACP selectivity. The solution structure of MacpD determined by NMR revealed a C-terminal extension with partial helical character that has been shown to be important for maintaining high titers of mupirocin. We generated a truncated MacpD construct, MacpD_T, which lacks this C-terminal extension but retains an ability to generate 3-HP with MupS and MupQ, suggesting further downstream roles in protein-protein interactions for this region of the ACP.
Collapse
Affiliation(s)
- Paul D. Walker
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
- College of Medical and Dental Sciences, Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Matthew T. Rowe
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Ashley J. Winter
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Angus N.M. Weir
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Nahida Akter
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Luoyi Wang
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Paul R. Race
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Christopher Williams
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Zhongshu Song
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Thomas J. Simpson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Christine L. Willis
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
17
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
18
|
Wencewicz TA. Crossroads of Antibiotic Resistance and Biosynthesis. J Mol Biol 2019; 431:3370-3399. [PMID: 31288031 DOI: 10.1016/j.jmb.2019.06.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Chen H, Bian Z, Ravichandran V, Li R, Sun Y, Huo L, Fu J, Bian X, Xia L, Tu Q, Zhang Y. Biosynthesis of polyketides by trans-AT polyketide synthases in Burkholderiales. Crit Rev Microbiol 2019; 45:162-181. [PMID: 31218924 DOI: 10.1080/1040841x.2018.1514365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Widely used as drugs and agrochemicals, polyketides are a family of bioactive natural products, with diverse structures and functions. Polyketides are produced by megaenzymes termed as polyketide synthases (PKSs). PKS biosynthetic pathways are divided into the cis-AT PKSs and trans-AT PKSs; a division based mainly on the absence of an acyltransferase (AT) domain in the trans-AT PKS modules. In trans-AT biosynthesis, the AT activity is contributed via one or several independent proteins, and there are few other characteristics that distinguish trans-AT PKSs from cis-AT PKSs, especially in the formation of the β-branch. The trans-AT PKSs constitute a major PKS pathway, and many are found in Burkholderia species, which are prevalent in the environment and prolific sources of polyketides. This review summarizes studies from 1973 to 2017 on the biosynthesis of natural products by trans-AT PKSs from Burkholderia species.
Collapse
Affiliation(s)
- Hanna Chen
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Zhilong Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Vinothkannan Ravichandran
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Ruijuan Li
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Yi Sun
- c Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences , Beijing , People's Republic of China
| | - Liujie Huo
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Jun Fu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Xiaoying Bian
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Liqiu Xia
- b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| | - Qiang Tu
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China
| | - Youming Zhang
- a Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences , Shandong University , Qingdao , People's Republic of China.,b State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha , People's Republic of China
| |
Collapse
|
20
|
O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. Crit Rev Microbiol 2019; 45:255-277. [PMID: 30985219 DOI: 10.1080/1040841x.2019.1590307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intense competition between microbes in the environment has directed the evolution of antibiotic production in bacteria. Humans have harnessed these natural molecules for medicinal purposes, magnifying them from environmental concentrations to industrial scale. This increased exposure to antibiotics has amplified antibiotic resistance across bacteria, spurring a global antimicrobial crisis and a search for antibiotics with new modes of action. Genetic insights into these antibiotic-producing microbes reveal that they have evolved several resistance strategies to avoid self-toxicity, including product modification, substrate transport and binding, and target duplication or modification. Of these mechanisms, target duplication or modification will be highlighted in this review, as it uniquely links an antibiotic to its mode of action. We will further discuss and propose a strategy to mine microbial genomes for these genes and their associated biosynthetic gene clusters to discover novel antibiotics using target directed genome mining.
Collapse
Affiliation(s)
- Ellis C O'Neill
- a Department of Plant Sciences, University of Oxford , Oxford , Oxfordshire , UK
| | - Michelle Schorn
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Charles B Larson
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Natalie Millán-Aguiñaga
- c Universidad Autónoma de Baja California, Facultad de Ciencias Marinas , Ensenada , Baja California , México
| |
Collapse
|
21
|
Comparison of structures and cytotoxicity of mupirocin and batumin against melanoma and several other cancer cell lines. Future Med Chem 2019; 11:677-691. [PMID: 30947530 DOI: 10.4155/fmc-2018-0333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To determine the computer-predicted anticancer activity of mupirocin and to compare its activities with those determined for another polyene antibiotic, batumin. Materials & methods: Molecular docking, cytotoxicity assays, cell microscopy and cell cycle progression were studied in cancer and nontumorigenic cell lines. Results & conclusion: Cytotoxicity of mupirocin against several cancerous cell lines was detected with the highest one (IC50 = 5.4 μg/ml) against melanoma cell line. The profile of cytotoxicity of mupirocin was similar to that reported for batumin. Nevertheless, the morphology of cells treated with these antibiotics and alterations in cell cycle progression suggested possible dissimilarity in their mechanisms of action. Selective cytotoxicity of mupirocin against melanoma cells potentiates further studies to discover nontoxic drugs for melanoma prevention.
Collapse
|
22
|
Connolly JA, Wilson A, Macioszek M, Song Z, Wang L, Mohammad HH, Yadav M, di Martino M, Miller CE, Hothersall J, Haines AS, Stephens ER, Crump MP, Willis CL, Simpson TJ, Winn PJ, Thomas CM. Defining the genes for the final steps in biosynthesis of the complex polyketide antibiotic mupirocin by Pseudomonas fluorescens NCIMB10586. Sci Rep 2019; 9:1542. [PMID: 30733464 PMCID: PMC6367315 DOI: 10.1038/s41598-018-38038-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022] Open
Abstract
The mupirocin trans-AT polyketide synthase pathway, provides a model system for manipulation of antibiotic biosynthesis. Its final phase involves removal of the tertiary hydroxyl group from pseudomonic acid B, PA-B, producing the fully active PA-A in a complex series of steps. To further clarify requirements for this conversion, we fed extracts containing PA-B to mutants of the producer strain singly deficient in each mup gene. This additionally identified mupM and mupN as required plus the sequence but not enzymic activity of mupL and ruled out need for other mup genes. A plasmid expressing mupLMNOPVCFU + macpE together with a derivative of the producer P. fluorescens strain NCIMB10586 lacking the mup cluster allowed conversion of PA-B to PA-A. MupN converts apo-mAcpE to holo-form while MupM is a mupirocin-resistant isoleucyl tRNA synthase, preventing self-poisoning. Surprisingly, the expression plasmid failed to allow the closely related P. fluorescens strain SBW25 to convert PA-B to PA-A.
