1
|
Huang H, Xue H, Cai A, Yuan H, Yao Y, Liu R, Yang Y, Wang Q, Li Z, Liu T, Huang YY, Dai W, Luo HB, Zou X, Wang X, Guo L. Discovery of novel azetidine-based imidazopyridines as selective and orally bioavailable inhibitors of phosphodiesterase 10A for the treatment of pulmonary arterial hypertension. Eur J Med Chem 2025; 290:117537. [PMID: 40138991 DOI: 10.1016/j.ejmech.2025.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, progressive disorder of the pulmonary vasculature characterized by associated pulmonary and cardiac remodeling. Phosphodiesterase 10A (PDE10A) plays a crucial role in regulating cAMP concentration, thereby influencing pulmonary inflammation and pulmonary vascular remodeling. However, there is a lack of ideal PDE10A selective inhibitors available for PAH treatment. Herein, we employed structure-based drug design to develop a series of azetidine-based imidazopyridines, among which A30 demonstrated an IC50 value of 3.5 nmol/L against PDE10A with high selectivity over other PDEs, low blood-brain barrier permeability, and improved drug-like properties. Oral administration of A30 exhibited significant anti-PAH effects not only in monocrotaline-induced rats, but also in Sugen/hypoxia(Su/Hx)-induced PH mice. Our findings indicate that A30 inhibits PDE10A to suppress pulmonary vascular remodeling through the activation of cAMP-associated signaling pathways.
Collapse
Affiliation(s)
- Hongzhe Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huanxin Xue
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Anqi Cai
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Han Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yufen Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Runduo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Quan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Liu
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Wei Dai
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| | - Xiaoying Wang
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Key Laboratory of Blockchain Security, Guangzhou University, Guangzhou, 510006, China.
| | - Lei Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Banos G, Girma M, Solomon B, Davoudi P, Esatu W, Dessie T, Psifidi A, Watson K, Hanotte O, Sánchez-Molano E. Growth resilience to weather variation in commercial free-ranging chickens in Ethiopia. BMC Genomics 2025; 26:371. [PMID: 40229704 PMCID: PMC11998408 DOI: 10.1186/s12864-025-11561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The poultry industry in sub-Saharan Africa is a rapidly developing sector mostly based on smallholder farming. Increased demand for poultry-derived products, driven by the growing economy and population, has intensified importations of highly productive exotic breeds and crossbreeding with local ecotypes. However, commercial chickens with exotic genes often struggle to adapt to the local climate under smallholder farmers management. Understanding the chicken response to weather changes is crucial for developing selection schemes that ensure proper adaptation. In the present study, we derived individual phenotypes for growth resilience of commercial free-ranging chickens to changing weather conditions in Ethiopia. In addition, we performed genomic association analyses to assess the genetic background of these phenotypes and identify potential candidate genes of interest. RESULTS Novel resilience phenotypes describing changes in chicken growth profiles in response to weather fluctuation were developed. Variations in daily air temperature, relative humidity and amount of precipitation had the strongest impact on growth. Significant genomic variance was detected for growth resilience to changes in air temperature measurements and a temperature-humidity index. Genomic markers correlated with these resilience traits were mostly located within or near candidate genes associated with lipid metabolism and adipocyte homeostasis. Some of these genes have been previously linked to animal responses to environmental stressors in other species. CONCLUSIONS The phenotypes of growth resilience of chickens to changing weather conditions exhibited significant genomic variation. The outcomes of this study may facilitate the genomic selection of commercial chickens that are not only highly productive, but also capable of maintaining their production levels under varying weather conditions.
Collapse
Grants
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- 13760629_13760631 Roslin ISP Pump Priming Grant (BBSRC)
Collapse
Affiliation(s)
- Georgios Banos
- Centre for Tropical Livestock Genetics and Health (CTLGH), Scotland's Rural College, Animal and Veterinary Sciences, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Mekonnen Girma
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Bersabhe Solomon
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Pourya Davoudi
- Centre for Tropical Livestock Genetics and Health (CTLGH), Scotland's Rural College, Animal and Veterinary Sciences, Easter Bush, Midlothian, EH25 9RG, UK
| | - Wondmeneh Esatu
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Tadelle Dessie
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Androniki Psifidi
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - Kellie Watson
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Olivier Hanotte
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Enrique Sánchez-Molano
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
4
|
Wang Q, Liu X, Yuan H, Zhang F, Wu J, Yang D, Qian J, Huang YY, Chai G, Luo HB, Guo L. Inhalable Carbonyl Sulfide Donor-Hybridized Selective Phosphodiesterase 10A Inhibitor for Treating Idiopathic Pulmonary Fibrosis by Inhibiting Tumor Growth Factor-β Signaling and Activating the cAMP/Protein Kinase A/cAMP Response Element-Binding Protein (CREB)/p53 Axis. ACS Pharmacol Transl Sci 2025; 8:256-269. [PMID: 39816787 PMCID: PMC11729434 DOI: 10.1021/acsptsci.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear. Herein, we have exploited a novel carbonyl sulfide (COS)/hydrogen sulfide (H2S)-donor hybrid PDE10A inhibitor called COS-2080 with a well-defined mechanism of H2S-releasing action. It exhibited highly potent inhibitory activity against PDE10A and excellent PDE subfamily selectivity. Moreover, COS-2080 demonstrated significant antifibrotic effects by inhibiting cell proliferation and mitigating fibroblast-to-myofibroblast transition (FMT). A dry powder inhalation formulation called COS-2080-DPI has been developed using the ultrasonic spray freeze drying (USFD) technique, demonstrating significant antifibrotic efficacy in mice with bleomycin-induced PF at a dosage approximately 600 times lower than pirfenidone. This remarkable antifibrotic efficacy of COS-2080 on TGF-β1-induced FMT could be primarily attributed to its inhibition of the Smad2/Smad3 phosphorylation. Moreover, COS-2080 effectively attenuated fibrosis in MRC-5 cells by activating the cAMP/protein kinase A (PKA)/CREB pathway and potentially increasing levels of p53 protein. Our findings suggest that effective inhibition of PDE10A potentially confers a protective effect on FMT in PF by impeding TGF-β signaling and activating the cAMP/PKA/CREB/p53 axis.
Collapse
Affiliation(s)
- Quan Wang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Xinyue Liu
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Han Yuan
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Fengcai Zhang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Jiafei Wu
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Dongjing Yang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Jiang Qian
- Laboratory
Animal Center of Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yi-You Huang
- Key
Laboratory of Tropical Biological Resources of Ministry of Education
and Hainan Engineering Research Center for Drug Screening and Evaluation,
School of Pharmaceutical Sciences, Hainan
University, Haikou 570228, P. R. China
| | - Guihong Chai
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- Key
Laboratory of Tropical Biological Resources of Ministry of Education
and Hainan Engineering Research Center for Drug Screening and Evaluation,
School of Pharmaceutical Sciences, Hainan
University, Haikou 570228, P. R. China
| | - Lei Guo
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
6
|
Li YJ, Shi JR, Li SC, Wang LM, Dhar R, Li N, Cao XW, Li ZG, Tang HF. Phosphodiesterase type 10A inhibitor attenuates lung fibrosis by targeting myofibroblast activation. iScience 2023; 26:106586. [PMID: 37138780 PMCID: PMC10149334 DOI: 10.1016/j.isci.2023.106586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Pulmonary fibrosis (PF) is a fatal and irreversible respiratory disease accompanied by excessive fibroblast activation. Previous studies have suggested that cAMP signaling pathway and cGMP-PKG signaling pathway are continuously down-regulated in lung fibrosis, whereas PDE10A has a specifically expression in fibroblasts/myofibroblasts in lung fibrosis. In this study, we demonstrated that overexpression of PDE10A induces myofibroblast differentiation, and papaverine, as a PDE10A inhibitor used for vasodilation, inhibits myofibroblast differentiation in human fibroblasts, Meanwhile, papaverine alleviated bleomycin-induced pulmonary fibrosis and amiodarone-induced oxidative stress, papaverine downregulated VASP/β-catenin pathway to reduce the myofibroblast differentiation. Our results first demonstrated that papaverine inhibits TGFβ1-induced myofibroblast differentiation and lung fibrosis by VASP/β-catenin pathway.
Collapse
Affiliation(s)
- Ya-Jun Li
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian-Rong Shi
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310003, China
| | - Shu-Chan Li
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lu-Ming Wang
- Department of Thoracic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Rana Dhar
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ning Li
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xin-Wei Cao
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zi-Gang Li
- Department of Anesthesiology, Women’s Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Hui-Fang Tang
- Department of Pharmacology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang 310016, China
- Corresponding author
| |
Collapse
|
7
|
Matloka M, Janowska S, Pankiewicz P, Kokhanovska S, Kos T, Hołuj M, Rutkowska-Wlodarczyk I, Abramski K, Janicka M, Jakubowski P, Świątkiewicz M, Welniak-Kaminska M, Hucz-Kalitowska J, Dera P, Bojarski L, Grieb P, Popik P, Wieczorek M, Pieczykolan J. A PDE10A inhibitor CPL500036 is a novel agent modulating striatal function devoid of most neuroleptic side-effects. Front Pharmacol 2022; 13:999685. [PMID: 36438799 PMCID: PMC9681820 DOI: 10.3389/fphar.2022.999685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 01/04/2024] Open
Abstract
Background: Phosphodiesterase 10A (PDE10A) is expressed almost exclusively in the striatum and its inhibition is suggested to offer potential treatment in disorders associated with basal ganglia. We evaluated the selectivity, cytotoxicity, genotoxicity, pharmacokinetics and potential adverse effects of a novel PDE10A inhibitor, CPL500036, in vivo. Methods: The potency of CPL500036 was demonstrated by microfluidic technology, and selectivity was investigated in a radioligand binding assay against 44 targets. Cardiotoxicity in vitro was evaluated in human ether-a-go-go related gene (hERG)-potassium channel-overexpressing cells by the patch-clamp method and by assessing key parameters in 3D cardiac spheroids. Cytotoxicity was determined in H1299, HepG2 and SH-SY5Y cell lines. The Ames test was used for genotoxicity analyses. During in vivo studies, CPL500036 was administered by oral gavage. CPL500036 exposure were determined by liquid chromatography-tandem mass spectrometry and plasma protein binding was assessed. The bar test was employed to assess catalepsy. Prolactin and glucose levels in rat blood were measured by ELISAs and glucometers, respectively. Cardiovascular safety in vivo was investigated in dogs using a telemetry method. Results: CPL500036 inhibited PDE10A at an IC50 of 1 nM, and interacted only with the muscarinic M2 receptor as a negative allosteric modulator with an IC50 of 9.2 µM. Despite inhibiting hERG tail current at an IC25 of 3.2 μM, cardiovascular adverse effects were not observed in human cardiac 3D spheroids or in vivo. Cytotoxicity in vitro was observed only at > 60 μM and genotoxicity was not recorded during the Ames test. CPL500036 presented good bioavailability and penetration into the brain. CPL500036 elicited catalepsy at 0.6 mg/kg, but hyperprolactinemia or hyperglycemic effects were not observed in doses up to 3 mg/kg. Conclusion: CPL500036 is a potent, selective and orally bioavailable PDE10A inhibitor with a good safety profile distinct from marketed antipsychotics. CPL500036 may be a compelling drug candidate.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Kos
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Hołuj
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | | - Maciej Świątkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | - Paweł Grieb
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | |
Collapse
|
8
|
Identification of novel off targets of baricitinib and tofacitinib by machine learning with a focus on thrombosis and viral infection. Sci Rep 2022; 12:7843. [PMID: 35551258 PMCID: PMC9096754 DOI: 10.1038/s41598-022-11879-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
As there are no clear on-target mechanisms that explain the increased risk for thrombosis and viral infection or reactivation associated with JAK inhibitors, the observed elevated risk may be a result of an off-target effect. Computational approaches combined with in vitro studies can be used to predict and validate the potential for an approved drug to interact with additional (often unwanted) targets and identify potential safety-related concerns. Potential off-targets of the JAK inhibitors baricitinib and tofacitinib were identified using two established machine learning approaches based on ligand similarity. The identified targets related to thrombosis or viral infection/reactivation were subsequently validated using in vitro assays. Inhibitory activity was identified for four drug-target pairs (PDE10A [baricitinib], TRPM6 [tofacitinib], PKN2 [baricitinib, tofacitinib]). Previously unknown off-target interactions of the two JAK inhibitors were identified. As the proposed pharmacological effects of these interactions include attenuation of pulmonary vascular remodeling, modulation of HCV response, and hypomagnesemia, the newly identified off-target interactions cannot explain an increased risk of thrombosis or viral infection/reactivation. While further evidence is required to explain both the elevated thrombosis and viral infection/reactivation risk, our results add to the evidence that these JAK inhibitors are promiscuous binders and highlight the potential for repurposing.
Collapse
|
9
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
10
|
Gao Y, Huang J, Zhou Q, Liu R, Zhang S, Zhang C, Huang YY, Li Z, Huang L, Wu D, Wu Y, Xiao L, Guo L, Luo HB. Discovery of Highly Specific Catalytic-Site-Targeting Fluorescent Probes for Detecting Lysosomal PDE10A in Living Cells. ACS Chem Biol 2021; 16:857-863. [PMID: 33955736 DOI: 10.1021/acschembio.1c00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A challenge for sensors targeting specific enzymes of interest in their native environment for direct imaging is that they rationally exploit a highly selective fluorescent probe with a high binding affinity to provide real-time detection. Immunohistochemical staining, proteomic analysis, or recent enzymatic fluorescent probes are not optimal for tracking specific enzymes directly in living cells. Herein, we introduce the concept of designing a highly effective fluorescent probe (BVQ1814) targeting phosphodiesterase 10A with a highly potent affinity and a >1000-fold subfamily selectivity by gaining insights into the three-dimensional structural information of the active site of the catalytic pocket. BVQ1814 showed an outstanding binding affinity for PDE10A in vitro and specifically detected PDE10A in living cells, indicating that most PDE10A was probably distributed in the lysosomes. We validated the PDE10A distribution in stable mCherry-PDE10A-overexpressing HepG2 cells. This probe delineated the profile of PDE10A in tissue sections and exhibited a remarkable therapeutic effect as a PDE10A inhibitor for treating pulmonary arterial hypertension. This concept will open up a new avenue for designing a highly effective fluorescent probe for tracking receptor proteins by taking full advantage of the structural information in the ligand-binding pocket of the target of interest.