Collapse
Affiliation(s)
- Jack A Connolly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Chemistry, University of St Andrews, BMS Building, North Haugh, St Andrews, KY16 9ST, UK
| | - Amber Wilson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Malgorzata Macioszek
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Dr M. Macioszek, DOCS International Poland, ul. Grojecka 5, 02-019, Warszawa, Poland
| | - Zhongshu Song
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Luoyi Wang
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Hadi H Mohammad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,College of Medicine, Kirkuk University, Kirkuk, Iraq
| | - Mukul Yadav
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maura di Martino
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Ms M. di Martino, Dept Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Claire E Miller
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Dr C. E. Miller, The BioHub Birmingham, Birmingham Research Park, 97 Vincent Drive, Edgbaston, Birmingham, B15 2SQ, UK
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
23
|
Buijs Y, Bech PK, Vazquez-Albacete D, Bentzon-Tilia M, Sonnenschein EC, Gram L, Zhang SD. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies. Nat Prod Rep 2019; 36:1333-1350. [DOI: 10.1039/c9np00020h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the recent advances in molecular tools and strategies for studies and use of natural products from marine Proteobacteria.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Dario Vazquez-Albacete
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| |
Collapse
|
24
|
Schouw A, Vulcano F, Roalkvam I, Hocking WP, Reeves E, Stokke R, Bødtker G, Steen IH. Genome Analysis of Vallitalea guaymasensis Strain L81 Isolated from a Deep-Sea Hydrothermal Vent System. Microorganisms 2018; 6:E63. [PMID: 29973550 PMCID: PMC6163223 DOI: 10.3390/microorganisms6030063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Abyssivirga alkaniphila strain L81T, recently isolated from a black smoker biofilm at the Loki’s Castle hydrothermal vent field, was previously described as a mesophilic, obligately anaerobic heterotroph able to ferment carbohydrates, peptides, and aliphatic hydrocarbons. The strain was classified as a new genus within the family Lachnospiraceae. Herein, its genome is analyzed and A. alkaniphila is reassigned to the genus Vallitalea as a new strain of V. guaymasensis, designated V. guaymasensis strain L81. The 6.4 Mbp genome contained 5651 protein encoding genes, whereof 4043 were given a functional prediction. Pathways for fermentation of mono-saccharides, di-saccharides, peptides, and amino acids were identified whereas a complete pathway for the fermentation of n-alkanes was not found. Growth on carbohydrates and proteinous compounds supported methane production in co-cultures with Methanoplanus limicola. Multiple confurcating hydrogen-producing hydrogenases, a putative bifurcating electron-transferring flavoprotein—butyryl-CoA dehydrogenase complex, and a Rnf-complex form a basis for the observed hydrogen-production and a putative reverse electron-transport in V. guaymasensis strain L81. Combined with the observation that n-alkanes did not support growth in co-cultures with M. limicola, it seemed more plausible that the previously observed degradation patterns of crude-oil in strain L81 are explained by unspecific activation and may represent a detoxification mechanism, representing an interesting ecological function. Genes encoding a capacity for polyketide synthesis, prophages, and resistance to antibiotics shows interactions with the co-occurring microorganisms. This study enlightens the function of the fermentative microorganisms from hydrothermal vents systems and adds valuable information on the bioprospecting potential emerging in deep-sea hydrothermal systems.
Collapse
Affiliation(s)
- Anders Schouw
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Francesca Vulcano
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Irene Roalkvam
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - William Peter Hocking
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Eoghan Reeves
- Department of Earth Science and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Runar Stokke
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| | - Gunhild Bødtker
- Centre for Integrated Petroleum Research (CIPR), Uni Research AS, Nygårdsgaten 112, N-5008 Bergen, Norway.
| | - Ida Helene Steen
- Department of Biological Sciences and KG Jebsen Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway.
| |
Collapse
|
25
|
Mohammad HH, Connolly JA, Song Z, Hothersall J, Race PR, Willis CL, Simpson TJ, Winn PJ, Thomas CM. Fine Tuning of Antibiotic Activity by a Tailoring Hydroxylase in a Trans-AT Polyketide Synthase Pathway. Chembiochem 2018; 19:836-841. [PMID: 29363252 DOI: 10.1002/cbic.201800036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 11/06/2022]
Abstract
The addition or removal of hydroxy groups modulates the activity of many pharmacologically active biomolecules. It can be integral to the basic biosynthetic factory or result from associated tailoring steps. For the anti-MRSA antibiotic mupirocin, removal of a C8-hydroxy group late in the biosynthetic pathway gives the active pseudomonic acid A. An extra hydroxylation, at C4, occurs in the related but more potent antibiotic thiomarinol A. We report here in vivo and in vitro studies that show that the putative non-haem-iron(II)/α-ketoglutaratedependent dioxygenase TmuB, from the thiomarinol cluster, 4-hydroxylates various pseudomonic acids whereas C8-OH, and other substituents around the tetrahydropyran ring, block enzyme action but not substrate binding. Molecular modelling suggested a basis for selectivity, but mutation studies had a limited ability to rationally modify TmuB substrate specificity. 4-Hydroxylation had opposite effects on the potency of mupirocin and thiomarinol. Thus, TmuB can be added to the toolbox of polyketide tailoring technologies for the in vivo generation of new antibiotics in the future.