Collapse
Affiliation(s)
- Yuqi Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ju Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runduo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sirui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi-You Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Amin HS, Parikh PK, Ghate MD. Medicinal chemistry strategies for the development of phosphodiesterase 10A (PDE10A) inhibitors - An update of recent progress. Eur J Med Chem 2021; 214:113155. [PMID: 33581555 DOI: 10.1016/j.ejmech.2021.113155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
Phosphodiesterase 10A is a member of Phosphodiesterase (PDE)-superfamily of the enzyme which is responsible for hydrolysis of cAMP and cGMP to their inactive forms 5'-AMP and 5'-GMP, respectively. PDE10A is highly expressed in the brain, particularly in the putamen and caudate nucleus. PDE10A plays an important role in the regulation of localization, duration, and amplitude of the cyclic nucleotide signalling within the subcellular domain of these regions, and thereby modulation of PDE10A enzyme can give rise to a new therapeutic approach in the treatment of schizophrenia and other neurodegenerative disorders. Limitation of the conventional therapy of schizophrenia forced the pharmaceutical industry to move their efforts to develop a novel treatment approach with reduced side effects. In the past decade, considerable developments have been made in pursuit of PDE10A centric antipsychotic agents by several pharmaceutical industries due to the distribution of PDE10A in the brain and the ability of PDE10A inhibitors to mimic the effect of D2 antagonists and D1 agonists. However, no selective PDE10A inhibitor is currently available in the market for the treatment of schizophrenia. The present compilation concisely describes the role of PDE10A inhibitors in the therapy of neurodegenerative disorders mainly in psychosis, the structure of PDE10A enzyme, key interaction of different PDE10A inhibitors with human PDE10A enzyme and recent medicinal chemistry developments in designing of safe and effective PDE10A inhibitors for the treatment of schizophrenia. The present compilation also provides useful information and future direction to bring further improvements in the discovery of PDE10A inhibitors.
Collapse
Affiliation(s)
- Harsh S Amin
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Palak K Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India; Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| |
Collapse
|
12
|
Yang Y, Zhang S, Zhou Q, Zhang C, Gao Y, Wang H, Li Z, Wu D, Wu Y, Huang YY, Guo L, Luo HB. Discovery of highly selective and orally available benzimidazole-based phosphodiesterase 10 inhibitors with improved solubility and pharmacokinetic properties for treatment of pulmonary arterial hypertension. Acta Pharm Sin B 2020; 10:2339-2347. [PMID: 33354505 PMCID: PMC7745062 DOI: 10.1016/j.apsb.2020.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 11/08/2022] Open
Abstract
Optimization efforts were devoted to discover novel PDE10A inhibitors in order to improve solubility and pharmacokinetics properties for a long-term therapy against pulmonary arterial hypertension (PAH) starting from the previously synthesized inhibitor A. As a result, a potent and highly selective PDE10A inhibitor, 14·3HCl (half maximal inhibitory concentration, IC50 = 2.8 nmol/L and >3500-fold selectivity) exhibiting desirable solubility and metabolic stability with a remarkable bioavailability of 50% was identified with the aid of efficient methods of binding free energy predictions. Animal PAH studies showed that the improvement offered by 14·3HCl [2.5 mg/kg, oral administration (p.o.)] was comparable to tadalafil (5.0 mg/kg, p.o.), verifying the feasibility of PDE10A inhibitors for the anti-PAH treatment. The crystal structure of the PDE10A−14 complex illustrates their binding pattern, which provided a guideline for rational design of highly selective PDE10A inhibitors.
Collapse
|
13
|
Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) maintain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
Collapse
|
14
|
Świerczek A, Jankowska A, Chłoń-Rzepa G, Pawłowski M, Wyska E. Advances in the Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 2: Focus on Schizophrenia. Curr Drug Targets 2020; 20:1652-1669. [PMID: 31368871 DOI: 10.2174/1389450120666190801114210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a debilitating mental disorder with relatively high prevalence (~1%), during which positive manifestations (such as psychotic states) and negative symptoms (e.g., a withdrawal from social life) occur. Moreover, some researchers consider cognitive impairment as a distinct domain of schizophrenia symptoms. The imbalance in dopamine activity, namely an excessive release of this neurotransmitter in the striatum and insufficient amounts in the prefrontal cortex is believed to be partially responsible for the occurrence of these groups of manifestations. Second-generation antipsychotics are currently the standard treatment of schizophrenia. Nevertheless, the existent treatment is sometimes ineffective and burdened with severe adverse effects, such as extrapyramidal symptoms. Thus, there is an urgent need to search for alternative treatment options of this disease. This review summarizes the results of recent preclinical and clinical studies on phosphodiesterase 10A (PDE10A), which is highly expressed in the mammalian striatum, as a potential drug target for the treatment of schizophrenia. Based on the literature data, not only selective PDE10A inhibitors but also dual PDE2A/10A, and PDE4B/10A inhibitors, as well as multifunctional ligands with a PDE10A inhibitory potency are compounds that may combine antipsychotic, precognitive, and antidepressant functions. Thus, designing such compounds may constitute a new direction of research for new potential medications for schizophrenia. Despite failures of previous clinical trials of selective PDE10A inhibitors for the treatment of schizophrenia, new compounds with this mechanism of action are currently investigated clinically, thus, the search for new inhibitors of PDE10A, both selective and multitarget, is still warranted.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
15
|
Phosphodiesterase 10A Is a Mediator of Osteogenic Differentiation and Mechanotransduction in Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2020; 2020:7865484. [PMID: 32587621 PMCID: PMC7294361 DOI: 10.1155/2020/7865484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (hMSCs) are capable of differentiating into the osteogenic lineage, and for osteogenic differentiation, mechanical loading is a relevant stimulus. Mechanotransduction leads to the formation of second messengers such as cAMP, cGMP, or Ca2+ influx resulting in the activation of transcription factors mediating gene regulation. The second messengers cAMP and cGMP are degraded by phosphodiesterase isoenzymes (PDE), but the role of these enzymes during osteogenic differentiation or mechanotransduction remains unclear. Here, we focused on the isoenzyme phosphodiesterase 10A (PDE10A) and its role during osteogenic commitment and mechanotransduction. We observed a time-dependent decrease of PDE10A expression in hMSC undergoing differentiation towards the osteogenic lineage. PDE10A inhibition by papaverine diminished osteogenic differentiation. While applying mechanical strain via cyclic stretching of hMSCs led to an upregulation of PDE10A gene expression, inhibition of PDE10A using the drug papaverine repressed expression of mechanoresponsive genes. We conclude that PDE10A is a modulator of osteogenic differentiation as well as mechanotransduction in hMSCs. Our data further suggests that the relative increase of cAMP, rather than the absolute cAMP level, is a key driver of the observed effects.