Collapse
Affiliation(s)
- Hadi H Mohammad
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,College of Medicine, Kirkuk University, Kirkuk, Iraq
| | - Jack A Connolly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhongshu Song
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
26
|
Timmermans ML, Paudel YP, Ross AC. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies. Mar Drugs 2017; 15:E235. [PMID: 28762997 PMCID: PMC5577590 DOI: 10.3390/md15080235] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria.
Collapse
Affiliation(s)
| | - Yagya P Paudel
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
27
|
Wei Z, Xu C, Wang J, Lu F, Bie X, Lu Z. Identification and characterization of Streptomyces flavogriseus NJ-4 as a novel producer of actinomycin D and holomycin. PeerJ 2017; 5:e3601. [PMID: 28740758 PMCID: PMC5520960 DOI: 10.7717/peerj.3601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/30/2017] [Indexed: 01/23/2023] Open
Abstract
This paper is the first public report that Streptomyces flavogriseus can produce both actinomycin D and holomycin. The actinomycete strain NJ-4 isolated from the soil of Nanjing Agricultural University was identified as S. flavogriseus. This S. flavogriseus strain was found for the first time to produce two antimicrobial compounds that were identified as actinomycin D and holomycin. GS medium, CS medium and GSS medium were used for the production experiments. All three media supported the production of actinomycin D, while holomycin was detected only in GS medium and was undetectable by HPLC in the CS and GSS media. The antimicrobial activity against B. pumilus, S. aureus, Escherichia coli, F. moniliforme, F. graminearum and A. niger was tested using the agar well diffusion method. Actinomycin D exhibited strong antagonistic activities against all the indicator strains. Holomycin exhibited strong antagonistic activities against B. pumilus, S. aureus and E. coli and had antifungal activity against F. moniliforme and F. graminearum but had no antifungal activity against A. niger. The cell viability was determined using an MTT assay. Holomycin exhibited cytotoxic activity against A549 lung cancer cells, BGC823 gastric cancer cells and HepG2 hepatocellular carcinoma cells. The yield of actinomycin D from S. flavogriseus NJ-4 was 960 mg/l. S. flavogriseus NJ-4 exhibits a distinct capability and has the industrial potential to produce considerable yields of actinomycin D under unoptimized conditions.
Collapse
Affiliation(s)
- Zhaohui Wei
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chao Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Schinke C, Martins T, Queiroz SCN, Melo IS, Reyes FGR. Antibacterial Compounds from Marine Bacteria, 2010-2015. JOURNAL OF NATURAL PRODUCTS 2017; 80:1215-1228. [PMID: 28362500 DOI: 10.1021/acs.jnatprod.6b00235] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This review summarizes the reports on antibacterial compounds that have been obtained from marine-derived bacteria during the period 2010-2015. Over 50 active compounds were isolated during this period, most of which (69%) were obtained from Actinobacteria. Several compounds were already known, such as etamycin A (11) and nosiheptide (65), and new experiments with them showed some previously undetected antibacterial activities, highlighting the fact that known natural products may be an important source of new antibacterial leads. New broad-spectrum antibacterial compounds were reported with activity against antibiotic resistant Gram-positive and Gram-negative bacteria. Anthracimycin (33), kocurin (66), gageotetrins A-C (72-74), and gageomacrolactins 1-3 (86-88) are examples of compounds that display promising properties and could be leads to new antibiotics. A number of microbes produced mixtures of metabolites sharing similar chemical scaffolds, and structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Claudia Schinke
- Department of Food Science, School of Food Engineering, University of Campinas , Campinas-SP, CEP 13083-862, Brazil
| | - Thamires Martins
- Department of Food Science, School of Food Engineering, University of Campinas , Campinas-SP, CEP 13083-862, Brazil
| | - Sonia C N Queiroz
- Brazilian Agricultural Research Corporation , Rodovia SP-340 km 127.5, Jaguariúna-SP, CEP 13820-000, Brazil
| | - Itamar S Melo
- Brazilian Agricultural Research Corporation , Rodovia SP-340 km 127.5, Jaguariúna-SP, CEP 13820-000, Brazil
| | - Felix G R Reyes
- Department of Food Science, School of Food Engineering, University of Campinas , Campinas-SP, CEP 13083-862, Brazil
| |
Collapse
|
29
|
Gao SS, Wang L, Song Z, Hothersall J, Stevens ER, Connolly J, Winn PJ, Cox RJ, Crump MP, Race PR, Thomas CM, Simpson TJ, Willis CL. Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the Thiomarinol Antibiotics. Angew Chem Int Ed Engl 2017; 56:3930-3934. [PMID: 28181382 DOI: 10.1002/anie.201611590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 11/08/2022]
Abstract
Thiomarinol and mupirocin are assembled on similar polyketide/fatty acid backbones and exhibit potent antibiotic activity against methicillin-resistant Staphylococcus aureus (MRSA). They both contain a tetrasubstituted tetrahydropyran (THP) ring that is essential for biological activity. Mupirocin is a mixture of pseudomonic acids (PAs). Isolation of the novel compound mupirocin P, which contains a 7-hydroxy-6-keto-substituted THP, from a ΔmupP strain and chemical complementation experiments confirm that the first step in the conversion of PA-B into the major product PA-A is oxidation at the C6 position. In addition, nine novel thiomarinol (TM) derivatives with different oxidation patterns decorating the central THP core were isolated after gene deletion (tmlF). These metabolites are in accord with the THP ring formation and elaboration in thiomarinol following a similar order to that found in mupirocin biosynthesis, despite the lack of some of the equivalent genes. Novel mupirocin-thiomarinol hybrids were also synthesized by mutasynthesis.