Collapse
|
16
|
Cyclic nucleotide phosphodiesterases: New targets in the metabolic syndrome? Pharmacol Ther 2020; 208:107475. [PMID: 31926200 DOI: 10.1016/j.pharmthera.2020.107475] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Metabolic diseases have a tremendous impact on human morbidity and mortality. Numerous targets regulating adenosine monophosphate kinase (AMPK) have been identified for treating the metabolic syndrome (MetS), and many compounds are being used or developed to increase AMPK activity. In parallel, the cyclic nucleotide phosphodiesterase families (PDEs) have emerged as new therapeutic targets in cardiovascular diseases, as well as in non-resolved pathologies. Since some PDE subfamilies inactivate cAMP into 5'-AMP, while the beneficial effects in MetS are related to 5'-AMP-dependent activation of AMPK, an analysis of the various controversial relationships between PDEs and AMPK in MetS appears interesting. The present review will describe the various PDE families, AMPK and molecular mechanisms in the MetS and discuss the PDEs/PDE modulators related to the tissues involved, thus supporting the discovery of original molecules and the design of new therapeutic approaches in MetS.
Collapse
|
17
|
Huang YY, Yu YF, Zhang C, Chen Y, Zhou Q, Li Z, Zhou S, Li Z, Guo L, Wu D, Wu Y, Luo HB. Validation of Phosphodiesterase-10 as a Novel Target for Pulmonary Arterial Hypertension via Highly Selective and Subnanomolar Inhibitors. J Med Chem 2019; 62:3707-3721. [PMID: 30888810 DOI: 10.1021/acs.jmedchem.9b00224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) causes pathological increase in pulmonary vascular resistance, leading to right-heart failure and eventual death. Previously, phosphodiesterase-10 (PDE10) was reported to be a promising target for PAH based on the studies with a nonselective PDE inhibitor papaverine, but little progress has been made to confirm the practical application of PDE10 inhibitors. To validate whether PAH is ameliorated by PDE10 inhibition rather than other PDE isoforms, here we report an integrated strategy to discover highly selective PDE10 inhibitors as chemical probes. Structural optimization resulted in a PDE10 inhibitor 2b with subnanomolar affinity and good selectivity of >45 000-fold against other PDEs. The cocrystal structure of the PDE10-2b complex revealed an important H-bond interaction between 2b and Tyr693. Finally, compound 2b significantly decreased the arterial pressure in PAH rats and thus validated the potential of PDE10 as a novel anti-PAH target. These findings suggest that PDE10 inhibition may be a viable treatment option for PAH.
Collapse
Affiliation(s)
- Yi-You Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yan-Fa Yu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Chen Zhang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yiping Chen
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Qian Zhou
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Zhuoming Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Sihang Zhou
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Zhe Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Lei Guo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Deyan Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Yinuo Wu
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| |
Collapse
|
18
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
19
|
Analysis of repeated leukocyte DNA methylation assessments reveals persistent epigenetic alterations after an incident myocardial infarction. Clin Epigenetics 2018; 10:161. [PMID: 30587240 PMCID: PMC6307146 DOI: 10.1186/s13148-018-0588-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Most research into myocardial infarctions (MIs) have focused on preventative efforts. For survivors, the occurrence of an MI represents a major clinical event that can have long-lasting consequences. There has been little to no research into the molecular changes that can occur as a result of an incident MI. Here, we use three cohorts to identify epigenetic changes that are indicative of an incident MI and their association with gene expression and metabolomics. Results Using paired samples from the KORA cohort, we screened for DNA methylation loci (CpGs) whose change in methylation is potentially indicative of the occurrence of an incident MI between the baseline and follow-up exams. We used paired samples from the NAS cohort to identify 11 CpGs which were predictive in an independent cohort. After removing two CpGs associated with medication usage, we were left with an “epigenetic fingerprint” of MI composed of nine CpGs. We tested this fingerprint in the InCHIANTI cohort where it moderately discriminated incident MI occurrence (AUC = 0.61, P = 6.5 × 10−3). Returning to KORA, we associated the epigenetic fingerprint loci with cis-gene expression and integrated it into a gene expression-metabolomic network, which revealed links between the epigenetic fingerprint CpGs and branched chain amino acid (BCAA) metabolism. Conclusions There are significant changes in DNA methylation after an incident MI. Nine of these CpGs show consistent changes in multiple cohorts, significantly discriminate MI in independent cohorts, and were independent of medication usage. Integration with gene expression and metabolomics data indicates a link between MI-associated epigenetic changes and BCAA metabolism. Electronic supplementary material The online version of this article (10.1186/s13148-018-0588-7) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Zhu B, Lindsey A, Li N, Lee K, Ramirez-Alcantara V, Canzoneri JC, Fajardo A, Madeira da Silva L, Thomas M, Piazza JT, Yet L, Eberhardt BT, Gurpinar E, Otali D, Grizzle W, Valiyaveettil J, Chen X, Keeton AB, Piazza GA. Phosphodiesterase 10A is overexpressed in lung tumor cells and inhibitors selectively suppress growth by blocking β-catenin and MAPK signaling. Oncotarget 2017; 8:69264-69280. [PMID: 29050202 PMCID: PMC5642477 DOI: 10.18632/oncotarget.20566] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Phosphodiesterase 10A (PDE10) is a cyclic nucleotide (e.g. cGMP) degrading enzyme highly expressed in the brain striatum where it plays an important role in dopaminergic neurotransmission, but has limited expression and no known physiological function outside the central nervous system. Here we report that PDE10 mRNA and protein levels are strongly elevated in human non-small cell lung cancer cells and lung tumors compared with normal human airway epithelial cells and lung tissue, respectively. Genetic silencing of PDE10 or inhibition by small molecules such as PQ10 was found to selectively inhibit the growth and colony formation of lung tumor cells. PQ10 treatment of lung tumor cells rapidly increased intracellular cGMP levels and activated cGMP-dependent protein kinase (PKG) at concentrations that inhibit lung tumor cell growth. PQ10 also increased the phosphorylation of β-catenin and reduced its levels, which paralleled the suppression of cyclin D1 and survivin but preceded the activation of PARP and caspase cleavage. PQ10 also suppressed RAS-activated RAF/MAPK signaling within the same concentration range and treatment period as required for cGMP elevation and PKG activation. These results show that PDE10 is overexpressed during lung cancer development and essential for lung tumor cell growth in which inhibitors can selectively induce apoptosis by increasing intracellular cGMP levels and activating PKG to suppress oncogenic β-catenin and MAPK signaling.