Collapse
Affiliation(s)
- Shu-Shan Gao
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Luoyi Wang
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Zhongshu Song
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elton R Stevens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jack Connolly
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Russell J Cox
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BMWZ, Leibniz-Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | |
Collapse
|
30
|
Gao SS, Wang L, Song Z, Hothersall J, Stevens ER, Connolly J, Winn PJ, Cox RJ, Crump MP, Race PR, Thomas CM, Simpson TJ, Willis CL. Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the Thiomarinol Antibiotics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shu-Shan Gao
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Luoyi Wang
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Zhongshu Song
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Joanne Hothersall
- School of Biosciences; University of Birmingham, Edgbaston; Birmingham B15 2TT UK
| | - Elton R. Stevens
- School of Biosciences; University of Birmingham, Edgbaston; Birmingham B15 2TT UK
| | - Jack Connolly
- School of Biosciences; University of Birmingham, Edgbaston; Birmingham B15 2TT UK
| | - Peter J. Winn
- School of Biosciences; University of Birmingham, Edgbaston; Birmingham B15 2TT UK
| | - Russell J. Cox
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
- BMWZ; Leibniz-Universität Hannover; Schneiderberg 38 30167 Hannover Germany
| | | | - Paul R. Race
- School of Biochemistry; University of Bristol; Bristol BS8 1TD UK
| | | | | | | |
Collapse
|
31
|
An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria. mSystems 2016; 1:mSystems00028-15. [PMID: 27822535 PMCID: PMC5069768 DOI: 10.1128/msystems.00028-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/01/2016] [Indexed: 11/20/2022] Open
Abstract
Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient "mining" workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting.
Collapse
|
32
|
Maansson M, Vynne NG, Klitgaard A, Nybo JL, Melchiorsen J, Nguyen DD, Sanchez LM, Ziemert N, Dorrestein PC, Andersen MR, Gram L. An Integrated Metabolomic and Genomic Mining Workflow To Uncover the Biosynthetic Potential of Bacteria. mSystems 2016. [PMID: 27822535 DOI: 10.1128/msystems.00038-00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Microorganisms are a rich source of bioactives; however, chemical identification is a major bottleneck. Strategies that can prioritize the most prolific microbial strains and novel compounds are of great interest. Here, we present an integrated approach to evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. Thirteen strains closely related to Pseudoalteromonas luteoviolacea isolated from all over the Earth were analyzed using an untargeted metabolomics strategy, and metabolomic profiles were correlated with whole-genome sequences of the strains. We found considerable diversity: only 2% of the chemical features and 7% of the biosynthetic genes were common to all strains, while 30% of all features and 24% of the genes were unique to single strains. The list of chemical features was reduced to 50 discriminating features using a genetic algorithm and support vector machines. Features were dereplicated by tandem mass spectrometry (MS/MS) networking to identify molecular families of the same biosynthetic origin, and the associated pathways were probed using comparative genomics. Most of the discriminating features were related to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea here for the first time. By comparative genomics, we identified the biosynthetic cluster responsible for the production of the antibiotic indolmycin, which could not be predicted with standard methods. In conclusion, we present an efficient, integrative strategy for elucidating the chemical richness of a given set of bacteria and link the chemistry to biosynthetic genes. IMPORTANCE We here combine chemical analysis and genomics to probe for new bioactive secondary metabolites based on their pattern of distribution within bacterial species. We demonstrate the usefulness of this combined approach in a group of marine Gram-negative bacteria closely related to Pseudoalteromonas luteoviolacea, which is a species known to produce a broad spectrum of chemicals. The approach allowed us to identify new antibiotics and their associated biosynthetic pathways. Combining chemical analysis and genetics is an efficient "mining" workflow for identifying diverse pharmaceutical candidates in a broad range of microorganisms and therefore of great use in bioprospecting.
Collapse
Affiliation(s)
- Maria Maansson
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nikolaj G Vynne
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Andreas Klitgaard
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jane L Nybo
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jette Melchiorsen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Don D Nguyen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Laura M Sanchez
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany; Collaborative Mass Spectrometry Innovation Center, University of California at San Diego, La Jolla, California, USA
| | - Nadine Ziemert
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Pieter C Dorrestein
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA; Collaborative Mass Spectrometry Innovation Center, University of California at San Diego, La Jolla, California, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| | - Mikael R Andersen
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
33
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
34
|
Saker S, Chacar S, Mathieu F. The final acylation step in aromatic dithiolopyrrolone biosyntheses: identification and characterization of the first bacterium N-benzoyltransferase from Saccharothrix algeriensis NRRL B-24137. Enzyme Microb Technol 2015; 72:35-41. [PMID: 25837505 DOI: 10.1016/j.enzmictec.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/04/2015] [Accepted: 02/18/2015] [Indexed: 11/27/2022]
Abstract
The last step in the biosynthesis of dithiolopyrrolone antibiotics was thought to involve the transfer of acyl group from acyl-CoA to pyrrothine/holothin core. In Saccharothrix algeriensis NRRL B-24137, two acyltransferases, an acetyltransferase and a benzoyltransferase were proposed to catalyze this step. We have previously identified, in Sa. algeriensis genome, two open read frames, actA and actB patiently encoded these enzymes. This study focuses primarily on the characterization of the protein encoded by actA. After cloning and expressing of actA in Escherichia coli BL21, the recombinant protein encoded by actA was purified. Selectivity of ActA for pyrrothine/holothin as substrate and different acyl-CoA as co-substrate was evaluated using two acyls-groups, linear and aromatic. The enzyme was shown to prefer aromatic groups over linear groups as donor group; further neither product nor transfer was observed for linear groups. Therefore ActA has been determined to be a pyrrothine/holothin N-benzoyltransferase which can either pyrrothine (Km of 72μM) or holothin (Km of 129.5μM) as substrates and benzoyl-CoA (Km of 348.65 and 395.28μM) as co-substrates for pyrrothine and holothin, respectively. The optimum pH and temperature has been shown to be 8, 40°C, respectively. ActA is the first enzyme characterized as N-benzoyltransferase in bacteria.
Collapse
Affiliation(s)
- S Saker
- Université de Toulouse, Laboratoire de Génie Chimique, UMR 5503 (CNRS/INPT/UPS), Département BioSyM, INPT-ENSAT, 1 Avenue de l'Agrobiopôle, B.P. 32607, F-31326 Castanet-Tolosan Cedex 1, France; Université de Lorraine, UMR INRA 1128 Dynamique des génomes et adaptation microbienne (DynAMic), Faculté des Sciences et Technologies, Campus Aiguillettes, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | - S Chacar
- Université de Toulouse, Laboratoire de Génie Chimique, UMR 5503 (CNRS/INPT/UPS), Département BioSyM, INPT-ENSAT, 1 Avenue de l'Agrobiopôle, B.P. 32607, F-31326 Castanet-Tolosan Cedex 1, France
| | - F Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique, UMR 5503 (CNRS/INPT/UPS), Département BioSyM, INPT-ENSAT, 1 Avenue de l'Agrobiopôle, B.P. 32607, F-31326 Castanet-Tolosan Cedex 1, France
| |
Collapse
|
35
|
Bode E, Brachmann AO, Kegler C, Simsek R, Dauth C, Zhou Q, Kaiser M, Klemmt P, Bode HB. Simple “On-Demand” Production of Bioactive Natural Products. Chembiochem 2015; 16:1115-9. [DOI: 10.1002/cbic.201500094] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 01/29/2023]
|
36
|
Whalen KE, Poulson-Ellestad KL, Deering RW, Rowley DC, Mincer TJ. Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3,4-dibromopyrrole-2,5-dione isolated from a Pseudoalteromonas sp. JOURNAL OF NATURAL PRODUCTS 2015; 78:402-412. [PMID: 25646964 DOI: 10.1021/np500775e] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Members of the resistance nodulation cell division (RND) of efflux pumps play essential roles in multidrug resistance (MDR) in Gram-negative bacteria. Here, we describe the search for new small molecules from marine microbial extracts to block efflux and thus restore antibiotic susceptibility in MDR bacterial strains. We report the isolation of 3,4-dibromopyrrole-2,5-dione (1), an inhibitor of RND transporters, from Enterobacteriaceae and Pseudomonas aeruginosa, from the marine bacterium Pseudoalteromonas piscicida. 3,4-Dibromopyrrole-2,5-dione decreased the minimum inhibitory concentrations (MICs) of two fluoroquinolones, an aminoglycoside, a macrolide, a beta-lactam, tetracycline, and chloramphenicol between 2- and 16-fold in strains overexpressing three archetype RND transporters (AcrAB-TolC, MexAB-OprM, and MexXY-OprM). 3,4-Dibromopyrrole-2,5-dione also increased the intracellular accumulation of Hoechst 33342 in wild-type but not in transporter-deficient strains and prevented H33342 efflux (IC50 = 0.79 μg/mL or 3 μM), a hallmark of efflux pump inhibitor (EPI) functionality. A metabolomic survey of 36 Pseudoalteromonas isolates mapped the presence of primarily brominated metabolites only within the P. piscicida phylogenetic clade, where a majority of antibiotic activity was also observed, suggesting a link between halogenation and enhanced secondary metabolite biosynthetic potential. In sum, 3,4-dibromopyrrole-2,5-dione is a potent EPI and deserves further attention as an adjuvant to enhance the effectiveness of existing antibiotics.
Collapse
Affiliation(s)
| | | | - Robert W Deering
- ‡College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - David C Rowley
- ‡College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | |
Collapse
|
37
|
Dunn ZD, Wever WJ, Economou NJ, Bowers AA, Li B. Enzymatic basis of "hybridity" in thiomarinol biosynthesis. Angew Chem Int Ed Engl 2015; 54:5137-41. [PMID: 25726835 DOI: 10.1002/anie.201411667] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 11/07/2022]
Abstract
Thiomarinol is a naturally occurring double-headed antibiotic that is highly potent against methicillin-resistant Staphylococcus aureus. Its structure comprises two antimicrobial subcomponents, pseudomonic acid analogue and holothin, linked by an amide bond. TmlU was thought to be the sole enzyme responsible for this amide-bond formation. In contrast to this idea, we show that TmlU acts as a CoA ligase that activates pseudomonic acid as a thioester that is processed by the acetyltransferase HolE to catalyze the amidation. TmlU prefers complex acyl acids as substrates, whereas HolE is relatively promiscuous, accepting a range of acyl-CoA and amine substrates. Our results provide detailed biochemical information on thiomarinol biosynthesis, and evolutionary insight regarding how the pseudomonic acid and holothin pathways converge to generate this potent hybrid antibiotic. This work also demonstrates the potential of TmlU/HolE enzymes as engineering tools to generate new "hybrid" molecules.
Collapse
Affiliation(s)
- Zachary D Dunn
- Department of Chemistry, University of North Carolina at Chapel Hill, Carolina Center for Genome Sciences, Chapel Hill, NC, 27599 (USA)
| | | | | | | | | |
Collapse
|
38
|
Dunn ZD, Wever WJ, Economou NJ, Bowers AA, Li B. Enzymatic Basis of “Hybridity” in Thiomarinol Biosynthesis. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Molecules 2014; 19:20913-28. [PMID: 25514230 PMCID: PMC6271226 DOI: 10.3390/molecules191220913] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 02/05/2023] Open
Abstract
A bioassay-guided column chromatographic strategy was adopted in the present study to fractionate the culture extract of Photorhabdus temperata M1021 to identify potential insecticidal and antimicrobial compounds. An ethyl acetate (EtOAc) culture extract of P. temperata was assayed against Galleria mellonella larvae through intra-hemocoel injection and exhibited 100% insect mortality within 60 h. The EtOAc fraction and an isolated compound exhibited phenoloxidase (PO) inhibition of up to 60% and 63%, respectively. The compound was identified as 1,2-benzenedicarboxylic acid (phthalic acid, PA) by gas chromatography-mass spectrometry and nuclear magnetic resonance. PA exhibited insecticidal activity against G. mellonella in a dose-dependent manner, and 100% insect mortality was observed at 108 h after injection of 1 M PA. In a PO inhibition assay, 0.5 and 1 M concentrations of PA were found to inhibit PO activity by 74% and 82%, respectively; and in a melanotic nodule formation assay, nodule formation was significantly inhibited (27 and 10 nodules) by PA (0.5 and 1 M, respectively). PA was furthermore found to have substantial antioxidant activity and maximum antioxidant activity was 64.7% for 0.5 M PA as compare to control. Antibacterial activity was assessed by The MIC values ranged from 0.1 M to 0.5 M of PA. This study reports a multifunctional PA, a potential insecticidal agent, could a factor of insect mortality along with other toxins produced by P. temperata M1021.