Collapse
Affiliation(s)
- Bing Zhu
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Ashley Lindsey
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Nan Li
- Department of Biochemistry and Molecular Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin Lee
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Veronica Ramirez-Alcantara
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Joshua C Canzoneri
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Alexandra Fajardo
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Luciana Madeira da Silva
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Meagan Thomas
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - John T Piazza
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Larry Yet
- Department of Chemistry, University of South Alabama, Mobile, Alabama, USA
| | - Brian T Eberhardt
- Department of Chemistry, University of South Alabama, Mobile, Alabama, USA
| | - Evrim Gurpinar
- Department of Pharmacology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dennis Otali
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William Grizzle
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jacob Valiyaveettil
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Xi Chen
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Adam B Keeton
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Gary A Piazza
- Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
21
|
Schain M, Fazio P, Mrzljak L, Amini N, Al-Tawil N, Fitzer-Attas C, Bronzova J, Landwehrmeyer B, Sampaio C, Halldin C, Varrone A. Revisiting the Logan plot to account for non-negligible blood volume in brain tissue. EJNMMI Res 2017; 7:66. [PMID: 28822101 PMCID: PMC5561763 DOI: 10.1186/s13550-017-0314-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/08/2017] [Indexed: 11/23/2022] Open
Abstract
Background Reference tissue-based quantification of brain PET data does not typically include correction for signal originating from blood vessels, which is known to result in biased outcome measures. The bias extent depends on the amount of radioactivity in the blood vessels. In this study, we seek to revisit the well-established Logan plot and derive alternative formulations that provide estimation of distribution volume ratios (DVRs) that are corrected for the signal originating from the vasculature. Results New expressions for the Logan plot based on arterial input function and reference tissue were derived, which included explicit terms for whole blood radioactivity. The new methods were evaluated using PET data acquired using [11C]raclopride and [18F]MNI-659. The two-tissue compartment model (2TCM), with which signal originating from blood can be explicitly modeled, was used as a gold standard. DVR values obtained for [11C]raclopride using the either blood-based or reference tissue-based Logan plot were systematically underestimated compared to 2TCM, and for [18F]MNI-659, a proportionality bias was observed, i.e., the bias varied across regions. The biases disappeared when optimal blood-signal correction was used for respective tracer, although for the case of [18F]MNI-659 a small but systematic overestimation of DVR was still observed. Conclusions The new method appears to remove the bias introduced due to absence of correction for blood volume in regular graphical analysis and can be considered in clinical studies. Further studies are however required to derive a generic mapping between plasma and whole-blood radioactivity levels. Electronic supplementary material The online version of this article (doi:10.1186/s13550-017-0314-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Schain
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | - Patrik Fazio
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Nabil Al-Tawil
- Karolinska Trial Alliance, Karolinska University Hospital, M62, SE-141-86, Stockholm, Sweden
| | | | | | | | | | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
22
|
Shafiee-Nick R, Afshari AR, Mousavi SH, Rafighdoust A, Askari VR, Mollazadeh H, Fanoudi S, Mohtashami E, Rahimi VB, Mohebbi M, Vahedi MM. A comprehensive review on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases. Biomed Pharmacother 2017; 94:541-556. [PMID: 28779712 DOI: 10.1016/j.biopha.2017.07.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/02/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterases are a group of enzymes that hydrolyze cyclic nucleotides, which assume a key role in directing intracellular levels of the second messengers' cAMP and cGMP, and consequently cell function. The disclosure of 11 isoenzyme families and our expanded knowledge of their functions at the cell and molecular level stimulate the improvement of isoenzyme selective inhibitors for the treatment of various diseases, particularly cardiovascular diseases. Hence, future and new mechanistic investigations and carefully designed clinical trials could help reap additional benefits of natural/synthetic PDE inhibitors for cardiovascular disease in patients. This review has concentrated on the potential therapeutic benefits of phosphodiesterase inhibitors on cardiovascular diseases.
Collapse
Affiliation(s)
- Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbasali Rafighdoust
- Department of Cardiology, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Mohtashami
- Department of Pharmacodynamic and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Mohebbi
- Department of Internal Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
23
|
The UK Biobank Cardio-metabolic Traits Consortium Blood Pressure Working Group, Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, Kraja AT, Drenos F, Loh M, Verweij N, Marten J, Karaman I, Segura Lepe MP, O’Reilly PF, Knight J, Snieder H, Kato N, He J, Tai ES, Said MA, Porteous D, Alver M, Poulter N, Farrall M, Gansevoort RT, Padmanabhan S, Mägi R, Stanton A, Connell J, Bakker SJL, Metspalu A, Shields DC, Thom S, Brown M, Sever P, Esko T, Hayward C, van der Harst P, Saleheen D, Chowdhury R, Chambers JC, Chasman DI, Chakravarti A, Newton-Cheh C, Lindgren CM, Levy D, Kooner JS, Keavney B, Tomaszewski M, Samani NJ, Howson JMM, Tobin MD, Munroe PB, Ehret GB, Wain LV, Barnes MR, Tzoulaki I, Caulfield MJ, Elliott P, collaboration with The International Consortium of Blood Pressure #, (ICBP) 1000G Analyses, The CHD Exome+ Consortium, The ExomeBP Consortium, The T2D-GENES Consortium, The GoT2DGenes Consortium, The Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium, The International Genomics of Blood Pressure (iGEN-BP) Consortium. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 2017; 49:403-415. [PMID: 28135244 PMCID: PMC5972004 DOI: 10.1038/ng.3768] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022]
Abstract
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Meixia Ren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Chunyu Liu
- Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO, USA
| | - Fotios Drenos
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Marcelo P Segura Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Bayer Pharma AG, Berlin, Germany
| | - Paul F O’Reilly
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joanne Knight
- Data Science Institute, Lancester University, Lancaster, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - M Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - David Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maris Alver
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Neil Poulter
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Denis C Shields
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Simon Thom
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Morris Brown
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, USA
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Public Health and Primary Care, University of Cambridge, UK
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- The Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Levy
- Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Jaspal S Kooner
- Imperial College Healthcare NHS Trust, London, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK
- National Heart and Lung Institute, Cardiovascular Sciences, Hammersmith Campus, Imperial College London, London, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Joanna M M Howson
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Georg B Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiology, Department of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fazio P, Schain M, Mrzljak L, Amini N, Nag S, Al-Tawil N, Fitzer-Attas CJ, Bronzova J, Landwehrmeyer B, Sampaio C, Halldin C, Varrone A. Patterns of age related changes for phosphodiesterase type-10A in comparison with dopamine D 2/3 receptors and sub-cortical volumes in the human basal ganglia: A PET study with 18F-MNI-659 and 11C-raclopride with correction for partial volume effect. Neuroimage 2017; 152:330-339. [PMID: 28254508 DOI: 10.1016/j.neuroimage.2017.02.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022] Open
Abstract
Phosphodiesterase 10A enzyme (PDE10A) is an important striatal target that has been shown to be affected in patients with neurodegenerative disorders, particularly Huntington´s disease (HD). PDE10A is expressed on striatal neurones in basal ganglia where other known molecular targets are enriched such as dopamine D2/3 receptors (D2/3 R). The aim of this study was to examine the availability of PDE10A enzyme in relation with age and gender and to compare those changes with those related to D2/3 R and volumes in different regions of the basal ganglia. As a secondary objective we examined the relative distribution of D2/3 R and PDE10A enzyme in the striatum and globus pallidus. Forty control subjects (20F/20M; age: 44±11y, age range 27-69) from an ongoing positron emission tomography (PET) study in HD gene expansion carriers were included. Subjects were examined with PET using the high-resolution research tomograph (HRRT) and with 3T magnetic resonance imaging (MRI). The PDE10A radioligand 18F-MNI-659 and D2/3 R radioligand 11C-raclopride were used. The outcome measure was the binding potential (BPND) estimated with the two-tissue compartment model (18F-MNI-659) and the simplified reference tissue model (11C-raclopride) using the cerebellum as reference region. The PET data were corrected for partial volume effects. In the striatum, PDE10A availability showed a significant age-related decline that was larger compared to the age-related decline of D2/3 R availability and to the age-related decline of volumes measured with MRI. In the globus pallidus, a less pronounced decline of PDE10A availability was observed, whereas D2/3 R availability and volumes seemed to be rather stable with aging. The distribution of the PDE10A enzyme was different from the distribution of D2/3 R, with higher availability in the globus pallidus. These results indicate that aging is associated with a considerable physiological reduction of the availability of PDE10A enzyme in the striatum. Moreover as result of the analysis, in the striatum for both the molecular targets, we observed a gender effect with higher BPND the female group.