Collapse
|
40
|
Matthijs S, Vander Wauven C, Cornu B, Ye L, Cornelis P, Thomas CM, Ongena M. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Res Microbiol 2014; 165:695-704. [PMID: 25303834 DOI: 10.1016/j.resmic.2014.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/17/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
Mupirocin is a polyketide antibiotic with broad antibacterial activity. It was isolated and characterized about 40 years ago from Pseudomonas fluorescens NCIMB 10586. To study the phylogenetic distribution of mupirocin producing strains in the genus Pseudomonas a large collection of Pseudomonas strains of worldwide origin, consisting of 117 Pseudomonas type strains and 461 strains isolated from different biological origins, was screened by PCR for the mmpD gene of the mupirocin gene cluster. Five mmpD(+) strains from different geographic and biological origin were identified. They all produced mupirocin and were strongly antagonistic against Staphylococcus aureus. Phylogenetic analysis showed that mupirocin production is limited to a single species. Inactivation of mupirocin production leads to complete loss of in vitro antagonism against S. aureus, except on certain iron-reduced media where the siderophore pyoverdine is responsible for the in vitro antagonism of a mupirocin-negative mutant. In addition to mupirocin some of the strains produced lipopeptides of the massetolide group. These lipopeptides do not play a role in the observed in vitro antagonism of the mupirocin producing strains against S. aureus.
Collapse
Affiliation(s)
- Sandra Matthijs
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Corinne Vander Wauven
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Bertrand Cornu
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Lumeng Ye
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Marc Ongena
- Walloon Center for Industrial Biology, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.
| |
Collapse
|
41
|
Li B, Wever WJ, Walsh CT, Bowers AA. Dithiolopyrrolones: biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. Nat Prod Rep 2014; 31:905-23. [PMID: 24835149 PMCID: PMC4132845 DOI: 10.1039/c3np70106a] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Covering: up to 2014. Dithiolopyrrolone (DTP) group antibiotics were first isolated in the early half of the 20th century, but only recently has research been reawakened by insights gained from the synthesis and biosynthesis of this structurally intriguing class of molecules. DTPs are characterized by an electronically unique bicyclic structure, which contains a compact disulfide bridge between two ene-thiols. Points of diversity within the compound class occur outside of the bicyclic core, at the two amide nitrogens. Such modifications distinguish three of the most well studied members of the class, holomycin, thiolutin, and aureothricin; the DTP core has also more recently been identified in the marine antibiotic thiomarinol, in which it is linked to a marinolic acid moiety, analog of the FDA-approved topical antibiotic Bactroban® (GlaxoSmithKline). Dithiolopyrrolones exhibit relatively broad-spectrum antibiotic activity against many Gram-positive and Gram-negative bacteria, as well as strains of Mycobacterium tuberculosis. Additionally, they have been shown to exhibit potent and selective anti-cancer activity. Despite this promising profile, there is still much unknown about the mechanisms of action for DTPs. Early reports suggested that they inhibit yeast growth at the level of transcription and that this effect is largely responsible for their distinctive microbial static properties; a similar mechanism is supported in bacteria. Elucidation of biosynthetic pathways for holomycin in Streptomyces clavuligerus and Yersinia ruckeri and thiomarinol in Alteromonas rava sp. nov. SANK 73390, have contributed evidence suggesting that multiple mechanisms may be operative in the activity of these compounds. This review will comprehensively cover the history and development of dithiolopyrrolones with particular emphasis on the biosynthesis, synthesis, biological activity and mechanism of action.
Collapse
Affiliation(s)
- Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Walter J. Wever
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 200 Longwood Ave., Boston, MA, 02115
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
42
|
Till M, Race PR. Progress challenges and opportunities for the re-engineering of trans-AT polyketide synthases. Biotechnol Lett 2014; 36:877-88. [PMID: 24557077 DOI: 10.1007/s10529-013-1449-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 12/23/2013] [Indexed: 12/13/2022]
Abstract
Polyketides are a structurally and functionally diverse family of bioactive natural products that are used extensively as pharmaceuticals and agrochemicals. In bacteria these molecules are biosynthesized by giant, multi-functional enzymatic complexes, termed modular polyketide synthases (PKSs), that function in assembly-line like fashion to fuse and tailor simple carboxylic acid monomers into a vast array of elaborate chemical scaffolds. Modifying PKSs through targeted synthase re-engineering is a promising approach for accessing functionally-optimized polyketides. Due to their highly mosaic architectures the recently identified trans-AT family of modular synthases appear inherently more amenable to re-engineering than their well studied cis-AT counterparts. Here, we review recent progress in the re-engineering of trans-AT PKSs, summarize opportunities for harnessing the biosynthetic potential of these systems, and highlight challenges that such re-engineering approaches present.