Collapse
Affiliation(s)
- Patrik Fazio
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden.
| | - Martin Schain
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | | | - Nahid Amini
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Sangram Nag
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Nabil Al-Tawil
- Karolinska Trial Alliance, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | - Christer Halldin
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| | - Andrea Varrone
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm, Sweden
| |
Collapse
|
25
|
Phosphodiesterase 10A inhibitors: analysis of US/EP patents granted since 2012. Pharm Pat Anal 2015; 4:161-86. [DOI: 10.4155/ppa.15.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphodiesterases are enzymes that metabolically inactivate the intracellular second messengers 3′,5′-cyclic adenosine and guanosine monophosphate contributing to the control of multiple biological processes. Among them, PDE10A has the most restricted distribution with high expression in striatal medium spiny neurons. Dysfunction of this key brain circuit has been associated with different psychiatric and neurodegenerative disorders. The unique role of PDE10A, together with its increased pharmacological characterization, have prompted enormous interest in investigating the potential of inhibitors of this enzyme as potential novel therapeutic agents This article reviews PDE10A related patents issued in the period 2012–2014 in the USA and Europe offering also a perspective on potential avenues for the future clinical development of phosphodiesterase 10A inhibitors.
Collapse
|
26
|
Clapp LH, Gurung R. The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: Role of membrane versus nuclear receptors. Prostaglandins Other Lipid Mediat 2015; 120:56-71. [PMID: 25917921 DOI: 10.1016/j.prostaglandins.2015.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of distal pulmonary arteries in which patients suffer from elevated pulmonary arterial pressure, extensive vascular remodelling and right ventricular failure. To date prostacyclin (PGI2) therapy remains the most efficacious treatment for PAH and is the only approved monotherapy to have a positive impact on long-term survival. A key thing to note is that improvement exceeds that predicted from vasodilator testing strongly suggesting that additional mechanisms contribute to the therapeutic benefit of prostacyclins in PAH. Given these agents have potent antiproliferative, anti-inflammatory and endothelial regenerating properties suggests therapeutic benefit might result from a slowing, stabilization or even some reversal of vascular remodelling in vivo. This review discusses evidence that the pharmacology of each prostacyclin (IP) receptor agonist so far developed is distinct, with non-IP receptor targets clearly contributing to the therapeutic and side effect profile of PGI2 (EP3), iloprost (EP1), treprostinil (EP2, DP1) along with a family of nuclear receptors known as peroxisome proliferator-activated receptors (PPARs), to which PGI2 and some analogues directly bind. These targets are functionally expressed to varying degrees in arteries, veins, platelets, fibroblasts and inflammatory cells and are likely to be involved in the biological actions of prostacylins. Recently, a highly selective IP agonist, selexipag has been developed for PAH. This agent should prove useful in distinguishing IP from other prostanoid receptors or PPAR binding effects in human tissue. It remains to be determined whether selectivity for the IP receptor gives rise to a superior or inferior clinical benefit in PAH.
Collapse
Affiliation(s)
- Lucie H Clapp
- Department of Medicine, UCL, Rayne Building, London WC1E 6JF, UK.
| | - Rijan Gurung
- Department of Medicine, UCL, Rayne Building, London WC1E 6JF, UK
| |
Collapse
|
27
|
Papapetropoulos A, Hobbs AJ, Topouzis S. Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS. Br J Pharmacol 2015; 172:1397-414. [PMID: 25302549 DOI: 10.1111/bph.12980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 09/08/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023] Open
Abstract
The discovery of NO as both an endogenous signalling molecule and as a mediator of the cardiovascular effects of organic nitrates was acknowledged in 1998 by the Nobel Prize in Physiology/Medicine. The characterization of its downstream signalling, mediated through stimulation of soluble GC (sGC) and cGMP generation, initiated significant translational interest, but until recently this was almost exclusively embodied by the use of PDE5 inhibitors in erectile dysfunction. Since then, research progress in two areas has contributed to an impressive expansion of the therapeutic targeting of the NO-sGC-cGMP axis: first, an increased understanding of the molecular events operating within this complex pathway and second, a better insight into its dys-regulation and uncoupling in human disease. Already-approved PDE5 inhibitors and novel, first-in-class molecules, which up-regulate the activity of sGC independently of NO and/or of the enzyme's haem prosthetic group, are undergoing clinical evaluation to treat pulmonary hypertension and myocardial failure. These molecules, as well as combinations or second-generation compounds, are also being assessed in additional experimental disease models and in patients in a wide spectrum of novel indications, such as endotoxic shock, diabetic cardiomyopathy and Becker's muscular dystrophy. There is well-founded optimism that the modulation of the NO-sGC-cGMP pathway will sustain the development of an increasing number of successful clinical candidates for years to come.
Collapse
|
28
|
Schülke JP, McAllister LA, Geoghegan KF, Parikh V, Chappie TA, Verhoest PR, Schmidt CJ, Johnson DS, Brandon NJ. Chemoproteomics demonstrates target engagement and exquisite selectivity of the clinical phosphodiesterase 10A inhibitor MP-10 in its native environment. ACS Chem Biol 2014; 9:2823-32. [PMID: 25295858 DOI: 10.1021/cb500671j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphodiesterases (PDEs) regulate the levels of the second messengers cAMP and cGMP and are important drug targets. PDE10A is highly enriched in medium spiny neurons of the striatum and is an attractive drug target for the treatment of basal ganglia diseases like schizophrenia, Parkinson's disease, or Huntington's disease. Here we describe the design, synthesis, and application of a variety of chemical biology probes, based on the first clinically tested PDE10A inhibitor MP-10, which were used to characterize the chemoproteomic profile of the clinical candidate in its native environment. A clickable photoaffinity probe was used to measure target engagement of MP-10 and revealed differences between whole cell and membrane preparations. Moreover, our results illustrate the importance of the linker design in the creation of functional probes. Biotinylated affinity probes allowed identification of drug-interaction partners in rodent and human tissue and quantitative mass spectrometry analysis revealed highly specific binding of MP-10 to PDE10A with virtually no off-target binding. The profiling of PDE10A chemical biology probes described herein illustrates a strategy by which high affinity inhibitors can be converted into probes for determining selectivity and target engagement of drug candidates in complex biological matrices from native sources.