Collapse
Affiliation(s)
- M Till
- School of Biochemistry, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | |
Collapse
|
43
|
Murphy AC, Gao SS, Han LC, Carobene S, Fukuda D, Song Z, Hothersall J, Cox RJ, Crosby J, Crump MP, Thomas CM, Willis CL, Simpson TJ. Biosynthesis of thiomarinol A and related metabolites of Pseudoalteromonas sp. SANK 73390. Chem Sci 2014. [DOI: 10.1039/c3sc52281d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Holomycin, a dithiolopyrrolone compound produced by Streptomyces clavuligerus. Appl Microbiol Biotechnol 2013; 98:1023-30. [DOI: 10.1007/s00253-013-5410-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 01/19/2023]
|
45
|
Qin Z, Huang S, Yu Y, Deng H. Dithiolopyrrolone natural products: isolation, synthesis and biosynthesis. Mar Drugs 2013; 11:3970-97. [PMID: 24141227 PMCID: PMC3826145 DOI: 10.3390/md11103970] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022] Open
Abstract
Dithiolopyrrolones are a class of antibiotics that possess the unique pyrrolinonodithiole (4H-[1,2] dithiolo [4,3-b] pyrrol-5-one) skeleton linked to two variable acyl groups. To date, there are approximately 30 naturally occurring dithiolopyrrolone compounds, including holomycin, thiolutin, and aureothricin, and more recently thiomarinols, a unique class of hybrid marine bacterial natural products containing a dithiolopyrrolone framework linked by an amide bridge with an 8-hydroxyoctanoyl chain linked to a monic acid. Generally, dithiolopyrrolone antibiotics have broad-spectrum antibacterial activity against various microorganisms, including Gram-positive and Gram-negative bacteria, and even parasites. Holomycin appeared to be active against rifamycin-resistant bacteria and also inhibit the growth of the clinical pathogen methicillin-resistant Staphylococcus aureus N315. Its mode of action is believed to inhibit RNA synthesis although the exact mechanism has yet to be established in vitro. A recent work demonstrated that the fish pathogen Yersinia ruckeri employs an RNA methyltransferase for self-resistance during the holomycin production. Moreover, some dithiolopyrrolone derivatives have demonstrated promising antitumor activities. The biosynthetic gene clusters of holomycin have recently been identified in S. clavuligerus and characterized biochemically and genetically. The biosynthetic gene cluster of thiomarinol was also identified from the marine bacterium Pseudoalteromonas sp. SANK 73390, which was uniquely encoded by two independent pathways for pseudomonic acid and pyrrothine in a novel plasmid. The aim of this review is to give an overview about the isolations, characterizations, synthesis, biosynthesis, bioactivities and mode of action of this unique family of dithiolopyrrolone natural products, focusing on the period from 1940s until now.
Collapse
Affiliation(s)
- Zhiwei Qin
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; E-Mails: (Z.Q.); (S.H.)
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Sheng Huang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; E-Mails: (Z.Q.); (S.H.)
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; E-Mails: (Z.Q.); (S.H.)
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| |
Collapse
|
46
|
Desriac F, Jégou C, Balnois E, Brillet B, Le Chevalier P, Fleury Y. Antimicrobial peptides from marine proteobacteria. Mar Drugs 2013; 11:3632-60. [PMID: 24084784 PMCID: PMC3826127 DOI: 10.3390/md11103632] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 01/03/2023] Open
Abstract
After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of "classical" antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs.
Collapse
Affiliation(s)
- Florie Desriac
- University of Brest, LUBEM EA 3882, SFR 148, Quimper 29000, France.
| | | | | | | | | | | |
Collapse
|
47
|
Haines AS, Dong X, Song Z, Farmer R, Williams C, Hothersall J, Płoskoń E, Wattana-Amorn P, Stephens ER, Yamada E, Gurney R, Takebayashi Y, Masschelein J, Cox RJ, Lavigne R, Willis CL, Simpson TJ, Crosby J, Winn PJ, Thomas CM, Crump MP. A conserved motif flags acyl carrier proteins for β-branching in polyketide synthesis. Nat Chem Biol 2013; 9:685-692. [PMID: 24056399 PMCID: PMC4658705 DOI: 10.1038/nchembio.1342] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/22/2013] [Indexed: 11/14/2022]
Abstract
Type I PKSs often utilise programmed β-branching, via enzymes of an “HMG-CoA synthase (HCS) cassette”, to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in Acyl Carrier Proteins (ACPs) where β-branching is known. Substituting ACPs confirmed a correlation of ACP type with β-branching specificity. While these ACPs often occur in tandem, NMR analysis of tandem β-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modelling and mutagenesis identified ACP Helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality while ACP-HCS interface substitutions modulate system specificity. Our method for predicting β-carbon branching expands the potential for engineering novel polyketides and lays a basis for determining specificity rules.
Collapse
Affiliation(s)
- Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Xu Dong
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Zhongshu Song
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Rohit Farmer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Joanne Hothersall
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eliza Płoskoń
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | | | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Erika Yamada
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rachel Gurney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yuiko Takebayashi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joleen Masschelein
- Division of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Heverlee, Belgium
| | - Russell J Cox
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Rob Lavigne
- Division of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Heverlee, Belgium
| | | | - Thomas J Simpson
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - John Crosby
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| | - Peter J Winn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Matthew P Crump
- School of Chemistry, Cantock's Close, Clifton, Bristol, BS8 1TS, UK
| |
Collapse
|
48
|
Mizuno CM, Kimes NE, López-Pérez M, Ausó E, Rodriguez-Valera F, Ghai R. A hybrid NRPS-PKS gene cluster related to the bleomycin family of antitumor antibiotics in Alteromonas macleodii strains. PLoS One 2013; 8:e76021. [PMID: 24069455 PMCID: PMC3777966 DOI: 10.1371/journal.pone.0076021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/19/2013] [Indexed: 11/24/2022] Open
Abstract
Although numerous marine bacteria are known to produce antibiotics via hybrid NRPS-PKS gene clusters, none have been previously described in an Alteromonas species. In this study, we describe in detail a novel hybrid NRPS-PKS cluster identified in the plasmid of the Alteromonasmacleodii strain AltDE1 and analyze its relatedness to other similar gene clusters in a sequence-based characterization. This is a mobile cluster, flanked by transposase-like genes, that has even been found inserted into the chromosome of some Alteromonasmacleodii strains. The cluster contains separate genes for NRPS and PKS activity. The sole PKS gene appears to carry a novel acyltransferase domain, quite divergent from those currently characterized. The predicted specificities of the adenylation domains of the NRPS genes suggest that the final compound has a backbone very similar to bleomycin related compounds. However, the lack of genes involved in sugar biosynthesis indicates that the final product is not a glycopeptide. Even in the absence of these genes, the presence of the cluster appears to confer complete or partial resistance to phleomycin, which may be attributed to a bleomycin-resistance-like protein identified within the cluster. This also suggests that the compound still shares significant structural similarity to bleomycin. Moreover, transcriptomic evidence indicates that the NRPS-PKS cluster is expressed. Such sequence-based approaches will be crucial to fully explore and analyze the diversity and potential of secondary metabolite production, especially from increasingly important sources like marine microbes.
Collapse
Affiliation(s)
- Carolina Megumi Mizuno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Nikole E. Kimes
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Eva Ausó
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- * E-mail:
| | - Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
49
|
Cardozo VF, Oliveira AG, Nishio EK, Perugini MRE, Andrade CGTJ, Silveira WD, Durán N, Andrade G, Kobayashi RKT, Nakazato G. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 2013; 12:12. [PMID: 23773484 PMCID: PMC3695862 DOI: 10.1186/1476-0711-12-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/08/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The emergence of multidrug-resistant bacteria is a world health problem. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) strains, is one of the most important human pathogens associated with hospital and community-acquired infections. The aim of this work was to evaluate the antibacterial activity of a Pseudomonas aeruginosa-derived compound against MRSA strains. METHODS Thirty clinical MRSA strains were isolated, and three standard MRSA strains were evaluated. The extracellular compounds were purified by vacuum liquid chromatography. Evaluation of antibacterial activity was performed by agar diffusion technique, determination of the minimal inhibitory concentration, curve of growth and viability and scanning electron microscopy. Interaction of an extracellular compound with silver nanoparticle was studied to evaluate antibacterial effect. RESULTS The F3 (ethyl acetate) and F3d (dichloromethane- ethyl acetate) fractions demonstrated antibacterial activity against the MRSA strains. Phenazine-1-carboxamide was identified and purified from the F3d fraction and demonstrated slight antibacterial activity against MRSA, and synergic effect when combined with silver nanoparticles produced by Fusarium oxysporum. Organohalogen compound was purified from this fraction showing high antibacterial effect. Using scanning electron microscopy, we show that the F3d fraction caused morphological changes to the cell wall of the MRSA strains. CONCLUSIONS These results suggest that P. aeruginosa-produced compounds such as phenazines have inhibitory effects against MRSA and may be a good alternative treatment to control infections caused by MRSA.
Collapse
Affiliation(s)
- Viviane F Cardozo
- Department of Microbiology, Biology Sciences Center, University of Londrina State, Londrina, PR CP 86005-990, Brazil
| | - Admilton G Oliveira
- Department of Microbiology, Biology Sciences Center, University of Londrina State, Londrina, PR CP 86005-990, Brazil
| | - Erick K Nishio
- Department of Microbiology, Biology Sciences Center, University of Londrina State, Londrina, PR CP 86005-990, Brazil
| | - Marcia RE Perugini
- Department of Pathology, Clinical Analysis and Toxicological, University of Londrina State, Londrina, PR CP 86038-440, Brazil
| | - Célia GTJ Andrade
- Department of General Biology, University of Londrina State, Londrina, PR CP 86051-990, Brazil
| | - Wanderley D Silveira
- Department of Genetics, Evolution and Bioagent, Biology Institute, Campinas State University (UNICAMP), Campinas, SP CP 13083-970, Brazil
| | - Nelson Durán
- Department of Physical Chemistry, Chemistry Institute Campinas State University (UNICAMP), Campinas, SP CP 13083-970, Brazil
| | - Galdino Andrade
- Department of Microbiology, Biology Sciences Center, University of Londrina State, Londrina, PR CP 86005-990, Brazil
| | - Renata KT Kobayashi
- Department of Microbiology, Biology Sciences Center, University of Londrina State, Londrina, PR CP 86005-990, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Biology Sciences Center, University of Londrina State, Londrina, PR CP 86005-990, Brazil
| |
Collapse
|
50
|
Qin Z, Baker AT, Raab A, Huang S, Wang T, Yu Y, Jaspars M, Secombes CJ, Deng H. The fish pathogen Yersinia ruckeri produces holomycin and uses an RNA methyltransferase for self-resistance. J Biol Chem 2013; 288:14688-97. [PMID: 23572522 DOI: 10.1074/jbc.m112.448415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Holomycin and its derivatives belong to a class of broad-spectrum antibacterial natural products containing a rare dithiolopyrrolone heterobicyclic scaffold. The antibacterial mechanism of dithiolopyrrolone compounds has been attributed to the inhibition of bacterial RNA polymerase activities, although the exact mode of action has not been established in vitro. Some dithiopyrrolone derivatives display potent anticancer activities. Recently the biosynthetic gene cluster of holomycin has been identified and characterized in Streptomyces clavuligerus. Here we report that the fish pathogen Yersinia ruckeri is a holomycin producer, as evidenced through genome mining, chemical isolation, and structural elucidation as well as genetic manipulation. We also identified a unique regulatory gene hom15 at one end of the gene cluster encoding a cold-shock-like protein that likely regulates the production of holomycin in low cultivation temperatures. Inactivation of hom15 resulted in a significant loss of holomycin production. Finally, gene disruption of an RNA methyltransferase gene hom12 resulted in the sensitivity of the mutant toward holomycin. A complementation experiment of hom12 restored the resistance against holomycin. Although the wild-type Escherichia coli BL21(DE3) Gold is susceptible to holomycin, the mutant harboring hom12 showed tolerance toward holomycin. High resolution liquid chromatography (LC)-ESI/MS analysis of digested RNA fragments demonstrated that the wild-type Y. ruckeri and E. coli harboring hom12 contain a methylated RNA fragment, whereas the mutated Y. ruckeri and the wild-type E. coli only contain normal non-methylated RNA fragments. Taken together, our results strongly suggest that this putative RNA methyltransferase Hom12 is the self-resistance protein that methylates the RNA of Y. ruckeri to reduce the cytotoxic effect of holomycin during holomycin production.
Collapse
Affiliation(s)
- Zhiwei Qin
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|