Collapse
Affiliation(s)
- Jan-Philip Schülke
- Neuroscience
Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 (United States)
| | - Laura A. McAllister
- Neuroscience
Medicinal Chemistry and Chemical Biology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 (United States)
| | - Kieran F. Geoghegan
- Center
of Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340 (United States)
| | - Vinod Parikh
- Center
of Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340 (United States)
| | - Thomas A. Chappie
- Neuroscience
Medicinal Chemistry and Chemical Biology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 (United States)
| | - Patrick R. Verhoest
- Neuroscience
Medicinal Chemistry and Chemical Biology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 (United States)
| | - Christopher J. Schmidt
- Neuroscience
Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 (United States)
| | - Douglas S. Johnson
- Neuroscience
Medicinal Chemistry and Chemical Biology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 (United States)
| | - Nicholas J. Brandon
- Neuroscience
Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 (United States)
| |
Collapse
|
29
|
Tümer N, Toklu HZ, Muller-Delp JM, Oktay S, Ghosh P, Strang K, Delp MD, Scarpace PJ. The effects of aging on the functional and structural properties of the rat basilar artery. Physiol Rep 2014; 2:2/6/e12031. [PMID: 24907295 PMCID: PMC4208653 DOI: 10.14814/phy2.12031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aging leads to progressive pathophysiological changes in blood vessels of the brain and periphery. The aim of this study was to evaluate the effects of aging on cerebral vascular function and structure. Basilar arteries were isolated from male Fischer 344 cross Brown Norway (F344xBN) rats at 3, 8, and 24 months of age. The basilar arteries were cannulated in the pressurized system (90 cm H2O). Contractile responses to KCl (30–120 mmol/L) and endothelin‐1 (10−11–10−7 mol/L) were evaluated. Responses to acetylcholine (ACh) (10−10–10−4 mol/L), diethylamine (DEA)‐NONO‐ate (10−10–10−4 mol/L), and papaverin (10−10–10−4 mol/L) were assessed to determine both endothelium‐dependent and endothelium‐independent responsiveness. Advanced aging (24 months) decreased responses of the basilar artery to both the contractile and relaxing agents; whereas, DEA‐induced dilation was significantly higher in the 8‐month‐old group compared with the younger and older groups. The arterial wall‐to‐lumen ratio was significantly increased in 24‐month‐old rats. Smooth muscle cell count was also decreased in old rats. These findings indicate that aging produces dysfunction of both the endothelium and the vascular smooth muscle in the basilar artery. Aging also alters wall structure of the basilar artery, possibly through decreases in smooth muscle cell number and concomitant hypertrophy. The purpose of this study was to determine the effects of advancing age on the structure and vasomotor responses of the basilar artery as well as the serum antioxidant capacity. Advanced aging (24 months) decreased responses of the basilar artery to both the contractile and relaxing agents, whereas, DEA‐induced dilation was significantly higher in the 8‐month‐old group compared with the younger and older rats. The arterial wall‐to‐lumen ratio was significantly increased in 24‐month‐old rats. Smooth muscle cell count was also decreased in old rats. Our findings demonstrate that aging is associated with functional impairment in endothelium‐dependent and ‐independent relaxation responses and contractility in the basilar arteries, and these diminished responses are accompanied by structural remodeling and decreased antioxidant capacity of the serum.
Collapse
Affiliation(s)
- Nihal Tümer
- Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Hale Z Toklu
- Geriatric Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Judy M Muller-Delp
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Sehkar Oktay
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA School of Dentistry, Marmara University, Istanbul, Turkey
| | - Payal Ghosh
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kevin Strang
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA
| | - Michael D Delp
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Philip J Scarpace
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Bubb KJ, Trinder SL, Baliga RS, Patel J, Clapp LH, MacAllister RJ, Hobbs AJ. Inhibition of phosphodiesterase 2 augments cGMP and cAMP signaling to ameliorate pulmonary hypertension. Circulation 2014; 130:496-507. [PMID: 24899690 DOI: 10.1161/circulationaha.114.009751] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a life-threatening disorder characterized by increased pulmonary artery pressure, remodeling of the pulmonary vasculature, and right ventricular failure. Loss of endothelium-derived nitric oxide (NO) and prostacyclin contributes to PH pathogenesis, and current therapies are targeted to restore these pathways. Phosphodiesterases (PDEs) are a family of enzymes that break down cGMP and cAMP, which underpin the bioactivity of NO and prostacyclin. PDE5 inhibitors (eg, sildenafil) are licensed for PH, but a role for PDE2 in lung physiology and disease has yet to be established. Herein, we investigated whether PDE2 inhibition modulates pulmonary cyclic nucleotide signaling and ameliorates experimental PH. METHODS AND RESULTS The selective PDE2 inhibitor BAY 60-7550 augmented atrial natriuretic peptide- and treprostinil-evoked pulmonary vascular relaxation in isolated arteries from chronically hypoxic rats. BAY 60-7550 prevented the onset of both hypoxia- and bleomycin-induced PH and produced a significantly greater reduction in disease severity when given in combination with a neutral endopeptidase inhibitor (enhances endogenous natriuretic peptides), trepostinil, inorganic nitrate (NO donor), or a PDE5 inhibitor. Proliferation of pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension was reduced by BAY 60-7550, an effect further enhanced in the presence of atrial natriuretic peptide, NO, and treprostinil. CONCLUSIONS PDE2 inhibition elicits pulmonary dilation, prevents pulmonary vascular remodeling, and reduces the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile is dependent on natriuretic peptide bioactivity and is additive with prostacyclin analogues, PDE5 inhibitor, and NO. PDE2 inhibition represents a viable, orally active therapy for PH.
Collapse
Affiliation(s)
- Kristen J Bubb
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Sarah L Trinder
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Reshma S Baliga
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Jigisha Patel
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Lucie H Clapp
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Raymond J MacAllister
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Adrian J Hobbs
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom.
| |
Collapse
|
31
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 594] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
32
|
Phosphodiesterase 10A: a novel target for selective inhibition of colon tumor cell growth and β-catenin-dependent TCF transcriptional activity. Oncogene 2014; 34:1499-509. [PMID: 24704829 PMCID: PMC4212019 DOI: 10.1038/onc.2014.94] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/03/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
The cyclic nucleotide phosphodiesterase 10A (PDE10) has been mostly studied as a therapeutic target for certain psychiatric and neurological conditions, although a potential role in tumorigenesis has not been reported. Here we show that PDE10 is elevated in human colon tumor cell lines compared with normal colonocytes, as well as in colon tumors from human clinical specimens and intestinal tumors from Apc(Min/+) mice compared with normal intestinal mucosa, respectively. An isozyme and tumor-selective role of PDE10 were evident by the ability of small-molecule inhibitors and small interfering RNA knockdown to suppress colon tumor cell growth with reduced sensitivity of normal colonocytes. Stable knockdown of PDE10 by short hairpin RNA also inhibits colony formation and increases doubling time of colon tumor cells. PDE10 inhibition selectively activates cGMP/cGMP-dependent protein kinase signaling to suppress β-catenin levels and T-cell factor (TCF) transcriptional activity in colon tumor cells. Conversely, ectopic expression of PDE10 in normal and precancerous colonocytes increases proliferation and activates TCF transcriptional activity. These observations suggest a novel role of PDE10 in colon tumorigenesis and that inhibitors may be useful for the treatment or prevention of colorectal cancer.
Collapse
|
33
|
Xiao Y, Christou H, Liu L, Visner G, Mitsialis SA, Kourembanas S, Liu H. Endothelial indoleamine 2,3-dioxygenase protects against development of pulmonary hypertension. Am J Respir Crit Care Med 2014; 188:482-91. [PMID: 23822766 DOI: 10.1164/rccm.201304-0700oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE A proliferative and apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs) is key to pathologic vascular remodeling in pulmonary hypertension (PH). Expression of indoleamine-2,3-dioxygenase (IDO) by vascular endothelium is a newly identified vasomotor-regulatory mechanism also involved in molecular signaling cascades governing vascular smooth muscle cell (vSMC) plasticity. OBJECTIVES To investigate the therapeutic potential of enhanced endothelial IDO in development of PH and its associated vascular remodeling. METHODS We used loss and gain of function in vivo studies to establish the role and determine the therapeutic effect of endothelial IDO in hypoxia-induced PH in mice and monocrotaline-induced PH in rats. We also studied PASMC phenotype in an IDO-high in vivo and in vitro tissue microenvironment. MEASUREMENTS AND MAIN RESULTS The endothelium was the primary site for endogenous IDO production within mouse lung, and the mice lacking this gene had exaggerated hypoxia-induced PH. Conversely, augmented pulmonary endothelial IDO expression, through a human IDO-encoding Sleeping Beauty (SB)-based nonviral gene-integrating approach, halted and attenuated the development of PH, right ventricular hypertrophy, and vascular remodeling in both preclinical models of PH. IDO derived from endothelial cells promoted apoptosis in PH-PASMCs through depolarization of mitochondrial transmembrane potential and down-regulated PH-PASMC proliferative/synthetic capacity through enhanced binding of myocardin to CArG box DNA sequences present within the promoters of vSMC differentiation-specific genes. CONCLUSIONS Enhanced endothelial IDO ameliorates PH and its associated vascular structural remodeling through paracrine phenotypic modulation of PH-PASMCs toward a proapoptotic and less proliferative/synthetic state.
Collapse
Affiliation(s)
- Yongguang Xiao
- Department of Surgery, Boston Children’s Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
FENG WENJING, XU XIZHEN, ZHAO GANG, LI GENG, LIU TIANTIAN, ZHAO JUNJIE, DONG RUOLAN, WANG DAOWEN, TU LING. EETs and CYP2J2 inhibit TNF-α-induced apoptosis in pulmonary artery endothelial cells and TGF-β1-induced migration in pulmonary artery smooth muscle cells. Int J Mol Med 2013; 32:685-93. [DOI: 10.3892/ijmm.2013.1435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/11/2013] [Indexed: 11/05/2022] Open
|
35
|
Burgos-Paz W, Souza CA, Megens HJ, Ramayo-Caldas Y, Melo M, Lemús-Flores C, Caal E, Soto HW, Martínez R, Alvarez LA, Aguirre L, Iñiguez V, Revidatti MA, Martínez-López OR, Llambi S, Esteve-Codina A, Rodríguez MC, Crooijmans RPMA, Paiva SR, Schook LB, Groenen MAM, Pérez-Enciso M. Porcine colonization of the Americas: a 60k SNP story. Heredity (Edinb) 2012; 110:321-30. [PMID: 23250008 DOI: 10.1038/hdy.2012.109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pig, Sus scrofa, is a foreign species to the American continent. Although pigs originally introduced in the Americas should be related to those from the Iberian Peninsula and Canary islands, the phylogeny of current creole pigs that now populate the continent is likely to be very complex. Because of the extreme climates that America harbors, these populations also provide a unique example of a fast evolutionary phenomenon of adaptation. Here, we provide a genome wide study of these issues by genotyping, with a 60k SNP chip, 206 village pigs sampled across 14 countries and 183 pigs from outgroup breeds that are potential founders of the American populations, including wild boar, Iberian, international and Chinese breeds. Results show that American village pigs are primarily of European ancestry, although the observed genetic landscape is that of a complex conglomerate. There was no correlation between genetic and geographical distances, neither continent wide nor when analyzing specific areas. Most populations showed a clear admixed structure where the Iberian pig was not necessarily the main component, illustrating how international breeds, but also Chinese pigs, have contributed to extant genetic composition of American village pigs. We also observe that many genes related to the cardiovascular system show an increased differentiation between altiplano and genetically related pigs living near sea level.
Collapse
Affiliation(s)
- W Burgos-Paz
- Centre for Research in Agricultural Genomics (CRAG)-Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 2012; 165:1288-305. [PMID: 22014080 DOI: 10.1111/j.1476-5381.2011.01729.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) that specifically inactivate the intracellular messengers cAMP and cGMP in a compartmentalized manner represent an important enzyme class constituted by 11 gene-related families of isozymes (PDE1 to PDE11). Downstream receptors, PDEs play a major role in controlling the signalosome at various levels of phosphorylations and protein/protein interactions. Due to the multiplicity of isozymes, their various intracellular regulations and their different cellular and subcellular distributions, PDEs represent interesting targets in intracellular pathways. Therefore, the investigation of PDE isozyme alterations related to various pathologies and the design of specific PDE inhibitors might lead to the development of new specific therapeutic strategies in numerous pathologies. This manuscript (i) overviews the different PDEs including their endogenous regulations and their specific inhibitors; (ii) analyses the intracellular implications of PDEs in regulating signalling cascades in pathogenesis, exemplified by two diseases affecting cell cycle and proliferation; and (iii) discusses perspectives for future therapeutic developments.
Collapse
Affiliation(s)
- Thérèse Keravis
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
37
|
Chappie TA, Helal CJ, Hou X. Current landscape of phosphodiesterase 10A (PDE10A) inhibition. J Med Chem 2012; 55:7299-331. [PMID: 22834877 DOI: 10.1021/jm3004976] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas A Chappie
- Neuroscience Medicinal Chemistry, Pfizer, Inc. , 700 Main Street, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|